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The Diffeomorphism Type of Canonical
Integrations Of Poisson Tensors on Surfaces

David Mart́ınez Torres

Abstract. A surface Σ endowed with a Poisson tensor π is known to admit a canonical integration,
G(π), which is a 4-dimensional manifold with a (symplectic) Lie groupoid structure. In this short
note we show that if π is not an area form on the 2-sphere, then G(π) is diòeomorphic to the
cotangent bundle T∗Σ. _is extends results by the author and by Bonechi, Ciccoli, Staòolani, and
Tarlini.

1 Introduction

A Poisson structure on a manifold M is given by a bivector π closed under the
Schouten bracket. Equivalently, it is deûned by a bracket { ⋅ , ⋅ } on smooth functions
such that (C∞(M), { ⋅ , ⋅ }) becomes a Lie algebra over the reals and X f ∶= { f , ⋅ }
is a derivation for every function f ; the Hamiltonian vector ûelds X f , f ∈ C∞(M),
deûne a (possibly singular) integrable distribution, its maximal integral submanifolds
carrying a symplectic form.

Poisson structures can have rather complicated symplectic foliations. Under some
well-known conditions [3] a Poisson structure (M , π) can be “symplectically desin-
gularized”. _is means that there exist a symplectic manifold (S ,ω) and surjective
submersion ϕ∶ S → M, such that for any f ∈ C∞(M) the Hamiltonian vector ûelds
X f and Xϕ∗ f are ϕ-related and Xϕ∗ f is complete whenever X f is complete.

Poisson manifolds that can be “symplectically desingularized” are referred to as
integrable. _e reason is that if there exist symplectic desingularizations for (M , π),
then there is a canonical one s∶ (G(π),ωG) → (M , π) [3] called the canonical inte-
gration, which is the unique (symplectic) Lie groupoid [10] over M with 1-connected
s-ûbers which integrates the Lie algebroid structure deûned by π on T∗M. Suõce
it to say here that the Lie groupoid structure includes the source and target maps
s, t∶G(π) → M, a bisection of units u∶M → G(π), and a partial associative compo-
sition law in which “arrows” g , h ∈ G(π) can be composed whenever s(g) = t(h);
the symplectic form ωG is compatible with the Lie groupoid structure (i.e., it is mul-
tiplicative).

_ere are several good reasons to study the symplectic geometry of canonical in-
tegrations of integrable Poisson structures. One of them is trying to understand the
role of multiplicative symplectic structures among symplectic structures. Another
one is that Poisson structures describe classical physical systems that one would like
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to quantize. If the Poisson structure is integrable, then it is natural consider the geo-
metric quantization of the canonical symplectic integration (taking into account as
well the groupoid structure) [2, 5].
For an integrable Poisson structure (M , π), the standard construction of its canon-

ical integration (G(π),ωG) is by symplectic reduction on an inûnite-dimensional
symplecticmanifold [1,3]. SinceG(π) is the leaf space of a foliation (of ûnite codimen-
sion), it is extremely diõcult to describe G(π) as a manifold, let alone its symplectic
geometry. Even more diõculties arise at the level of general topology, since, as it is
o�en the case for leaf spaces, G(π) need not be Hausdorò. Still, it makes sense to try
to describe (G(π),ωG) in the lowest possible dimension, i.e., when M is a surface.

Let us start by recalling that any bivector π on a surface Σ deûnes a Poisson struc-
ture and that all Poisson structures on surfaces are integrable [1].

Regarding general topology issues, the canonical integration of a Poisson structure
on a surface is alwaysHausdorò (see [1] for the proof for Poisson structures onR2 with
1-connected symplectic leaves, and [6] for the case of arbitrary Poisson structures and
surfaces).

_e canonical integration G(π) is a 4-dimensional manifold whose diòeomor-
phism type is known in few cases. For the trivial Poisson structure and for area forms
it is well known that G(π) is diòeomorphic to the cotangent bundle. When Σ = S2

and π is a Poisson homogeneous structure (the corresponding foliation having one
symplectic leaf and quadratic singularity at the north pole say), the canonical integra-
tion is also diòeomorphic to the cotangent bundle. Finally, G(π) is diòeomorphic to
R4 for any Poisson structure on R2 [1, 6].

Let us ûnish this brief survey by recalling that the symplectomorphism type of
(G(π),ωG) is only known in the two extreme cases: for both the trivial Poisson struc-
ture on an arbitrary surface and the Poisson structure associated with an area form
on Σ compact with empty boundary, and diòerent from the 2-sphere,1 the canonical
integration is symplectomorphic to the cotangent bundle with its standard symplectic
form (see [7] for the proof in the case of area forms).

_e purpose of this short note is to fully describe the diòeomorphism type of
canonical integrations of Poisson structures on surfaces.

_eorem 1.1 Let π be a Poisson tensor on a surface Σ that is not an area form on S2.
_en there exists a diòeomorphism of ûbrations

G(π) //

s
!!CCCCCCCC

T∗Σ

π
~~|||||||||

Σ

taking the units of the groupoid to the zero section of the cotangent bundle.

1For S2 endowed with an area form ω, the canonical integration is symplectomorphic to
(S2

× S2 , ω ⊕ −ω)
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2 Proof of the Theorem

_e starting point is a slight reûnement of a result of Meigniez [9], in which we char-
acterize those surjective submersions that are the total space of a vector bundle.

Proposition 2.1 Let p∶Q → B be a surjective submersion between (Hausdorò) ma-
nifolds satisfying the following properties.
(i) For all b ∈ B the ûber p−1(b) is diòeomorphic to Rn .
(ii) _e submersion has a section σ ∶B → Q.
_en there exists a rank n vector bundle π∶ E → B and a diòeomorphism of ûbrations

Q Ψ //

p
��??????? E

π
����������

B

taking σ(B) to the zero section of E

Proof Because of property (i), [9, Corollary 31] implies that p∶Q → B is a locally
trivial ûbration. Very brie�y, there are two fundamental steps to prove local triviality.
First, it is enough to do it for the pullback of Q to paths in B; this dimensional reduc-
tion uses a topological argument involving ûbrations of path spaces. Secondly, the
property that each ûber can be exhausted by closed balls (the ûber is diòeomorphic
to Euclidean space) and any two (embedded) balls are isotopic, is used to trivialize
the submersion over a path (though the proof is by no means straightforward).

Next, by property (ii) we can reduce the structural group of p∶Q → B to the dif-
feomorphisms that ûx the origin Diò(Rn , 0).

_e proof of the proposition amounts to showing that we can further reduce the
structural group to the linear group Gl(n,R).

It is worth pointing out that if the structural group were a ûnite-dimensional Lie
groupG, then standard bundle theory says that the existence of reduction of the struc-
tural group to a subgroupH is equivalent to the existence of a section of the associated
bundle with ûber the homogeneous spaceG/H. If particular, ifH were a deformation
retract of G, well-known arguments of obstruction theory would imply that such a
section always exists.

In our case the existence of a retraction of Diò(Rn , 0) into Gl(n,R) is not enough
to reduce the structural group. _e reason is that nomatterwhich reasonable topology
we use on Diò(Rn , 0), the evaluation map is not smooth. Speciûcally, we need to
ûnd a “smooth retraction” H∶ [0, 1] ×Diò(Rn , 0) → Diò(Rn , 0), in the sense that for
any manifold N and any smooth map Φ∶N × Rn → Rn with Φ(n, ⋅ ) ∈ Diò(Rn , 0),
the composition H(t, Φ)∶ [0, 1] × N × Rn → Rn be smooth (for the purposes of the
application of obstruction theory the manifold N will always be a sphere).

Let λt ∶Rn → Rn be the dilation by factor t ∈ R > 0. _en the standard retraction
taking a diòeomorphism ûxing the origin to its linearization at the origin,

H∶ [0, 1] ×Diò(Rn , 0) Ð→ Diò(Rn , 0)
(t, ϕ) z→ λ1/t ○ ϕ ○ λt ,
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is “smooth” in the above sense. We recall how the argument goes (in fact, that em-
bedded balls in Euclidean space are isotopic is proved is a similar fashion). We can
assume without loss of generality that we have a smooth map

Φ∶Rd ×Rn → Rn , (u, x) ↦ Φ(u, x),

which for each u ∈ Rn is a diòeomorphism ûxing the origin Φu(x). To show the
smoothness of

R ×Rd ×Rn → Rn , (t, u, x) ↦ Φ(u, tx)
t

,

we regard Φ(u, tx) as a family of functions on the variable t, and consider the aux-
iliary family of functions G(t ,u ,x)(s) = Φ(u, stx), s ∈ [0, 1]. By the fundamental
theorem of calculus

Φ(u, tx) = G(t ,u ,x)(1) = ∫
1

0

d
ds

G(t ,u ,x)(s)ds = (∫
1

0
(

n
∑
j=1

∂Φ
∂x j

(u, stx)x j)ds) t.

_erefore,
Φ(u, tx)

t
= ∫

1

0
(

n
∑
j=1

∂Φ
∂x j

(u, stx)x j)ds

is smooth, and its value at zero is indeed the diòerential of Φu(x) at the origin

lim
t→0

Φ(u, tx)
t

= ∫
1

0
(

n
∑
j=1

∂Φ
∂x j

(u, 0)x j)ds =
n
∑
j=1

∂Φ
∂x j

(u, 0)x j .

When P is a symplectic manifold carrying a Lagrangian section, then much more
can be said.

Corollary 2.2 Let p∶Q → B be as in Proposition 2.1. Assume further that Q carries
a symplectic structure so that the graph of the section σ is a Lagrangian submanifold.
_en there exists a diòeomorphism of ûbrations

Q Ψ //

p
��>>>>>>> T∗B

π
}}|||||||||

B

taking σ(B) to the zero section of the cotangent bundle.

Proof By Proposition 2.1 we can assume without loss of generality that p∶Q → B
is a vector bundle. A vector bundle is isomorphic to the normal bundle of the graph
of either of its sections. If the graph is Lagrangian, basic symplectic linear algebra
[8] implies the normal bundle of the graph is isomorphic to T∗B, and this proves the
corollary.

Proof of_eorem 1.1 By [6, Corollary 3], s∶G(π) → Σ is a locally trivial ûbration
with ûber diòeomorphic to R2. Because it is a symplectic Lie groupoid, the units are
a Lagrangian section [10], and therefore the theorem follows from Corollary 2.2.
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_e proof of _eorem 1.1 is purely topological. It would be desirable to have a
proof in the spirit of Lie theory, namely, to ûnd a connection on the Lie algebroid
(T∗M , [ ⋅ , ⋅ ]π)whose (contravariant) exponentialmap exp∶T∗M → G(π) is a diòeo-
morphism, and hence deduce that G(π) is of “exponential type”. Such a proof might
also shed some light on whether (G(π),ωG) is the standard or an exotic symplectic
structure on the cotangent bundle. _e reason is that it is tempting to try to prove
that canonical integrations are standard cotangent bundles by using a global version
of the symplectic realization construction in [4]. _e kind of problems one encoun-
ters for the latter approach are analogous to those appearing when trying to show that
an exponential provides a diòeomorphism from the Lie algebroid to the canonical
integration.

References
[1] A. S. Cattaneo and G. Felder, Poisson sigma models and symplectic groupoids. In: Quantization of

singular symplectic quotients, Progr. Math., 198, Birkhäuser, Basel, 2001, pp. 61–93.
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