Indecomposable representations in characteristic two of the simple groups of order not divisible by eight

P.W. Donovan and M-R. Freislich

Abstract

The indecomposable representations in characteristic two of the groups $\operatorname{PSL}(2, q)$ where q is congruent to 3 or 5 modulo 8 are classified. For $q=3$ or 5 the classification is obtained by explicit construction of modules, using the Green correspondence to prove completeness. For larger q, the classification is obtained using equivalences between appropriate categories of modules.

1. Introduction

Let k be an algebraically closed field of characteristic 2 . The simple groups with Sylow subgroup $V=C_{2} \times C_{2}$ are the groups $\operatorname{PSL}(2, q)$, $q \equiv 3$ or $5(\bmod 8)$ and $q>3$ (see Gorenstein, [5], p. 420). Their character tables (see Dornhoff, [2], Section 38) will be needed in Sections 2 and 3 below. Conlon's list of indecomposable modules for $k V$ and $k A_{4}$, given in [1], will be used. Frequent use will be made of the Green correspondence of [6]. The form of this correspondence convenient for our purposes is as follows.

Let G be a finite group, P a 2-subgroup, and H a subgroup of G containing $N_{G}(P)$. Let M be an indecomposable $K G$ module with vertex P. Then there is a unique indecomposable $k H$ module N with vertex P such that N is a component (indecomposable direct summand) of the

Received 20 July 1976.
restriction M_{H}, and every other component of M_{H} has vertex $P^{x} \cap H$, for some $x \in G-H$.

In Sections 5 and 6 the notation $M=f(M)$ will be used.
For A_{4} and A_{5} this classification method carries over to any field k of characteristic 2 containing a primitive cube root of unity. The indecomposable representations that are referred to below as continuous are then parametrised by irreducible polynomials.
2. The 2-blocks of $\operatorname{PSL}(2, q), q \equiv 3$ (mod 8)

An examination of the character table of $\operatorname{PSL}(2, q), q \equiv 3(\bmod 8)$, shows that:
(a) its principal 2-block consists of 4 complex characters, 1 (degree 1) , η_{1} (degree $\left.\frac{z_{2}}{2}(q-1)\right), \eta_{2}$ (degree $\left.\frac{z_{2}}{2}(q-1)\right)$, and ψ (degree q);
(b) the only other 2-blocks are ($q-3$)/4 blocks of defect 0 and $(q-3) / 8$ blocks of defect 1 ;
(c) modulo characters in non-principal blocks, the product characters from the principal block are

$$
n_{1} n_{1}=n_{2}, \quad n_{1} n_{2}=1, \text { and } n_{2} n_{2}=n_{1} .
$$

As the representation theory of the blocks of defect 0 and 1 is known (see, for example, Dornhoff, [3], Section 68), we restrict attention to the principal 2-block. Since the number of irreducible modular representations is the number of 2-regular conjugacy classes, the principal 2 -block has three irreducible modular representations. The group has a Sylow subgroup Q, elementary abelian of order q, whose normaliser $N(Q)$ is the image of the group of upper triangular matrices. The orbits of the action of $N(Q)$ on the set of linear characters of Q consist of $1, \frac{1}{2}(q-1)$, and $\frac{1}{2}(q-1)$ elements respectively. Hence the restriction of any (characteristic 0 or 2) representation of $N(Q)$ to Q is the sum of representations each of which is the restriction of $1, \eta_{1}$ or η_{2}. Hence η_{1} and η_{2} remain irreducible in characteristic 2 , and the Cartan matrix for the block must be

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] .
$$

The trivial representation of $k N(Q)$ induced to $\operatorname{PSL}(2, q)$ is projective of dimension $q+1$, and may be interpreted as the space of all functions on the projective line over $\operatorname{GF}(q)$. It has a unique minimal subrepresentation - the space of constant functions - and a unique maximal subrepresentation - the space of all functions with sum of values zero. The quotient of these two subrepresentations is readily calculated to be a direct sum $\eta_{1} \oplus \eta_{2}$. Thus π_{0}, the above representation, is the projective cover of 1 , and so, by (c) above, $\pi_{0} \otimes \eta_{1}=\pi_{1}$ and $\pi_{0} \otimes \eta_{2}=\pi_{2}$ (modulo representations in other blocks) are the projective covers of η_{1} and η_{2} respectively. Thus the quotient of the maximal submodule of π_{i} by its minimal submodule is $1 \oplus \eta_{j}, \quad\{i, j\}=\{1,2\}$.

The k-algebra end $\operatorname{PSL}(2, q)\left(\pi_{0} \oplus \pi_{1} \oplus \pi_{2}\right)$ is thus of dimension 12 , and its isomorphism type is independent of $q(\equiv 3(\bmod 8))$.
3. The 2-blocks of $\operatorname{PSL}(2, q), q \equiv 5(\bmod 8)$

An examination of the character table of $\operatorname{PSL}(2, q), q \equiv 5(\bmod 8)$ shows that
(a) its principal 2 -block consists of 4 complex characters, 1 (degree 1) , $\xi_{1}\left(\right.$ degree $\left.\frac{1}{2}(q+1)\right), \xi_{2}$ (degree $\left.\frac{r_{2}^{2}}{2}(q+1)\right)$, and $\psi($ degree q);
(b) the only other 2-blocks are $(q-1) / 4$ 2-blocks of defect 0 and $(q-5) / 8$ 2-blocks of defect 1 ;
(c) modulo characters in non-principal blocks, the product characters from the principal block are

$$
\xi_{1} \xi_{1}=1+\xi_{1}+\psi, \quad \xi_{1} \cdot \xi_{2}=\psi, \quad \xi_{2} \cdot \xi_{2}=1+\xi_{2}+\psi
$$

As before, we restrict attention to the principal block and calculate that it has three irreducible modular representations. As before, let $N(Q)$ be the image of the group of upper triangular matrices. The order of
 with $\frac{z_{2}}{2}(q-1)$ linear characters.

If both ξ_{1} and ξ_{2} remained irreducible in characteristic 2 , no decomposition of ψ could occur. Hence at least one of ξ_{1} and ξ_{2} does decompose. Since the outer automorphism of the group interchanges them, they must in fact both decompose. Hence each must decompose into a trivial irreducible plus one of degree $\frac{z_{2}}{2}(q-1)$. So the Cartan matrix of the block is

$$
\left[\begin{array}{lll}
4 & 2 & 2 \\
2 & 2 & 1 \\
2 & 1 & 2
\end{array}\right] .
$$

Let η_{1}, η_{2} denote the two non-trivial irreducible modular representations in the block. Then (c) above shows that the corresponding Brauer characters (also denoted by η_{1}, η_{2}) have products, modulo characters in other blocks, as follows:

$$
n_{1} n_{1}=2.1+n_{2}, \quad n_{1} \cdot n_{2}=0, \quad n_{2} n_{2}=2.1+n_{1} .
$$

Simple calculations show that if $\pi_{0}, \pi_{1}, \pi_{2}$ are the projective covers of $1, \eta_{1}, \eta_{2}$ respectively, $\eta_{1} \otimes \pi_{1}=\pi_{0}$, modulo projective summands in other blocks. Hence the component of $n_{1} \otimes \eta_{1}$ in the principal block has a unique trivial submodule and a unique trivial quotient. It is therefore uniserial, with composition factors $1, \eta_{2}, 1$. Also, as $\eta_{1} \otimes \pi_{2}=\pi_{1}$, modulo projective summands in other blocks, the only possible composition series for π_{2} is $\eta_{2}, l, \eta_{1}, 1, \eta_{2}$. Likewise π_{1} is uniserial, with composition series $\eta_{1}, 1, \eta_{2}, 1, \eta_{1}$. A consideration of $n_{1} \otimes \pi_{1}$ and $\eta_{2} \otimes \pi_{2}$ shows that π_{0} has uniserial submodules with composition series $1, \eta_{2}, 1, \eta_{1}$, and $1, \eta_{1}, 1, \eta_{2}$, and uniserial quotient modules with the same sequences of factors taken in reverse order. Thus the quotient of the maximal submodule of π_{0} by its minimal submodule is the direct sum of two uniserial modules.

The k-algebra end $\operatorname{PSL}(2, q)\left(\pi_{0} \oplus \pi_{1} \oplus \pi_{2}\right)$ is thus of dimension 18 and its isomorphism type is independent of $q(\equiv 5(\bmod 8))$.

4. Construction of certain modules

Let G be a finite group. Let $E_{1}, \ldots, E_{n+1}, F_{1}, \ldots, F_{n}$ be irreducible $k G$ modules (not necessarily distinct), and U_{1}, \ldots, U_{n}, V_{1}, \ldots, V_{n} uniserial $k G$ modules such that:
the U_{i} and V_{i} are reducible, except possibly U_{1} and V_{n};
U_{i} has socle E_{i} and irreducible quotient F_{i};
V_{i} has socle E_{i+1} and irreducible quotient F_{i};
$\operatorname{ker}\left(U_{i} \oplus V_{i} \rightarrow F_{i}\right) \quad$ is a quotient of the projective cover of F_{i};
$\operatorname{coker}\left(E_{i+1} \rightarrow U_{i+1} \oplus V_{i}\right)$ is a submodule of the injective hull of $E_{i+1} \cdot$

Let

$$
P=\operatorname{ker}\left(U_{1} \oplus V_{1} \rightarrow F_{1}\right) \oplus \ldots \oplus \operatorname{ker}\left(U_{n} \oplus V_{n} \rightarrow F_{n}\right)
$$

and

$$
Q=i m\left(E_{2} \rightarrow U_{2} \oplus V_{1}\right)+\ldots+i m\left(E_{n} \rightarrow U_{n} \oplus V_{n-1}\right)
$$

and let $M=P / Q$.
In future we shall denote the modules M so constructed by diagrams of the form

where the asterisks stand for the remaining composition factors of the U_{i}
and $\quad V_{i}$.

5. The indecomposable $k A_{4}$ modules

The indecomposable $k V$ modules are, adapting the notation of Con Ion [1]:

Dimension Dimension of Socle

A_{n}	$2 n+1$	n	$n>0$
B_{n}	$2 n+1$	$n+1$	$n \geq 0$
$C_{n}(\gamma)$	$2 n$	n	$n>0, \gamma \in k \cup\{\infty\}$.

For typographical convenience we write G for the group A_{4}.

The modules A_{n} and B_{n} are characterised by their dimension and the dimension of their socle. The module $B_{0}\left(={ }^{\prime} A_{0}^{\prime \prime}\right)$ is the irreducible $k V$ module. All the above modules have vertex V except for $C_{1}(0), C_{1}(1)$, and $C_{1}(\infty)$.

The modules $A_{n}, B_{n}, C_{n}(\omega)$, and $C_{n}\left(\omega^{2}\right)$ (where ω is a fixed root of $t^{2}+t+1=0$) each have three non-isomorphic extensions to $k G$, which we shall call the discrete indecomposable $k G$ modules. If $\lambda \neq \omega, \omega^{2}, C_{n}(\lambda)^{G}$ is indecomposable, and its restriction to V is $C_{n}(\lambda) \oplus C_{n}\left(1+\lambda^{-1}\right) \oplus C_{n}\left((1+\lambda)^{-1}\right) \quad$ (see Conlon, [1]). We denote $C_{n}(\lambda)^{G}$ by $K_{n}(\sigma)$, where $\sigma=(\lambda+\omega)^{3} /\left(\lambda+\omega^{2}\right)^{3}$, and we shall call these modules continuous. (If $\lambda=\infty$, take $\sigma=1$.)

We now describe a construction of the above indecomposable $k Q$ modules using the method of Section 4. The results of Section 2 show that $k G$ has exactly six reducible uniserial modules, all of composition length 2 , the unique uniserial extensions of pairs of irreducible modules. If we denote the trivial irreducible representation of $k G$ by ' 0 ' and those that take value ω, ω^{2} on (123) by ' 1 ', '2' respectively, it is clear that the modules constructible by the method of Section 4 can be described
by diagrams of the form

$$
\cdots 0_{2}^{1} 1_{0}^{2} 0_{2}^{1} \cdots .
$$

We shall denote the module M described by the above diagram by $[i, m, j]$ if there are $m+1$ symbols 0 in the upper line, i symbols to the left of the extreme left upper 0 , and j symbols to the right of the extreme right upper 0 . Thus $0 \leq i, j \leq 5$. If no $0^{\prime} s$ appear in the upper line, we take m to be -1 , and i, j are measured from where the compatibility requirements of the construction would have to place $0^{\prime} s$ in the upper line. For example, $[5,-1,3]$ denotes 120 , and we write $[3,-1,3],[5,-1,1]$, and $[1,-1,5]$ for the three irreducible representations. In this and subsequent sections the triples $[0,0,0],[2,-1,4],[4,-1,2]$ are excluded. In all cases the dimension of $[i, m, j]$ is $i+6 m+j+1$.

Direct verification shows that the modules $[i, m, j]$ are indecomposable, with restriction to V as in the table on page 414. It follows that the $[i, m, j]$ afford a complete list of the discrete indecomposable $k A_{4}$-modules.

The module $K_{m}(\sigma)$ may be obtained from the module $M=[3, m-1,3]$. Let $v_{0} \ldots v_{n}$ be basis vectors for the socle factors of type 0 in the diagram for M, ordering from left to right, and let N be the submodule generated by

$$
v_{m}-c_{m-1} v_{m-1}-\cdots-c_{0} v_{0}
$$

where

$$
(t-\sigma)^{m}=t^{m}-c_{m-1} t^{m-1}-\cdots-c_{0}
$$

It is easy to verify that M / N is indecomposable and has a submodule isomorphic to $K_{1}(\sigma)$, which implies that M / N is isomorphic to $K_{m}(\sigma)$.

	$k A_{4}$ modules	Dimension	Dimension of socle	Restriction to	
[0, $m, 0]$	$[2, m-1,4]$	$[4, m-1,2]$	$6 m+1$	$3 m$	$A_{3 m}$
$[1, m, 5]$	$[3, m-1,3]$	$[5, m-1,1]$	$6 m+1$	$3 m+1$	$B_{3 m}$
$[1, m, 0]$	$[3, m, 4]$	$[5, m, 2]$	$6 m+2$	$3 m+1$	$C_{3 m+1}(\omega)$
$[0, m, 1]$	$[2, m, 5]$	$[4, m, 3]$	$6 m+2$	$3 m+1$	$C_{3 m+1}\left(\omega^{2}\right)$
$[0, m, 2]$	$[2, m, 0]$	$[4, m-1,4]$	$6 m+3$	$3 m+1$	$A_{3 m+1}$
$[1, m, 1]$	$[3, m-1,5]$	$[5, m-1,3]$	$6 m+3$	$3 m+2$	$B_{3 m+1}$
$[1, m, 2]$	$[3, m, 0]$	$[5, m-1,4]$	$6 m+4$	$3 m+2$	$C_{3 m+2}(\omega)$
$[0, m, 3]$	$[2, m, 1]$	$[4, m-1,5]$	$6 m+4$	$3 m+2$	$C_{3 m+2}\left(\omega^{2}\right)$
$[0, m, 4]$	$[2, m, 2]$	$[4, m, 0]$	$6 m+5$	$3 m+2$	$A_{3 m+2}$
$[1, m, 3]$	$[3, m, 1]$	$[5, m-1,5]$	$6 m+5$	$3 m+3$	$B_{3 m+2}$
$[1, m, 4]$	$[3, m, 2]$	$[5, m, 0]$	$6 m+6$	$3 m+3$	$C_{3 m+3}(\omega)$
$[0, m, 5]$	$[2, m, 3]$	$[4, m, 1]$	$6 m+6$	$3 m+3$	$C_{3 m+3}\left(\omega^{2}\right)$

6. The indecomposable $k A_{5}$ modules

NOTE. If P is any non-trivial 2-subgroup of A_{5}, the normaliser of P in A_{5} is contained in a subgroup H isomorphic to A_{4}, and, for $x \notin H, P^{x} \cap H=1$. Thus if M is an indecomposable $k A_{5}$ module with vertex P, then $M_{H}=f(M) \oplus N$, where N is projective. Let V be the Sylow 2-subgroup of A_{5} contained in H, and let a, b be generators for V. Then $N_{V} \simeq(k V)^{n}$, and $n=\operatorname{dim}(a-1)(b-1) M$.

The indecomposable $K A_{5}$ modules M such that $f(M) \simeq[i, m, j]$ will be called discrete, and those with $f(M) \simeq K_{m}(\sigma)$ will be called continuous.
(a) The discrete indecomposable modules.

For convenience we denote the three irreducible $k A_{5}$ modules by α, β, γ instead of $1, \eta_{1}, \eta_{2}$, and their projective covers by $\pi_{\alpha}, \pi_{\beta}, \pi_{\gamma}$, respectively. Section 3 shows that $k A_{5}$ has 15 nonprojective uniserial modules, each of which is a subquotient of one of π_{β} and π_{γ}. Indeed π_{β} may be described as the matrix representation which takes the generators $(12)(34),(123)$, and (12345) of A_{5} respectively to the matrices

$$
\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccccccc}
\omega & 0 & 0 & u & 0 & 0 & 1 & 0 \\
0 & u & \omega & \omega & \omega & u & u & 1 \\
0 & 0 & 1 & \omega & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & u & 0 & 0 & \omega & 0 \\
0 & 0 & 0 & 0 & \omega & u & u & u \\
0 & 0 & 0 & 0 & 0 & 1 & u & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \omega & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & u
\end{array}\right)\left(\begin{array}{cccccccc}
\omega & \omega & 0 & 1 & 1 & 0 & 0 & 0 \\
u & 0 & 1 & \omega & 0 & \omega & 0 & 0 \\
0 & 0 & 1 & u & u & 1 & 0 & 0 \\
0 & 0 & 0 & u & u & 0 & 1 & 1 \\
0 & 0 & 0 & \omega & 0 & 1 & u & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & \omega & \omega \\
0 & 0 & 0 & 0 & 0 & 0 & \omega & \omega \\
0 & 0 & 0 & 0 & 0 & 0 & u & 0
\end{array}\right)
$$

where ω is a fixed root of $t^{2}+t+1$ and $v=1+\omega$ is the other. A similar description of π_{Y} is obtained by interchanging ω and U in the above matrices.

The modules constructed by the method of Section 4 from the 15 nonprojective uniserial $k A_{5}$ modules may be described by diagrams of type (1)

$$
\ldots{ }^{\alpha} \beta_{\alpha} \gamma^{\alpha} \beta_{\alpha} \gamma^{\alpha} \ldots
$$

We denote by $[i, m, j]^{*}$ the module whose diagram is of the form (1) with $m+1$ factors α in the top line and subdiagrams X_{i}, Y_{j} to the left and right (respectively) of the extreme top line $\alpha^{\prime} s$ as follows:
$X_{0}=(\alpha)$

$$
X_{1}=\alpha_{\beta}^{\gamma}
$$

$X_{3}=\alpha^{\gamma(\alpha)} \quad X_{4}=\alpha_{\beta}^{\gamma} \gamma^{(\alpha)} \quad X_{5}=\beta \alpha^{\gamma}$
(α)
$Y_{0}=(\alpha) \quad Y_{1}=\beta_{\gamma} \quad Y_{2}={ }^{(\alpha)} \beta$

$$
Y_{3}={ }^{(\alpha)}{ }_{\alpha} \quad Y_{4}={ }^{(\alpha)} \beta_{\alpha}^{\gamma}
$$

(α)
(α)

$$
X_{2}=\gamma
$$

(α)
,
β
(α)
$Y_{5}=\beta_{\alpha}^{\gamma}$.

The bracketed (α) indicates the position of the extreme factors α in the top line relative to the subdiagrams. Provided that $i+j \geq 6$, we can assign a meaning to $[i,-1, j]^{*}$ as before.

THEOREM. The modules $[i, m, j]^{*}$ are indecomposable, and afford a complete set of discrete indecomposable $k A_{5}$ modules, since $f[i, m, j] *=[i, m, j]$.

Proof. 1. Indecomposability. Throughout this argument we interpret m so as to exclude uniserial modules.
(i) Direct calculation shows that if h is any endomorphism of $[0, m, 0]^{*},[3, m, 3]^{*},[3, m, 0]^{*}$, or $[0, m, 4]^{*}$, there exists $c \in k$ such that $h-c l$ is nilpotent. Hence these modules are indecomposable.
(ii) Now let M be $[4, m, 4]^{*},[0, m, 4]^{*}$, or $[4, m, 0]^{*}$. Each of these has a submodule N containing the radical of M and isomorphic to $[0, m+1,0]^{*}$. The quotient M / N is isomorphic to a non-trivial submodule of $\beta \oplus \gamma$, and is the only possible such quotient of M. It follows that N is invariant under any endomorphism h of M, so that $(h-c l)^{n}$ annihilates N for some $c \in k$ and some n. Hence $(h-c l)^{n+1}$ annihilates M, which is therefore indecomposable.
(iii) Now let M be $[0, m, 2]^{*},[2, m, 0]^{*}$, or $[2, m, 2]^{*}$. Each of these has a quotient isomorphic to $[0, m, 0]^{*}$, with kernel K
isomorphic to a non-trivial submodule of $\beta \oplus \gamma$, and containing the only such components of the socle of M. The submodule K is therefore invariant under any endomorphism h of M, which then induces an endomorphism h^{\prime} of M / K. Hence $\left(h^{\prime}-c l\right)^{n}$ annihilates M / K (for some $c \in k$, some n). Since M has no quotient isomorphic to a non-trivial submodule of $\beta \oplus \gamma,(h-c l)^{n}$ must annihilate M, showing that M is indecomposable.
(iv) Arguments similar to those of (ii) and (iii) above, using the submodules and quotients proved indecomposable at each step allow us to establish indecomposability for the remaining [i,m, $j]^{*}$.
2. The Green correspondence. If $M=[i, m, j]^{*}$, $\operatorname{dim}(a-1)(b-1) M$ is equal to the number of uniserial modules of composition length 4 used in the construction of M. Hence $M_{A_{4}}$ has 1 projective summand if $i \equiv 1(\bmod 3)$ or $j \equiv 2(\bmod 3), 2$ if both congruences hold, and none otherwise.

If $M_{A_{4}}$ remains indecomposable, the isomorphism type of $f(M)$ is
determined by the isomorphism type of the restriction of the initial obvious uniserial submodule or quotient in the diagram for M. It is therefore easily verified that in such a case $f(M)$ is as stated. For example, the diagram

$$
\alpha
$$

If $M_{L_{4}}$ has one projective summand, then (unless M is uniserial, in
which case the correspondence is easily verified directly) one can establish the required correspondence either by factoring out in M by the obvious appropriate uniserial submodule of composition length 4 and considering the restriction of the quotient to A_{4}, or else by considering the restriction of the kernel of the natural homomorphism of M onto its obvious appropriate uniserial quotient of composition length 4 .

The isomorphism type of $f(M)$ when $M_{A_{4}}$ has two projective summands may then be established by a similar procedure, given that the type of
$f\left(M^{\prime}\right)$ is known when $M_{A_{4}}^{\prime}$ has one projective summand.
The list of discrete indecomposable $k A_{5}$ modules in the principal 2-block is therefore complete.
(b) The continuous indecomposable modules.

We construct indecomposable $k A_{5}$ modules $K_{m}^{*}(\sigma)$ ($\sigma \in k-\{0\}$) such that $f\left(K_{m}^{*}(\sigma)\right)=K_{m}(\sigma)$, using the modules $M=[3, m, 4]$. We choose basis vectors v_{0}, \ldots, v_{m} for the socle factors of type α in the diagram for M, ordering from left to right. Let N be the submodule of M generated by

$$
v_{m}-c_{m-1} v_{m-1}-\cdots-c_{0} v_{0}
$$

where

$$
(t-\sigma)^{m}=t^{m-1}-c_{m-1} t^{m-1}-\ldots-c_{0}
$$

Let

$$
K_{m}^{*}(\sigma)=M / N
$$

It is easy to verify directly that $K_{m}^{*}(\sigma)$ is indecomposable, that the $K_{m}^{*}(\sigma)$ are non-isomorphic for distinct σ, and that $K_{m}^{*}(\sigma)$ remains indecomposable on restriction to A_{4}. Further direct verification shows that $K_{m}^{*}(\sigma)_{A_{4}}$ has a submodule isomorphic to $K_{1}(\sigma)$, which implies that $f\left(K_{m}^{*}(\sigma)\right)=K_{m}(\sigma)$.
7. Classification of modules for $q>5$

LEMMA. Let A be a k-algebra of finite dimension as a vector space. Let U be a direct sum of projective indecomposable A-modules, with exactly one summand of each isomorphism type, and let B be the algebra end $_{A}(U)$. Then the functor $M \mapsto \operatorname{hom}_{A}(U, M)$ sets up an equivalence between the category of finitely generated left A-modules and the category of finitely generated right B-modules.

Proof. This is a special case of theorems of Gabriel, [4]. The required quasi-inverse is $N \mapsto \operatorname{hom}_{B}(V, N)$, where $V=\operatorname{hom}_{A}(U, A)$.

Thus the isomorphism types of the indecomposable modules of the principal 2-block algebra of $\operatorname{PSL}(2, q) \quad(q \equiv 3(\bmod 8))$ are in one-toone correspondence with the types of indecomposable modules of $k A_{4}$, and can be constructed by the method described in Sections 4 and 5. Likewise the isomorphism types of indecomposable modules of the principal 2-block algebra of $\operatorname{PSL}(2, q) \quad(q \equiv 5(\bmod 8))$ are in one-to-one correspondence with the types of indecomposable modules of the principal 2 -block algebra of A_{5}, and can be constructed by the method described in Sections 4 and 6.

This classification theorem extends to other block algebras, such as the non principal 2-block algebra of A_{7}, whenever the lema can be invoked.

References

[1] S.B. Conlon, "Certain representation algebras", J. Austral. Math. Soc. 5 (1965), 83-99.
[2] Larry Dornhoff, Group representation theory. Part A: Ordinary representation theory (Pure and Applied Mathematics, 7. Marcel Dekker, New York, 1971).
[3] Larry Dornhoff, Group representation theory. Part B: Modular representation theory (Pure and Applied Mathematics, 7. Marcel Dekker, New York, 1972).
[4] Pierre Gabriel, "Des catégories abéliennes", BuZl. Soc. Math. France 90 (1962), 323-448.
[5] Daniel Gorenstein, Finite groups (Harper \& Row, New York, Evanston, and London, 1968).
[6] J.A. Green, "On the indecomposable representations of a finite group", Math. 2. 70 (1958/59), 430-445.
School of Mathematics, University of New South Wales, Kensington, New South Wales.

