A GENERALIZATION OF SMITH'S DETERMINANT

BY
P. J. MCCARTHY

Abstract

We shall evaluate the determinants of $n \times n$ matrices of the form $[f(i, j)]$, where $f(m, r)$ is an even function of $m(\bmod r)$. Among the examples of determinants of this kind are H. J. S. Smith's determinant $\operatorname{det}[(i, j)]$, where (m, r) is the greatest common divisor of m and r, and a generalization of Smith's determinant due to T. M. Apostol.

Smith [11] showed that

$$
\operatorname{det}[(i, j)]=\phi(1) \ldots \phi(n)
$$

where ϕ is Euler's function. He also showed that if g is an arithmetical function and if

$$
f(m, r)=\sum_{d \mid(m, r)} g(d),
$$

then $\operatorname{det}[f(i, j)]=g(1) \ldots g(n)$.
Apostol [1] extended Smith's result by showing that if g and h are arithmetical functions and if

$$
f(m, r)=\sum_{d \mid(m, r)} g(d) h(r / d),
$$

then $\operatorname{det}[f(i, j)]=g(1) \ldots g(n) h(1)^{n}$. He noted that as a consequence of this, $\operatorname{det}[c(i, j)]=n!$, where $c(m, r)$ is Ramanujan's sum.
(A) Because we want our main result to properly contain Apostol's, we shall give an independent proof that $\operatorname{det}[c(i, j)]=n!$. We have

$$
\sum_{d \mid r} c(m, r)=\left\{\begin{array}{l}
r \text { if } r \mid m \\
0 \text { if } r \nmid m .
\end{array}\right.
$$

Thus, if we set $\beta(d, r)=1$ or 0 according as d does or does not divide r, then $[c(i, j)][\beta(i, j)]$ is equal to a lower triangular matrix having diagonal elements $1,2, \ldots, n$. Since $\operatorname{det}[\beta(i, j)]=1$, the result follows.
(B) Suppose that for each $r, f(m, r)$ is an even function of $m(\bmod r)$, i.e., $f((m, r), r)=f(m, r)$ for all m. Then, E. Cohen [3] showed that $f(m, r)$ can be written uniquely in the form

$$
f(m, r)=\sum_{d \mid r} c(m, d) \alpha(d, r)
$$

If we set $\alpha(d, r)=0$ whenever $d \nmid r$, then $[f(i, j)]=[c(i, j)][\alpha(i, j)]$. The matrix [$\alpha(i, j)]$ is an upper triangular matrix, and therefore,

$$
\operatorname{det}[f(i, j)]=n!\alpha(1,1) \ldots \alpha(n, n)
$$

This is the generalization of Smith's determinant alluded to in the title of the paper. The functions considered by Smith and by Apostol are even functions of $m(\bmod r)$.
(C) Cohen showed in [3] that $f(m, r)$ is an even function of $m(\bmod r)$ if and only if there is a function F of two positive integer variables such that

$$
f(m, r)=\sum_{d \mid(m, r)} F(d, r / d) \text { for all } m .
$$

In terms of the function F,

$$
\alpha(d, r)=\frac{1}{r} \sum_{e \mid r / d)} F(r / e, e) e
$$

for every divisor d of r. Thus, $\alpha(r, r)=F(r, 1) / r$, and

$$
\operatorname{det}[f(i, j)]=F(1,1) \ldots F(n, 1) .
$$

For the functions considered by Apostol, $F(m, r)=g(m) h(r)$.
(D) The determinant $\operatorname{det}\left[(i, j)^{s}\right]$, where s is a real number, was evaluated by Smith. Of course, it can be evaluated by using the result of (B) directly. For each $r,(m, r)^{s}$ is an even function of $m(\bmod r)$ and by ([4], Corollary 11),

$$
\alpha(d, r)=r^{s-1} \sum_{e \mid r} c(r / d, e) / e^{s}
$$

for every divisor d or r. Thus,

$$
\alpha(r, r)=\frac{1}{r} \sum_{e \mid r}(r / e)^{s} \mu(e)=\frac{1}{r} \phi_{s}(r),
$$

and $\operatorname{det}\left[(i, j)^{s}\right]=\phi_{s}(1) \ldots \phi_{s}(n)$.
(E) Let $N(m, r, s)$ denote the number of solutions x_{1}, \ldots, x_{s} of the linear congruence

$$
m \equiv X_{1}+\ldots+X_{s}(\bmod r)
$$

such that $\left(x_{i}, r\right)=1$ for $i=1, \ldots, s$. Two solutions are considered to be distinct if and only if they are distinct $(\bmod r)$. If s is a positive integer then ([4], Corollary 12)

$$
c(m, r)^{s}=\sum_{d \mid r} N(r / d, r, s) c(m, r) .
$$

Thus, $\alpha(r, r)=N(1, r, s)$ and

$$
\operatorname{det}\left[c(i, j)^{s}\right]=n!N(1,1, s) \ldots N(1, n, s) .
$$

$N(1,1, s)=1$, and using H. Rademacher's formula for $N(n, r, s)$ (see [9], and the reference given there), if $r>1$ then

$$
N(1, r, s)=r^{s-1} \prod_{p \mid r} \frac{(p-1)^{s}-(-1)^{s}}{p^{s}},
$$

where the product is over the distinct prime divisors of r. From this we see immediately that

$$
\operatorname{det}\left[c(i, j)^{s}\right]=0 \text { if } s \text { is even and } n \geqslant 2 .
$$

(F) For fixed r and $s, N(m, r, s)$ is an even function of $m(\bmod r)$, and $\alpha(d, r)=$ $c(r / d, r)^{s} / r$ ([3], Theorem 6). Thus, $\alpha(r, r)=c(1, r)^{s} / r=\mu(r)^{s} / r$, and

$$
\operatorname{det}[N(i, j, s)]=(\mu(1) \ldots \mu(n))^{s}
$$

Therefore,

$$
\text { det }[N(i, j, s)]=\left\{\begin{aligned}
1 & \text { if } n=1, \text { or } n=2 \text { and } s \text { is even, or } n=3 \\
-1 & \text { if } n=2 \text { and } s \text { is odd } \\
0 & \text { if } n \geqslant 4 .
\end{aligned}\right.
$$

(G) Let $(m, r)_{*}$ be the largest divisor of m that is a unitary divisor of r (see [5] for the terms used in this paragraph). If $N^{*}(\mathrm{~m}, r, s)$ is the number of solutions x_{1}, \ldots, x_{s} of the congruence in (E) such that $\left(x_{i}, r\right)_{*}=1$ for $i=1, \ldots, s$, then $N^{*}(m, r, s)$ is an even function of $m(\bmod r)$ and $\alpha(d, r)=c^{*}(r / d, r)^{s} / r$, where $c^{*}(m, r)$ is the unitary analogue of Ramanujan's sum ([9], Example 7). Thus, $\alpha(r, r)=c^{*}(1, r)^{s} / r=$ $\mu^{*}(r)^{s} / r$ and

$$
\operatorname{det}\left[N^{*}(i, j, s)\right]=\left(\mu^{*}(1) \ldots \mu^{*}(n)\right)^{5} .
$$

By ([5], Theorem 2.5), $\mu^{*}(r)=1$ or -1 according as r has an even or an odd number of distinct prime divisors. Therefore, $\operatorname{det}\left[N^{*}(i, j, s)\right]=1$ if s is even.
(H) We can evaluate det $[f(i, j)]$ when $f(m, r)$ is any one of several generalizations of Ramanujan's sum. For example, consider the sum $c_{k}(m, r)$ introduced by Cohen in [2]. For all r,

$$
\sum_{d \mid r} c_{k}(m, r)= \begin{cases}r^{k} & \text { if } r^{k} \mid m \\ 0 & \text { if } r^{k} \mid m .\end{cases}
$$

Thus, if $\beta(d, r)$ is defined as in (A), then $\left[c_{k}(i, j)\right][\beta(i, j)]$ is a lower triangular matrix having all of its diagonal elements except the first equal to zero when $k \geqslant 2$. Therefore,

$$
\operatorname{det}\left[c_{k}(i, j)\right]=0 \text { if } n \geqslant 2 \text { and } k \geqslant 2 .
$$

If we argue as in (B), it follows that if $f(m, r)$ is a k-even function of $m(\bmod r)$, as defined in [7], then

$$
\operatorname{det}[f(i, j)]=0 \text { if } n \geqslant 2 \text { and } k \geqslant 2 .
$$

(I) Let A be a regular arithmetical convolution, defined by W. Narkiewicz in [10], and let $c_{A}(m, r)$ be the corresponding generalized Ramanujan sum defined in [8]. Then $c_{A}(m, r)$ is an even function of $m(\bmod r)$, and $\alpha(r, r)=1$ ([8], Theorem 2). Therefore, $\operatorname{det}\left[c_{A}(i, j)\right]=n!$. An analogue of the even functions $(\bmod r)$ corresponding to A was developed in [8]. For these functions a result exactly similar to the one in (B) holds, and it contains in turn the unitary analogues of Smith's results obtained by H. Jager in [6].
(J) For $r=1, \ldots, n$ let $D(r)$ be a nonempty set of positive divisors of r, and let $T(r)=\{x: 1 \leqslant x \leqslant r$ and $(x, r) \in D(r)\}$. If

$$
g(m, r)=\sum_{x \in T_{(r)}} \mathrm{e}^{2 \pi i m x / r}
$$

then $g(m, r)$ is an even function of $m(\bmod r)$. In fact ([9], p. 138),

$$
g(m, r)=\sum_{d \in D(r)} c(m, r / d) .
$$

Thus, $\alpha(r, r)=1$ or 0 according as $1 \in D(r)$, or $1 \notin D(r)$, and consequently

$$
\operatorname{det}[g(i, j)]= \begin{cases}n! & \text { if } 1 \in D(r) \text { for } r=1, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

The sum $g(m, r)$ can be considered to be a generalized Ramanujan sum. If $D(r)=\{1\}$ then $g(m, r)=c(m, r)$. Let $k \geqslant 2$ and $0<q<k$, and let $D(r)$ be the set of all divisors d of r such that if p^{t} is the highest power of a prime p dividing d then $t \equiv 0,1, \ldots$, or $q-1(\bmod k)$. Then $g(m, r)=D_{k . q}(m, r)$, the generalization of the Ramanujan sum defined in [12]. Since $1 \in D(r)$ for all r, $\operatorname{det}\left[D_{k, 4}(i, j)\right]=n!$.

References

1. T. M. Apostol, Arithmetical properties of generalized Ramanujan sums, Pacific J. Math., 41 (1972), pp. 281-293.
2. E. Cohen, An extension of Ramanujan's sum, Duke Math. J., 16 (1949), pp. 85-90.
3. -, A class of arithmetical functions, Proc. Nat. Acad. Sci., U.S.A., 41 (1955), pp. 939-944.
4. -, Representations of even functions ($\bmod r$), I. Arithmetical identities, Duke Math. J., 25 (1958), pp. 401-422.
5. , Arithmetical functions associated with the unitary divisors of an integer, Math. Zeit., 74 (1960), pp. 66-80.
6. H. Jager, The unitary analogues of some identities for certain arithmetical functions, Nederl. Akad. Wetensch. Proc. Ser. A, 64 (1961), pp. 508-515.
7. P. J. McCarthy, The generation of arithmetical identities, J. reine angew. Math., 203 (1960), pp. 55-63.
8. - , Regular arithmetical convolutions, Portugal. Math., 27 (1968), pp. 1-13.
9.—— Counting restricted solutions of a linear congruence, Nieuw Arch. v. Wisk., 25 (1977), pp. 133-147.
9. W. Narkiewicz, On a class of arithmetical convolutions, Colloq. Math., 10 (1963), pp. 81-94.
10. H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc., 7 (1875/76), pp. 208-212; Collected Mathematical Papers, Vol. II, Chelsea Publishing Co., New York, 1965 reprint, pp. 161-165.
11. M. V. Subba Rao and V. C. Harris, A new generalization of Ramanujan's sum, J. London Math. Soc., 41 (1966), pp. 595-604.

Department of Mathematics
University of Kansas
Lawrence, KS 66045
U.S.A.

