A GENERALIZATION OF SMITH'S DETERMINANT

ΒY

P. J. MCCARTHY

ABSTRACT. We shall evaluate the determinants of $n \times n$ matrices of the form [f(i,j)], where f(m,r) is an even function of $m \pmod{r}$. Among the examples of determinants of this kind are H. J. S. Smith's determinant det [(i,j)], where (m,r) is the greatest common divisor of m and r, and a generalization of Smith's determinant due to T. M. Apostol.

Smith [11] showed that

det
$$[(i,j)] = \phi(1) \dots \phi(n)$$

where ϕ is Euler's function. He also showed that if g is an arithmetical function and if

$$f(m,r)=\sum_{d\mid (m,r)}g(d),$$

then det $[f(i,j)] = g(1) \dots g(n)$.

Apostol [1] extended Smith's result by showing that if g and h are arithmetical functions and if

$$f(m,r) = \sum_{d \mid (m,r)} g(d)h(r/d),$$

then det $[f(i,j)] = g(1) \dots g(n)h(1)^n$. He noted that as a consequence of this, det [c(i,j)] = n!, where c(m,r) is Ramanujan's sum.

(A) Because we want our main result to properly contain Apostol's, we shall give an independent proof that det [c(i,j)] = n!. We have

$$\sum_{d|r} c(m,r) = \begin{cases} r \text{ if } r|m\\ 0 \text{ if } r \not\mid m. \end{cases}$$

Thus, if we set $\beta(d, r) = 1$ or 0 according as d does or does not divide r, then $[c(i,j)][\beta(i,j)]$ is equal to a lower triangular matrix having diagonal elements 1, 2, ..., n. Since det $[\beta(i,j)] = 1$, the result follows.

Received by the editors October 24, 1984.

AMS Subject Classification: 10A20.

[©] Canadian Mathematical Society 1984.

P. J. MCCARTHY

(B) Suppose that for each r, f(m, r) is an even function of $m \pmod{r}$, i.e., f((m, r), r) = f(m, r) for all m. Then, E. Cohen [3] showed that f(m, r) can be written uniquely in the form

$$f(m,r) = \sum_{d|r} c(m,d)\alpha(d,r).$$

If we set $\alpha(d, r) = 0$ whenever $d \not\mid r$, then $[f(i,j)] = [c(i,j)][\alpha(i,j)]$. The matrix $[\alpha(i,j)]$ is an upper triangular matrix, and therefore,

$$\det [f(i,j)] = n!\alpha(1,1)\ldots\alpha(n,n).$$

This is the generalization of Smith's determinant alluded to in the title of the paper. The functions considered by Smith and by Apostol are even functions of $m \pmod{r}$.

(C) Cohen showed in [3] that f(m, r) is an even function of $m \pmod{r}$ if and only if there is a function F of two positive integer variables such that

$$f(m,r) = \sum_{d \mid (m,r)} F(d,r/d) \text{ for all } m.$$

In terms of the function F,

$$\alpha(d,r) = \frac{1}{r} \sum_{e \mid (r/d)} F(r/e, e) e$$

for every divisor d of r. Thus, $\alpha(r, r) = F(r, 1)/r$, and

det
$$[f(i,j)] = F(1,1) \dots F(n,1).$$

For the functions considered by Apostol, F(m, r) = g(m)h(r).

(D) The determinant det $[(i, j)^s]$, where s is a real number, was evaluated by Smith. Of course, it can be evaluated by using the result of (B) directly. For each r, $(m, r)^s$ is an even function of m (mod r) and by ([4], Corollary 11),

$$\alpha(d,r) = r^{s-1} \sum_{e|r} c(r/d,e)/e^{s}$$

for every divisor d or r. Thus,

$$\alpha(r,r) = \frac{1}{r} \sum_{e|r} (r/e)^s \mu(e) = \frac{1}{r} \phi_s(r),$$

and det $[(i,j)^s] = \phi_s(1) \dots \phi_s(n)$.

(E) Let N(m, r, s) denote the number of solutions x_1, \ldots, x_s of the linear congruence

$$m \equiv X_1 + \ldots + X_s \pmod{r}$$

such that $(x_i, r) = 1$ for i = 1, ..., s. Two solutions are considered to be distinct if and only if they are distinct (mod r). If s is a positive integer then ([4], Corollary 12)

$$c(m,r)^{s} = \sum_{d|r} N(r/d,r,s)c(m,r).$$

Thus, $\alpha(r, r) = N(1, r, s)$ and

det
$$[c(i,j)^s] = n!N(1,1,s)...N(1,n,s).$$

N(1,1,s) = 1, and using H. Rademacher's formula for N(n,r,s) (see [9], and the reference given there), if r > 1 then

$$N(1,r,s) = r^{s-1} \prod_{p|r} \frac{(p-1)^s - (-1)^s}{p^s},$$

where the product is over the distinct prime divisors of r. From this we see immediately that

det
$$[c(i,j)^s] = 0$$
 if s is even and $n \ge 2$.

(F) For fixed r and s, N(m, r, s) is an even function of m (mod r), and $\alpha(d, r) = c(r/d, r)^s/r$ ([3], Theorem 6). Thus, $\alpha(r, r) = c(1, r)^s/r = \mu(r)^s/r$, and

det
$$[N(i, j, s)] = (\mu(1) \dots \mu(n))^{s}$$
.

Therefore,

 $\det [N(i,j,s)] = \begin{cases} 1 & \text{if } n = 1, \text{ or } n = 2 \text{ and } s \text{ is even, or } n = 3 \\ -1 & \text{if } n = 2 \text{ and } s \text{ is odd} \\ 0 & \text{if } n \ge 4. \end{cases}$

(G) Let $(m, r)_*$ be the largest divisor of *m* that is a unitary divisor of *r* (see [5] for the terms used in this paragraph). If $N^*(m, r, s)$ is the number of solutions x_1, \ldots, x_s of the congruence in (E) such that $(x_i, r)_* = 1$ for $i = 1, \ldots, s$, then $N^*(m, r, s)$ is an even function of *m* (mod *r*) and $\alpha(d, r) = c^*(r/d, r)^s/r$, where $c^*(m, r)$ is the unitary analogue of Ramanujan's sum ([9], Example 7). Thus, $\alpha(r, r) = c^*(1, r)^s/r = \mu^*(r)^s/r$ and

det
$$[N^*(i, j, s)] = (\mu^*(1) \dots \mu^*(n))^s$$
.

By ([5], Theorem 2.5), $\mu^*(r) = 1$ or -1 according as r has an even or an odd number of distinct prime divisors. Therefore, det $[N^*(i, j, s)] = 1$ if s is even.

(H) We can evaluate det [f(i,j)] when f(m,r) is any one of several generalizations of Ramanujan's sum. For example, consider the sum $c_k(m,r)$ introduced by Cohen in [2]. For all r,

$$\sum_{d|r} c_k(m,r) = \begin{cases} r^k \text{ if } r^k | m \\ 0 \text{ if } r^k | m. \end{cases}$$

Thus, if $\beta(d, r)$ is defined as in (A), then $[c_k(i, j)][\beta(i, j)]$ is a lower triangular matrix having all of its diagonal elements except the first equal to zero when $k \ge 2$. Therefore,

det
$$[c_k(i, j)] = 0$$
 if $n \ge 2$ and $k \ge 2$.

111

1986]

If we argue as in (B), it follows that if f(m, r) is a k-even function of $m \pmod{r}$, as defined in [7], then

det
$$[f(i,j)] = 0$$
 if $n \ge 2$ and $k \ge 2$.

(I) Let *A* be a regular arithmetical convolution, defined by W. Narkiewicz in [10], and let $c_A(m, r)$ be the corresponding generalized Ramanujan sum defined in [8]. Then $c_A(m, r)$ is an even function of *m* (mod *r*), and $\alpha(r, r) = 1$ ([8], Theorem 2). Therefore, det $[c_A(i, j)] = n!$. An analogue of the even functions (mod *r*) corresponding to *A* was developed in [8]. For these functions a result exactly similar to the one in (B) holds, and it contains in turn the unitary analogues of Smith's results obtained by H. Jager in [6].

(J) For r = 1, ..., n let D(r) be a nonempty set of positive divisors of r, and let $T(r) = \{x : 1 \le x \le r \text{ and } (x, r) \in D(r)\}$. If

$$g(m,r) = \sum_{x \in T(r)} e^{2\pi i m x/r}$$

then g(m, r) is an even function of $m \pmod{r}$. In fact ([9], p. 138),

$$g(m,r) = \sum_{d \in D(r)} c(m,r/d)$$

Thus, $\alpha(r, r) = 1$ or 0 according as $1 \in D(r)$, or $1 \notin D(r)$, and consequently

det
$$[g(i,j)] = \begin{cases} n! & \text{if } 1 \in D(r) \text{ for } r = 1, \dots, n \\ 0 & \text{otherwise.} \end{cases}$$

The sum g(m, r) can be considered to be a generalized Ramanujan sum. If $D(r) = \{1\}$ then g(m, r) = c(m, r). Let $k \ge 2$ and 0 < q < k, and let D(r) be the set of all divisors d of r such that if p^t is the highest power of a prime p dividing d then $t \equiv 0, 1, \ldots$, or $q - 1 \pmod{k}$. Then $g(m, r) = D_{k,q}(m, r)$, the generalization of the Ramanujan sum defined in [12]. Since $1 \in D(r)$ for all r, det $[D_{k,q}(i,j)] = n!$.

References

1. T. M. Apostol, Arithmetical properties of generalized Ramanujan sums, Pacific J. Math., 41 (1972), pp. 281-293.

2. E. Cohen, An extension of Ramanujan's sum, Duke Math. J., 16 (1949), pp. 85-90.

A class of arithmetical functions, Proc. Nat. Acad. Sci., U.S.A., 41 (1955), pp. 939–944.
Representations of even functions (mod r), I. Arithmetical identities, Duke Math. J., 25

5. ———, Arithmetical functions associated with the unitary divisors of an integer, Math. Zeit., **74** (1960), pp. 66–80.

6. H. Jager, *The unitary analogues of some identities for certain arithmetical functions*, Nederl. Akad. Wetensch. Proc. Ser. A, **64** (1961), pp. 508–515.

7. P. J. McCarthy, *The generation of arithmetical identities*, J. reine angew. Math., **203** (1960), pp. 55-63.

^{(1958),} pp. 401–422.

1986]

 Regular arithmetical convolutions, Portugal. Math., 27 (1968), pp. 1–13.
Counting restricted solutions of a linear congruence, Nieuw Arch. v. Wisk., 25 (1977), pp. 133-147.

10. W. Narkiewicz, On a class of arithmetical convolutions, Colloq. Math., 10 (1963), pp. 81-94.

11. H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc., 7 (1875/76), pp. 208-212; Collected Mathematical Papers, Vol. II, Chelsea Publishing Co., New York, 1965 reprint, pp. 161-165.

12. M. V. Subba Rao and V. C. Harris, A new generalization of Ramanujan's sum, J. London Math. Soc., **41** (1966), pp. 595-604.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF KANSAS LAWRENCE, KS 66045 U.S.A.