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EQUIVARIANT ZETA FUNCTIONS FOR INVARIANT
NASH GERMS

FABIEN PRIZIAC

Abstract. To any Nash germ invariant under right composition with a linear

action of a finite group, we associate its equivariant zeta functions, inspired

from motivic zeta functions, using the equivariant virtual Poincaré series

as a motivic measure. We show Denef–Loeser formulas for the equivariant

zeta functions and prove that they are invariants for equivariant blow-Nash

equivalence via equivariant blow-Nash isomorphisms. Equivariant blow-Nash

equivalence between invariant Nash germs is defined as a generalization

involving equivariant data of the blow-Nash equivalence.

§1. Introduction

A crucial issue in the study of real analytic germs is the choice of a

good equivalence relation by which we can distinguish them. One may

think about Cr-equivalence, r = 0, 1, . . . ,∞, ω. However, the topological

equivalence seems, unlike the complex case, not fine enough: for example,

all the germs of the form x2m + y2n are topologically equivalent. On the

other hand, the C1-equivalence has already moduli: consider the Whitney

family ft(x, y) = xy(y − x)(y − tx), t > 1, then ft and ft′ are C1-equivalent

if and only if t = t′. In [15], Kuo proposed an equivalence relation for

real analytic germs named the blow-analytic equivalence for which, in

particular, analytically parametrized family of isolated singularities have

a locally finite classification. Roughly speaking, two real analytic germs are

said blow-analytically equivalent if they become analytically equivalent after

composition with real modifications (e.g., finite successions of blowings-up

along smooth centers). With respect to this equivalence relation, Whitney

family has only one equivalence class. Slightly stronger versions of blow-

analytic equivalence have been proposed so far, by Koike and Parusiński in

[13] and Fukui and Paunescu in [11] for example. An important feature of
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EQUIVARIANT ZETA FUNCTIONS FOR INVARIANT NASH GERMS 101

blow-analytic equivalence is also that we have invariants for this equivalence
relation, like the Fukui invariants [10] and the zeta functions [13] inspired
by the motivic zeta functions of Denef and Loeser [5] using the Euler
characteristic with compact supports as a motivic measure.

The present paper is interested in the study of Nash germs, that is
real analytic germs with semialgebraic graph. In [8], Fichou defined an
analog adapted to Nash germs of the blow-analytic equivalence of Kuo in
[15]: two Nash germs are said blow-Nash equivalent if, after composition
with Nash modifications, they become analytically equivalent via a Nash
isomorphism (if the Nash isomorphism preserves the critical loci of the
Nash modifications, it is called a blow-Nash isomorphism). He showed, in
particular, that blow-Nash equivalence is an equivalence relation and that
it has no moduli for Nash families with isolated singularities. Using as a
motivic measure the virtual Poincaré polynomial of McCrory and Parusiński
in [20], extended to the wider category of AS sets [16] and [17] by Fichou in
[7], one can generalize the zeta functions of Koike and Parusiński in [13]. In
[8], Fichou showed that these latter zeta functions are invariants for blow-
Nash equivalence via blow-Nash isomorphisms.

In this paper, we consider Nash germs invariant under right composition
with a linear action of a finite group. We define for such germs a gener-
alization of the blow-Nash equivalence of [8] involving equivariant data.
If G is a finite group acting linearly on Rd and trivially on R, we say
that two equivariant, or invariant, Nash germs f, h : (Rd, 0)→ (R, 0) are
G-blow-Nash equivalent if there exist two equivariant Nash modifications
σf : (Mf , σ

−1
f (0))→ (Rd, 0) and σh : (Mh, σ

−1
h (0))→ (Rd, 0) of f and h and

an equivariant Nash isomorphism Φ : (Mf , σ
−1
f (0))→ (Mh, σ

−1
h (0)) which

induces an equivariant homeomorphism φ : (Rd, 0)→ (Rd, 0) such that f =
h ◦ φ (Definition 2.1). If Φ preserves the critical loci of σf and σh, we
say that Φ is an equivariant blow-Nash isomorphism. We consider the
equivalence relation generated by the equivariant blow-Nash equivalence,
which allows refinement of the nonequivariant blow-Nash classification. For
example, consider the germs y4 − x2 and x4 − y2. They are Nash equivalent
but we show in Example 4.2 that they are not G-blow-Nash equivalent via
an equivariant blow-Nash isomorphism if G= {1, s} with s the involution
given by (x, y) 7→ (−x, y).

Our main interest is the construction of invariants for G-blow-Nash
equivalence via equivariant blow-Nash isomorphism. We associate to any
invariant Nash germ its equivariant zeta functions: they are defined using
the equivariant virtual Poincaré series of Fichou in [9] as an equivariant
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102 F. PRIZIAC

motivic measure on its arc spaces equipped with the induced action of G
(Section 3.2). It is a generalization of the zeta functions defined in [7] and
[8], and they are different from the equivariant zeta functions defined in [9].
We then prove the rationality of the equivariant zeta functions by Denef–
Loeser formulas (Propositions 3.12 and 3.17). One has to keep attention
on the behavior of the induced actions of G on all the spaces involved in
the demonstrations of the formulas. A key point is the proof of the validity
of Kontsevich “change of variables formula” [14] in this equivariant setting
(Proposition 3.14).

Finally, we compute the equivariant zeta functions of several invariant
Nash germs (Section 5). We are, in particular, interested in the invariant
Nash germs induced from the normal forms of the simple boundary
singularities of manifolds with boundary (see [1]). In a subsequent work,
we plan to study the simple boundary singularities of Nash manifolds
with boundary and classify them with respect to equivariant blow-Nash
equivalence.

We begin this paper by the definition of G-blow-Nash equivalence for
G a finite group. We also make precise what we mean by an equivariant
modification of an invariant Nash germ.

In Section 3, we define the equivariant zeta functions (naive and with
signs) of an invariant Nash germ. We first recall the definition of the G-
equivariant virtual Betti numbers: they are the unique additive invariants
on the category of AS sets equipped with an algebraic action of G which
coincide with the dimensions of equivariant Borel–Moore homology with
Z2-coefficients (where Z2 denotes the field with two elements Z/2Z) on
compact nonsingular sets. In Section 3.3, we prove an equivariant version
of Kontsevich “change of variables formula” and Denef–Loeser formulas for
equivariant zeta functions.

In Section 4, we show that the equivariant zeta functions are invariant
under equivariant blow-Nash equivalence via equivariant blow-Nash iso-
morphisms, illustrating this result with the example of the Nash germs
y4 − x2 and x4 − y2 invariant under the involution (x, y) 7→ (−x, y). The
computation of the equivariant zeta functions of several other invariant Nash
germs concludes the paper.

§2. Equivariant blow-Nash equivalence

Let G be a finite group.

We are interested in the study of germs of Nash functions invariant under

some linear action of G on the source space. More precisely, we want to
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make progress toward the classification of such germs up to equivariant

equivalence. We define below in 2.1 some generalization of the blow-Nash

equivalence defined by Fichou in [8], taking into account the equivariant

data of this setting.

Let us first make precise definitions in the equivariant setting. Let d> 1

and equip the affine space Rd with a linear action of G and the real line R
with the trivial action of G. In this setting, a germ of an equivariant Nash

function f : (Rd, 0)→ (R, 0) will be called an equivariant or invariant Nash

germ.

An equivariant Nash modification of such a germ f will be an equivariant

proper surjective Nash map π : (M, π−1(0))→ (Rd, 0) between G-globally

stabilized semialgebraic and analytic neighborhoods of π−1(0) in M and 0

in Rd, such that

(1) M is a Nash manifold equipped with an algebraic action of G (i.e., an

action induced from a regular G-action on the Zariski closure of M),

given by algebraic isomorphisms δg, g ∈G;

(2) the equivariant complexification π(C) :M(C)→ Cd is an equivariant

biholomorphism outside some subset of M(C) of codimension at least

1, globally stabilized by the complexified action of G on M(C);

(3) π is an isomorphism outside the zero locus of f ;

(4) the irreducible components of (f ◦ π)−1(0) which are not exceptional

divisors of π do not intersect;

(5) the action of G on M preserves globally each exceptional divisor of π;

(6) the composition f ◦ π and the Jacobian determinant jac π of π have

only normal crossings simultaneously, on which the action of G on M

can be locally linearized in the following meaning:

Let (f ◦ π)−1(0) =
⋃
j∈J Ej be the decomposition of (f ◦ π)−1(0) into

irreducible components. For I ⊂ J , we denote EI :=
⋂
i∈I Ei. We ask

that for any I ⊂ J with |I|6 d, for any element x of EI , there exists an

affine open neighborhood Ux of x in M , an affine open neighborhood

Vx of 0 in Rd, with coordinates y1, . . . , yd and a Nash isomorphism

ϕx : Vx→ Ux (in the sense of [7]) such that

(a) for all i ∈ I, there exists ji ∈ {1, . . . , d}, such that

• Ei ∩ Ux = ϕx({yji = 0} ∩ Vx);

• f ◦ π(ϕx(y1, . . . , yd)) = unit(y1, . . . , yd)
∏
i∈I y

Nji
ji

;

• jac π(ϕx(y1, . . . , yd)) = unit(y1, . . . , yd)
∏
i∈I y

νji−1

ji
;
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104 F. PRIZIAC

(b) for all g ∈G, δg(Ei) ∩ δg(Ux) = ϕg·x({yji = 0} ∩ Vg·x);

(c) for all g ∈G, δg(Ux) = Ug·x and there exists a linear isomorphism

νx,g : Rd→ Rd such that νx,g(Vx) = Vg·x making the following dia-

gram commute:

Vx
ϕx

//

νx,g

��

Ux

δg
��

Vg·x
ϕg·x

// Ug·x

(d) if δg(EI) = EI , Ug·x = Ux, Vg·x = Vx and ϕg·x = ϕx;

(e) for all g ∈G, νx,g preserves the intersection of the hyperplanes

{ys = 0}, s /∈ {ji, i ∈ I};
(f) for all g ∈G, the linear isomorphisms νh·x,g, h ∈G, are all given

by the same matrix Ax,g in the canonical bases of Rd ⊃ Vh·x and

Rd ⊃ Vgh·x;

(g) all these conditions come from the semialgebraic and analytic

isomorphisms between compact semialgebraic and real analytic

sets inducing the Nash isomorphisms ϕx.

Definition 2.1. Let f, h : (Rd, 0)→ (R, 0) be two invariant Nash germs.

We say that f and h are G-blow-Nash equivalent if there exist

• two equivariant Nash modifications σf : (Mf , σ
−1
f (0))→ (Rd, 0) and σh :

(Mh, σ
−1
h (0))→ (Rd, 0) of f and h, respectively;

• an equivariant Nash isomorphism Φ between G-globally stabilized semi-

algebraic and analytic neighborhoods (Mf , σ
−1
f (0)) and (Mh, σ

−1
h (0));

• an equivariant homeomorphism φ : (Rd, 0)→ (Rd, 0);

such that the following diagram commutes:

(Mf , σ
−1
f (0))

Φ //

σf

��

(Mh, σ
−1
h (0))

σh
��

(Rd, 0)
φ

//

f

&&

(Rd, 0)

h

xx
(R, 0)
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In this case, we say that φ is an equivariant blow-Nash homeomorphism,

and if Φ preserves the multiplicities of the Jacobian determinant of σf and

σg along their exceptional divisors, then we say that Φ is an equivariant

blow-Nash isomorphism.

Remark 2.2.

• If G= {e}, the equivariant blow-Nash equivalence is the blow-Nash

equivalence defined in [8].

• There exist germs being blow-Nash equivalent via a blow-Nash isomor-

phism without being G-blow-Nash equivalent via an equivariant blow-

Nash isomorphism (see Example 4.2).

In the following, we also call G-blow-Nash equivalence (resp. G-blow-

Nash equivalence via an equivariant blow-Nash isomorphism) the equiv-

alence relation generated by the G-blow-Nash equivalence (resp. G-blow-

Nash equivalence via an equivariant blow-Nash isomorphism) defined in

Definition 2.1. Notice that the G-blow-Nash equivalence can be defined if G

is an infinite group as well.

§3. Equivariant zeta functions

Let G be a finite group.

We are interested in the classification of Nash germs invariant under

right composition with a linear action of G, with respect to the equivariant

blow-Nash equivalence. With this in mind, we generalize the zeta functions

defined in [7] to our equivariant setting, using the equivariant virtual

Poincaré series defined in [9]. We show in Proposition 3.12 the rationality

of our equivariant zeta functions by a Denef–Loeser formula, which allows

us to prove that they are invariants for equivariant blow-Nash equivalence

via an equivariant blow-Nash isomorphism (Theorem 4.1).

3.1 Equivariant virtual Poincaré series

In order to define “equivariant” generalizations of the zeta functions for

Nash germs, we use an additive invariant defined on all G-AS sets, that

is Boolean combinations of arc-symmetric sets (see [16] and [17]) equipped

with an algebraic action of G: the equivariant virtual Poincaré series. It is

defined in [9] using the equivariant virtual Betti numbers, which are the

unique additive invariant on G-AS sets coinciding with the dimensions

of their equivariant homology. In this subsection, we recall the results of

Fichou in [9] about equivariant Betti numbers. We first give the definition
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of equivariant homology which is a mix of group cohomology and Borel–

Moore homology.

Definition 3.1. Let Z2[G] denote the group ring of G over Z2, that is

Z2[G] =

∑
g∈G

ngg | ng ∈ Z2


equipped with the induced ring structure. Consider a projective resolution

(F∗,∆∗) of Z2 by Z2[G]-modules, that is vector spaces over Z2 equipped

with a linear action of G. Then we define the cohomology H∗(G,M) of the

group G with coefficients in a Z2[G]-module M to be the cohomology of the

cochain complex (
HomZ2[G](F∗, M),∆∗

)
where, if ϕ : Fk→M is an equivariant linear morphism, ∆k(ϕ) := ϕ ◦∆k+1.

Example 3.2. Let G be a finite cyclic group of order d generated by

s. We denote by N :=
∑

16i6d s
i. Then a projective resolution of Z2 by

Z2[G]-modules is given by

· · · → Z2[G]
1+s−−→ Z2[G]

N−→ Z2[G]
1+s−−→ Z2[G]→ Z2→ 0,

where the map Z2[G]→ Z2 associates to an element
∑

16i6d nis
i of Z2[G]

the element
∑

16i6d ni of Z2.

The cohomology of the group G with coefficients in a Z2[G]-module M is

Hn(G,M) =



MG

NM
if n is an even positive integer,

ker N

(1 + s)M
if n is an odd positive integer,

MG if n= 0,

(where MG denotes the set of elements of M which are fixed by the action

of G). In particular, if G= Z/2Z,

Hn(G,M) =


MG

(1 + s)M
if n > 0,

MG if n= 0.
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For more details about group cohomology see for instance [3].

The equivariant homology of G-AS sets we define below is inspired

by [21].

Recall that a semialgebraic subset S of Pn(R) is said to be arc-symmetric

if every real analytic arc in Pn(R) either meets S at isolated points or is

entirely included in S. An AS set is a Boolean combination of arc-symmetric

sets.

Take X an AS set equipped with an algebraic action of G, that is

an action induced from a regular G-action on its Zariski closure: we call

such a set a G-AS set. We can associate to X the complex (C∗(X), ∂∗)

of its semialgebraic chains with closed supports and Z2 coefficients, which

computes the Borel–Moore homology of X with Z2 coefficients, simply

denoted by H∗(X) (see Appendix of [19]). The action of G on X induces

by functoriality a G-action on the chain complex C∗(X) (linear action on

chains in each dimension and commutativity with the differential). We then

consider the double complex

(HomZ2[G](F−p, Cq(X)))p,q∈Z,

where (F∗,∆∗) is a projective resolution of Z2 by Z2[G]-modules, where the

differentials are induced by ∆∗ and ∂∗.

The equivariant Borel–Moore homology H∗(X;G) of X (with Z2 coeffi-

cients) is then by definition the homology of the total complex associated

to the above double complex.

Such a double complex induces two spectral sequences that converge to

the homology of the associated total complex. In particular, the spectral

sequence given by

E2
p,q =H−p(G, Hq(X))⇒Hp+q(X;G),

is called the Hochschild–Serre spectral sequence of X and G.

It gives the following viewpoint on the equivariant Borel–Moore homol-

ogy: it is a mix of group cohomology and Borel–Moore homology with Z2

coefficients, involving the geometry of X, the geometry of the action of G

and the geometry of the group G itself.

Example 3.3. To illustrate how the equivariant geometry is involved in

the equivariant homology, let us compute the equivariant homology of the

two-dimensional sphere, given by the equation x2 + y2 + z2 = 1 in R3 and

denoted by X, equipped with two different kind of involutions.
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108 F. PRIZIAC

Consider first the action given by the central symmetry s : (x, y, z) 7→
(−x,−y,−z). If G := {1, s}, the E2-term of the Hochschild–Serre spectral

sequence of X and G is

· · · Z2[X] Z2[X] Z2[X] Z2[X]

· · · 0 0 0

ii

0

ii

· · · Z2[p] Z2[p] Z2[p]

ii

Z2[p]

ii

where [p] is the homology class of the chain [p] representing a point p of X:

for the sake of simplicity in the computations, we choose p to be the point

of coordinates (1, 0, 0). We see that the differential d2 vanishes everywhere

and E3-term is then given by

· · · Z2[X] Z2[X] Z2[X] Z2[X]

· · · 0 0 0 0

· · · Z2[p] Z2[p] Z2[p]

gg

Z2[p]

hh

The image of [p] by the differential d3 can be obtained by the follow-

ing procedure. We follow the following “path” in the double complex

(HomZ2[G](F−p, Cq(X)))p,q∈Z:

C2(X) C2(X)
1+s

oo

∂2
��

C2(X) C2(X)

C1(X) C1(X) C1(X)
1+s

oo

∂1
��

C1(X)

C0(X) C0(X) C0(X) C0(X)
1+s

oo
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Apply 1 + s to the chain [p]. There exists a semialgebraic chain γ of C1(X)

with boundary [p] + s([p]) = [{p, s(p)}]: we can choose γ to be the chain

representing an arc of the equator {z = 0} of X. The image of γ by 1 + s is

the chain representing the whole equator {z = 0}, which is the semialgebraic

boundary of the half-sphere {z > 0}. Finally, if we apply 1 + s to the chain

representing the half-sphere, we obtain the chain [X] representing the whole

sphere. Therefore, d3([p]) = [X].

Consequently,

E∞p,q = E4
p,q =

{
Z2[X] if q = 2 and − 2 6 p6 0,

0 otherwise,

and

Hn(X;G) =

{
Z2 if 0 6 n6 2,

0 otherwise.

Now let s denote an involution on X which is not free: this means there

exists at least one point p0 of X that is fixed by s. If we look at the E3-

term of the Hochschild–Serre spectral sequence of X with respect to this

action of G= Z/2Z, we see that the differential d3 vanishes everywhere since

H0(X) = Z2[p0] and (1 + s)[p0] = 0. Thus, E∞ = E2 and

Hn(X;G) =


Z2 if 0 6 n6 2,

Z2 ⊕ Z2 if n6 0,

0 otherwise.

Remark 3.4.

• When G= {e}, the equivariant homology of a G-AS set X is the Borel–

Moore homology of X.

• As illustrated in Example 3.3, the equivariant homology groups can be

nonzero in negative degree. In the case G= Z/2Z, we actually have

Hn(X;G)∼=
⊕

i>0 Hi(X
G) for n < 0 (where XG is the set of the points of

X which are fixed by the action of G).

For more details about equivariant Borel–Moore homology, see [21], [6],

[9] and [18].

The existence and uniqueness of the equivariant Betti numbers are given

by the following theorem of Fichou in [9]. The equivariant virtual Betti

numbers and the equivariant virtual Poincaré series are additive invariants
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under equivariant Nash isomorphisms of G-AS sets. By a Nash isomorphism

between AS-sets X1 and X2 is meant the restriction of a semialgebraic and

analytic isomorphism between compact real analytic and semialgebraic sets

Y1 and Y2 containing X1 and Y2, respectively (see also [7]).

We use the equivariant virtual Poincaré series as a measure for arc spaces

which takes into account equivariant information. In particular, we apply it

to the spaces of arcs of an invariant Nash germ and gather these measures

in the equivariant zeta functions (Subsection 3.2).

Theorem 3.5. [9, Theorem 3.9] Let i ∈ Z. There exists a unique map

βGi (·) defined on G-AS sets and with values in Z such that

(1) βGi (X1) = βGi (X2) if X1 and X2 are equivariantly Nash isomorphic;

(2) βGi (X) = dimZ2 Hi(X;G) if X is a compact nonsingular G-AS set;

(3) βGi (X) = βGi (Y ) + βGi (X \ Y ) if Y ⊂X is an equivariant closed inclu-

sion;

(4) βGi (V ) = βGi (Rn ×X) with G acting diagonally on the right-hand prod-

uct, Rn being equipped with the trivial action of G, if V →X is a G-

equivariant vector bundle with fiber Rn, that is, the restriction to X of a

vector bundle with fiber Rn on its Zariski closure X
Z

, with a linear G-

action over the action on X
Z

(this means there exists a finite partition

of X
Z

into G-globally invariant Zariski constructible sets on which the

vector bundle is trivial and the action of G sends linearly a fiber on

another).

The map βGi (·) is unique with these properties and is called the ith

equivariant virtual Betti number.

For X a G-AS set, we then denote

βG(X) :=
∑
i∈Z

βGi (X)ui ∈ Z[u][[u−1]]

the equivariant virtual Poincaré series of X.

Remark 3.6.

• For G= {e}, the equivariant virtual Poincaré series is the virtual Poincaré

polynomial defined in [20].

• The assumption of finiteness of the group G is necessary to show the

existence of the equivariant virtual Betti numbers. In particular, when

G is finite, there always exist an equivariant resolution of singularities

([22,2]) and an equivariant compactification (see [4]).
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Example 3.7.

(1) If we consider the sphere S2 equipped with the central symmetry, since

S2 is compact nonsingular, we have

βG(S2) =
∑
i∈Z

dimZ2 Hi(X;G)ui = u2 + u+ 1

(with G= Z/2Z). If now we consider an action of G on S2 which fixes

at least one point, we have

βG(S2) = u2 + u+
∑
i60

2ui = u2 + u+ 2
u

u− 1

(see Example 3.3).

(2) The equivariant virtual Poincaré series of a point is u
u−1 and the

equivariant virtual Poincaré series of two points inverted by an action

of G= Z/2Z is 1: in both cases, the Hochschild–Serre spectral sequence

degenerates at E2-term.

(3) Let the affine plane R2 be equipped with an involution s. To compute

the equivariant virtual Poincaré series βG(R2) (with G= {1, s}), con-

sider an equivariant one-point compactification of R2. It is equivariantly

Nash isomorphic to a sphere S2 equipped with an involution fixing at

least the point S2 \ R2. Therefore,

βG(R2) = βG(S2)− βG(S2 \ R2) =
∑
i62

ui =
u3

u− 1
.

(4) Let R2 be equipped with an action of G := Z/2Z given by s : (x, y) 7→
(εx, ε′y), with ε, ε′ ∈ {−1, 1}, and E denote the exceptional divisor of

the equivariant blowing-up of the plane at 0. Then, βG(E) = βG(P1) =

βG(S1), where the circle S1 is equipped with an involution fixing at

least one point. Then βG(E) = u+ 2 u
u−1 (we compute the Hochschild–

Serre spectral sequence of S1).

Contrary to the virtual Poincaré polynomial, we do not know the behavior

of the equivariant virtual Poincaré series toward products in general case.

Nevertheless, we have the following result regarding the equivariant virtual

Poincaré series of the product of a G-AS set with an affine space. We use

the following two properties in the proof of Denef–Loeser formula for the

equivariant zeta functions (Subsection 3.3).
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Proposition 3.8. (Proposition 3.13 of [9]) Let X be any G-AS set and

equip the affine variety Rn with any algebraic action of G. If we equip their

product with the diagonal action of G, we have

βG(Rn ×X) = unβG(X).

In particular, βG(Rn) = un+1

u−1 .

Lemma 3.9. Let X be any G-AS set and equip the real line R with any

algebraic variety action of G stabilizing 0. Now let m ∈ N∗ and equip the

product (R∗)m ×X with the induced diagonal action of G. Then we have

βG ((R∗)m ×X) = (u− 1)mβG(X).

Proof. We prove this equality by induction on m: we have

βG (R∗ ×X) = βG (R×X)− βG ({0} ×X) = (u− 1)βG(X)

by Proposition 3.8, and, if we assume the property to be true for a fixed

m ∈ N∗,

βG
(
(R∗)m+1 ×X

)
= βG ((R∗)× (R∗)m ×X)

= (u− 1)βG ((R∗)m ×X) = (u− 1)m+1βG(X).

3.2 Equivariant zeta functions

Consider a linear action of G on Rd, given by linear isomorphisms αg,

g ∈G, and equip R with the trivial action of G. The space L= L(Rd, 0) of

formal arcs (R, 0)→ (Rd, 0) at the origin of Rd is naturally equipped with

the induced action of G given by

g · γ := t 7→ αg(γ(t))

for all g ∈G and all γ : (R, 0)→ (Rd, 0) ∈ L. Notice that, if γ(t) = a1t+

a2t
2 + · · · , g · γ(t) = αg(a1)t+ αg(a2)t2 + · · · by the linearity of the action.

For all n> 1, thanks to its linearity, the action of G on L induces an

action on the space

Ln = Ln(Rd, 0)

=
{
γ : (R, 0)→ (Rd, 0) | γ(t) = a1t+ a2t

2 + · · ·+ ant
n, ai ∈ Rd

}
of arcs truncated at the order n+ 1. Furthermore, the truncation morphism

πn : L→Ln is equivariant with respect to these actions of G.
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Consider now an equivariant Nash germ f : (Rd, 0)→ (R, 0), that is f is

invariant under right composition with the linear action of G. Then, for all

n> 1, the set

An(f) := {γ ∈ Ln | f ◦ γ(t) = ctn + · · · , c 6= 0}

of truncated arcs of Ln becoming series of order n after left composition

with f is globally stable under the action of G on Ln.

Consequently, we can apply the equivariant virtual Poincaré series to the

sets An(f), which are Zariski constructible subsets of Rnd equipped with an

algebraic action of G, and we define the naive equivariant zeta function

ZGf (u, T ) :=
∑
n>1

βG (An(f)) u−ndTn ∈ Z[u][[u−1]][[T ]]

of f .

Similarly, the sets

A+
n (f) := {γ ∈ Ln | f ◦ γ(t) = +tn + · · · } and

A−n (f) := {γ ∈ Ln | f ◦ γ(t) =−tn + · · · }

are also stable under the action of G on Ln and we define the equivariant

zeta functions with signs ZG,+f and ZG,−f of the invariant Nash germ f :

ZG,±f (u, T ) :=
∑
n>1

βG
(
A±n (f)

)
u−ndTn ∈ Z[u][[u−1]][[T ]].

Remark 3.10.

• For G= {e}, the equivariant zeta functions are the zeta functions defined

in [7] and [8].

• These equivariant zeta functions are different from the equivariant zeta

functions defined in [9].

Example 3.11. (See also [13] and [7]) Equip the affine line R with the

linear involution s : x 7→ −x. Let k ∈ N∗ and consider the invariant Nash

germ f : (R, 0)→ (R, 0) given by f(x) = x2k.

For all n> 1, if n is not divisible by 2k, An(f) is empty, and if n= 2km,

An(f) = {γ : (R, 0)→ (R, 0) | γ(t) = amt
m + · · ·+ ant

n, am 6= 0}

is equivariantly Nash isomorphic to R∗ × Rn−m equipped with the diagonal

action of G := Z/2Z on each factor induced from the action of s on R.
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Therefore, the equivariant virtual Poincaré series of An(f) is (u−
1)u

n−m+1

u−1 = un−m+1 if n= 2km (by Lemma 3.9 and Proposition 3.8), 0

otherwise and we have

ZGf (u, T ) =
∑
m>1

u2km−m+1

(
T

u

)2km

=
u T 2k

u− T 2k
.

Now, f is positive so ZG,−f = 0, and for n= 2km,

A+
n (f) = {γ : (R, 0)→ (R, 0) | γ(t) =±tm + · · ·+ ant

n}

is equivariantly Nash isomorphic to {±1} × Rn−m; hence βG(A+
n (f)) =

un−m (the points −1 and +1 are exchanged by the involution s). Thus,

ZGf (u, T ) =
∑
m>1

u2km−m
(
T

u

)2km

=
T 2k

u− T 2k
.

3.3 Denef–Loeser formulas for equivariant zeta functions

In the following proposition 3.12, we show that, as the nonequivariant one

in [7] and [8], the naive equivariant zeta function is rational. This Denef–

Loeser formula for an equivariant modification will allow us to prove that

two invariant Nash germs equivariantly blow-Nash equivalent through an

equivariant blow-Nash isomorphism have the same naive equivariant zeta

function (Theorem 4.1).

We keep the notations from previous Subsection 3.2.

Proposition 3.12. Let σ : (M, σ−1(0))→ (Rd, 0) be an equivariant

Nash modification of f .

At first, we keep notations from the nonequivariant case [8]:

• Let (f ◦ σ)−1(0) =
⋃
j∈J Ej be the decomposition of (f ◦ σ)−1(0) into

irreducible components. Then there exists K ⊂ J such that σ−1(0) =⋃
k∈K Ek.

• Put Ni :=multEi f ◦ σ and νi := 1 +multEi jac σ, and, for I ⊂ J , E0
I :=(⋂

i∈I Ei
)
\
(⋃

j∈J\I Ej
)
.

Now, the action of G on M induces an action of G on the set of irreducible

components of (f ◦ σ)−1(0). For j1, j2 ∈ J and g ∈G, we write the equality

j2 = g · j1 if Ej2 = g · Ej1. This induces an action of G on the set Λ of

nonempty subsets of J and we denote by I the orbit of a nonempty subset

I of J .
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For I in Λ/G, we then denote by E0
I the union of the sets E0

g·I = g · E0
I =(⋂

i∈I g · Ei
)
\
(⋃

j∈J\I g · Ej
)

, g ∈G (it is the orbit of E0
I in M) and we

have the equality

ZGf (u, T ) =
∑
I∈Λ/G

(u− 1)|I|βG
(
E0
I ∩ σ−1(0)

)∏
i∈I

u−νiTNi

1− u−νiTNi
.

Remark 3.13. For all i ∈ I and g ∈G, multg·Eif ◦ σ =multEif ◦ σ and

multg·Eijac σ =multEijac σ, thanks to the equivariance of f and σ (see part

(iv) of the proof below).

Proof. The proof is a generalization to the equivariant setting of the

proof of Denef–Loeser formula in [7] and [8], which uses the theory of motivic

integration on arc spaces for arc-symmetric sets (see also [5]). The key point

is the justification of Kontsevich change of variables formula [14] in our

setting.

The proof runs as follows. We define the notion of G-stable subsets of

the arc space associated to (Rd, 0) or (M, σ−1(0)). These sets constitute

the measurable sets with respect to a measure defined using the equivariant

virtual Poincaré series. Here, we use the good behavior of βG with respect

to equivariant vector bundles (Proposition 3.8) to justify that this measure

is well defined.

This allows one to define an integration with respect to this equivariant

measure. We show the validity of the Kontsevich change of variables in the

equivariant setting (Proposition 3.14 below) just after the present proof.

This key formula provides us a first intermediate equality for ZGf (u, T ),

bringing out some AS sets globally invariant under the induced actions of

G, which involve the equivariant Nash modification σ of f .

The final step is the computation of the value of the equivariant virtual

Poincaré series of these G-AS sets in terms of the irreducible components

of (f ◦ σ)−1(0).

(i) Equivariant measurability and equivariant integration on arc spaces

We first define a notion of equivariant measurability and equivariant

measure in the arc spaces L(Rd, 0) and L
(
M, σ−1(0)

)
= {γ : (R, 0)→

(M, σ−1(0)) formal }. The action of G on M , given by algebraic isomor-

phisms δg, g ∈G, induces an action on L(M, σ−1(0)) by composition. For

all n> 0, the space Ln(M, σ−1(0)) of arcs truncated at order n+ 1 is stable

under the action of G on L(M, σ−1(0)) and the (n+ 1)th order truncating
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morphism πn : L(M, σ−1(0))→Ln(M, σ−1(0)) is equivariant (see part (iv)

of the proof).

For convenience, in the following definitions, L will denote either L(Rd, 0)

or L(M, σ−1(0)).

Now we say that a subset A of the arc space L is G-stable if there exists

n> 0 and an AS-subset C of Ln, globally invariant under the algebraic

action of G on Ln, such that A= π−1
n (C). Notice that a G-stable set is

globally invariant under the action of G on L. Then we define the measure

βG(A) of a G-stable set A by setting

βG(A) := u−(n+1)dβG(πn(A)) ∈ Z[u][[u−1]]

for n big enough.

Let us show that this measure is well-defined. This is actually a conse-

quence of the fact that the truncation projections qn : Ln+1→Ln are vector

bundles with fiber Rd, the action of G sending linearly a fiber on another

(for L= L(M, σ−1(0)), we can cover the compact set σ−1(0) by the orbits

of a finite number of open affine subsets Ux, x ∈ σ−1(0)).

Now, if A= π−1
n (Cn) = π−1

n+1(Cn+1), since qn : Cn+1→ Cn is a restriction

of the G-equivariant vector bundle qn : Ln+1→Ln, we have βG(Cn+1) =

udβG(Cn) by Theorem 3.5 and Proposition 3.8.

We then define an integral with respect to the measure βG for maps θ

with source a G-stable set A and Z[u, u−1] as target, with finite image and

G-stable sets as fibers: the integral of θ over A is∫
A
θ dβG :=

∑
c∈Z[u,u−1]

cβG
(
θ−1(c)

)
.

(ii) Kontsevich change of variables

Now we state the equivariant version of the change of variables formula

in [14] (see also [5] and [7]):

Proposition 3.14. Let A be G-stable set of L(Rd, 0) and assume that

ordt jac σ is bounded on σ−1(A). Then

βG(A) =

∫
σ−1(A)

u−ordt jac σdβG.

Here, we denote also by σ the equivariant map L
(
M, σ−1(0)

)
→

L(Rd, 0) ; γ 7→ σ ◦ γ. We show Proposition 3.14 after the present proof.
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(iii) Applying Kontsevich formula

We use the equivariant version of Kontsevich formula and the additivity

of the equivariant virtual Poincaré series to reduce the computation of the

naive equivariant zeta function to the computation of the equivariant virtual

Poincaré series of G-AS sets expressed in terms of the equivariant Nash

modification σ of f .

First, we give notations to the sets that will appear as the proof goes

along, similarly to [7]. For any n> 1 and e> 1, we put

• Zn(f) := π−1
n (An(f));

• Zn(f ◦ σ) := σ−1(Zn(f));

• ∆e := {γ ∈ L
(
M, σ−1(0)

)
| ordt jac σ(γ(t)) = e};

• Zn,e(f ◦ σ) := Zn(f ◦ σ) ∩∆e.

Notice that all the sets Zn(f), Zn(f ◦ σ), ∆e and Zn,e(f ◦ σ) are globally

invariant under the actions of G on arc spaces, notably because σ is an

equivariant Nash modification (see also step (iv) below).

First, since all the sets Zn(f) are by definition G-stable, we can consider

their equivariant measure βG(Zn(f)) = u−(n+1)dβG(An(f)) and write

ZGf (u, T ) = ud
∑
n>1

βG(Zn(f))Tn.

We then apply the equivariant Kontsevich change of variables formula to

compute βG(Zn(f)) for all n> 1. Indeed, there exists c ∈ N such that for

all n> 1, Zn(f ◦ σ) is the finite disjoint union ∪e6cnZn,e(f ◦ σ) (see [7]): in

particular, for all n> 1, ordt jac σ is bounded on Zn(f ◦ σ) = σ−1(Zn(f))

and we can apply Proposition 3.14 to obtain

βG(Zn(f)) =

∫
σ−1(Zn(f))

u−ordt jac σdβG =
∑
e6cn

u−eβG (Zn,e(f ◦ σ)) .

Moreover, if n> 1 and e6 cn, for any arc γ in Zn,e(f ◦ σ) (more generally

in L(M, σ−1(0))), there exists I ⊂ J such that π0(γ) ∈ E0
I ∩ σ−1(0), and

more particularly, there exists I ∈ Λ/G such that π0(γ) ∈ E0
I ∩ σ−1(0).

Consequently, we can write the G-stable set Zn,e(f ◦ σ) as the disjoint

union of the sets ZIn,e(f ◦ σ) := Zn,e(f ◦ σ) ∩ π−1
0 (E0

I ∩ σ−1(0)), I ∈ Λ/G,

and we have
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βG(Zn,e(f ◦ σ)) = u−(n+1)dβG
(
πn
(
tI∈Λ/GZIn,e(f ◦ σ)

))
= u−(n+1)d

∑
I∈Λ/G

βG
(
πn
(
ZIn,e(f ◦ σ)

))
(in the last equality, we used the additivity of the equivariant virtual

Poincaré series).

Finally, we have

(1) ZGf (u, T ) =
∑
n>1

u−ndTn
∑
e6cn

u−e
∑
I∈Λ/G

βG
(
πn
(
ZIn,e(f ◦ σ)

))
,

where πn
(
ZIn,e(f ◦ σ)

)
is the G-AS set{

γ ∈ Ln(M, σ−1(0)) | γ(0) ∈ E0
I ∩ σ−1(0), ordt f ◦ σ(γ(t)) = n,

ordt jac σ(γ(t)) = e} .

(iv) Computation of βG
(
πn
(
ZIn,e(f ◦ σ)

))
Let n> 1, e6 nc and I ∈ Λ/G (such that EI 6= ∅). First, we cover the

compact set EI by a finite union of open affine subsets Uxr , xr ∈ EI , r =

1, . . . , m. We can then write

E0
I =

m⋃
r=1

⋃
g∈G

E0
g·I ∩ Ug·xr

 .

We are going to compute the equivariant virtual Poincaré series of{
γ ∈ Ln(M, σ−1(0)) | γ(0) ∈ E0

I ∩ σ−1(0),

ordt f ◦ σ(γ(t)) = n, ordt jac σ(γ(t)) = e} .

Consider an arc γ in this last set and assume, without any loss of

generality, that γ(0) ∈ E0
I ∩ σ−1(0) ∩ Ux with x ∈ {x1, . . . , xm}. For all

i ∈ I, we have

• Ei ∩ Ux = ϕx({yji = 0} ∩ Vx);

• f ◦ σ(ϕx(y1, . . . , yd)) = unit(y1, . . . , yd)
∏
i∈I y

Ni
ji

;

• jac σ(ϕx(y1, . . . , yd)) = unit(y1, . . . , yd)
∏
i∈I y

νi−1
ji

.
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We can assume Ux and Vx are Nash isomorphic AS-sets such that the

above unit Nash functions are nowhere zero on Vx (by intersecting Vx with

the orbit under G of the respective complements of their zero sets which are

AS-sets).

Let g ∈G. For i ∈ I, the action of g on M sends an irreducible component

Ei locally described in Vx by the equation yji = 0 on the irreducible

component Eg·i locally described in Vg·x by the same equation yji = 0.

Therefore, after same relevant permutations of coordinates in the source

and target spaces, the matrix of νx,g : Rd ⊃ Vx→ Rd ⊃ Vg·x becomes of the

form



λ1 0 0 0 0

0

0

0 0 λ|I| 0 0

0 0

0 0


where all the λj ’s are nonzero (recall the definition of an equivariant Nash

modification of f in Section 2).

In particular, for all i ∈ I,

• Ng·i =Ni;

• νg·i = νi;

• if γ(t) = ϕx((γ1(t), . . . , γd(t))) and if we denote ki(γ) := ordt γji(t) for all

i ∈ I, ki(g · γ(t)) = ki(γ);

so that there is an equivariant Nash isomorphism between
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γ ∈ Ln(M, σ−1(0)) | γ(0) ∈ E0

I ∩ σ−1(0),

ordt f ◦ σ(γ(t)) = n, ordt jac σ(γ(t)) = e}

and⊔
k∈A(n,e)

{
γ ∈ Ln(M, σ−1(0)) | γ(0) ∈ E0

I ∩ σ−1(0), ordt γji(t) = ki, i ∈ I
}
,

with A(n, e) := {k ∈ Nd |
∑

i∈I kiNi = n,
∑

i∈I ki(νi − 1) = e}. Conse-

quently, the equivariant virtual Poincaré series of these sets are equal.

Let k ∈A(n, e). We compute now the equivariant virtual Poincaré series

of the set

Wk :=
{
γ ∈ Ln(M, σ−1(0)) | γ(0) ∈ E0

I ∩ σ−1(0), ordt γji(t) = ki, i ∈ I
}
.

We write it as the difference of{
γ ∈ Ln(M, σ−1(0)) | γ(0) ∈ E0

I ∩ σ−1(0),

γji(t) = cit
ki + · · · , ci ∈ R, i ∈ I

}
and the union over l ∈ I of the sets{

γ ∈ Ln(M, σ−1(0)) | γ(0) ∈ E0
I ∩ σ−1(0), γjl(t) = 0× tkl + · · ·

}
.

Thanks to the additivity of the equivariant virtual Poincaré series, we are

then reduced to compute the equivariant virtual Poincaré series of{
γ ∈ Ln(M, σ−1(0)) | γ(0) ∈ E0

I ∩ σ−1(0),

γjl(t) = 0× tkl + · · · , l ∈ {l1, . . . , ls}
}

for any {l1, . . . , ls} ⊂ I. Considering the restriction to such a set of the pro-

jection π0 onto E0
I ∩ σ−1(0), we see that this is aG-equivariant vector bundle

over E0
I ∩ σ−1(0) with fibers isomorphic to R|I|−s

(∏
i∈I Rn−ki

)
(Rn)d−|I|.

Therefore,

βG(Wk) = βG(E0
I ∩ σ−1(0))u|I|+nd−

∑
i∈I ki

−
∑

s∈{1,...,|I|}

(−1)s+1

(
|I|
s

)
βG
(
E0
I ∩ σ−1(0)

)
u|I|−s+nd−

∑
i∈I ki

= (u− 1)|I|βG(E0
I ∩ σ−1(0))und−

∑
i∈I ki .
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As a consequence,

(2) βG(πn
(
ZIn,e(f ◦ σ)

)
) =

∑
k∈A(n,e)

(u− 1)|I|βG
(
E0
I ∩ σ−1(0)

)
und−

∑
i∈I ki .

(v) Conclusion of the proof

Substituting (2) in the equality (1) of step (iii), we get

ZGf (u, T ) =
∑
I∈Λ/G

(u− 1)|I|βG
(
E0
I ∩ σ−1(0)

)∑
n>1

∑
e6cn

∑
k∈A(n,e)

u−e−
∑
i∈I kiTn.

As in [7], we write the sum
∑

n>1

∑
e6cn

∑
k∈A(n,e) u

−e−
∑
i∈I kiTn as the

product
∏
i∈I

u−νiTNi
1−u−νiTNi and we obtain the Denef–Loeser formula

ZGf (u, T ) =
∑
I∈Λ/G

(u− 1)|I|βG
(
E0
I ∩ σ−1(0)

)∏
i∈I

u−νiTNi

1− u−νiTNi
.

We next prove the equivariant version of Kontsevich change of variables

(Proposition 3.14), which is a key tool in the demonstration of the above

Denef–Loeser formula. In order to achieve this goal, we need the following

lemma which is an equivariant Nash analog to [5, Lemma 3.4] (see also [8,

Lemma 2.11]):

Lemma 3.15. Let h : (M, h−1(0))→ (Rd, 0) be an equivariant proper

surjective Nash map such that the action of G on M is locally linear

around h−1(0), that is, corresponds locally to a linear G-action, in G-globally

invariant affine open charts of M .

For all e> 1, set

∆e :=
{
γ ∈ L(M, h−1(0)) | ordt jac h(γ(t)) = e

}
and for all n> 1,

∆e,n := πn(∆e),

and denote by hn the equivariant map πn ◦ h : Ln(M, h−1(0))→Ln(Rd, 0).

If n> 2e, then hn(∆e,n) is an AS set, globally invariant under the action

of G on Ln(Rd, 0), and hn is an equivariantly piecewise trivial fibration over

hn(∆e,n), with G-globally invariant AS sets as pieces, with fiber Re (more

precisely h−1
n (hn(∆e,n))→ hn(∆e,n) is a G-equivariant vector bundle with

fiber Re).
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Remark 3.16. The details of this fibration are given at the end of the

proof below.

Proof of Lemma 3.15. Fix e> 1 and n> 2e.

The fact that hn(∆e,n) is an AS set is given by the nonequivariant result

of Fichou in [8, Lemma 2.11]. Since ∆e,n is globally invariant under the

action of G on Ln(M, h−1(0)), so is the set hn(∆e,n) under the action of G

on Ln(Rd, 0) because hn is equivariant.

In the proof of the second assertion of the lemma, we refer to the proof

of [5, Lemma 3.4], replacing the terms “regular maps” by “Nash maps” and

“constructible sets” by “AS sets” (see also [8]).

Consider an equivariant section s : Ln(Rd, 0)→L(Rd, 0) of πn. We have

s(hn(∆e,n))⊂ h(∆e) and h−1 is well defined on h(∆e) (because h(γ1) 6=
h(γ2) if γ1 6= γ2 with γ1 ∈∆e), Nash and equivariant, so one can construct

the equivariant mapping

θ : hn(∆e,n)→∆e ; γ 7→ h−1(s(γ)).

It is an equivariantly piecewise morphism: this means there exists a finite

partition of the domain of θ into AS sets globally invariant under the

action of G on Ln(Rd, 0), such that the restriction of θ to each piece is

an equivariant Nash map, that is induced by an equivariant semialgebraic

and analytic map.

One can then use the map θ to express the fiber of an arc γ of hn(∆e,n)

under hn:

h−1
n (γ) =

{
θ(γ) + tn+1−eγ′ mod tn+1 | γ′ formal and

(Jac h(θ(γ)))γ′ ≡ 0 mod te
}
,

which can be identified to a linear subspace of Rde of dimension e.

Furthermore, the action of g ∈G sending the fiber h−1
n (γ) on the fiber

h−1
n (g · γ) is given by the matrix Ax,g for some x ∈ h−1(0).

Therefore, there exists a finite partition of hn(∆e,n) into globally G-

invariant AS subsets (Si)i=1,...,m of Ln(Rd, 0), such that for any i ∈
{1, . . . , m}, h−1

n (Si) is a G-AS subset of Ln(M, h−1(0)), Nash isomorphic

to Si × Re, the action of G sending linearly a fiber on another.

Proof of Proposition 3.14. We are now ready to prove the equivariant

Kontsevich change of variables formula. We are going to compute the
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integral against the measure βG of the map

ζ : σ−1(A)→ Z[u, u−1] ; γ 7→ u−ordt jac σ(γ)

over σ−1(A), and show that it equals βG(A).

We have∫
σ−1(A)

ζ dβG =
∑

c∈Z[u,u−1]

cβG(ζ−1(c)) (by definition of the integral)

=
∑

16e6ρ

u−eβG(σ−1(A) ∩∆e)

(ordt jac σ(γ) is bounded on σ−1(A))

=
∑

16e6ρ

u−eu−(n+1)dβG(πn(σ−1(A) ∩∆e))

(for n big enough and bigger than 2ρ)

=
∑

16e6ρ

u−eu−(n+1)dβG(πn(σ−1(A)) ∩∆e,n)

(σ−1(A) is stable).

Now fix 1 6 e6 ρ. We have the equality of sets

πn(σ−1(A)) ∩∆e,n = σ−1
n (πn(A)) ∩ σ−1

n (σn(∆e,n))

= σ−1 (πn(A) ∩ σn(∆e,n)) ,

where σn = πn ◦ σ. The equality πn(σ−1(A)) = σ−1
n (πn(A)) comes from the

stability of A and the fact that πn ◦ σ ◦ πn = πn ◦ σ on L(M, h−1(0)), and we

use [8, Lemma 2.12] to show that ∆e,n = σ−1
n (σn(∆e,n)) (recall that n> 2e).

We then compute βG
(
σ−1
n (πn(A) ∩ σn (∆e,n))

)
using the fact that,

by previous Lemma 3.15, σn is an equivariantly piecewise trivial fibra-

tion over σn(∆e,n) and more precisely that σ−1
n (πn(A) ∩ σn (∆e,n))→

πn(A) ∩ σn (∆e,n) is a restriction of the G-equivariant vector bundle

σ−1
n (σn (∆e,n))→ σn (∆e,n) with fiber Re, so that

βG
(
σ−1
n (πn(A) ∩ σn (∆e,n))

)
= ueβG (πn(A) ∩ σn(∆e,n)) .

Consequently,
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σ−1(A)

ζ dβG =
∑

16e6ρ

u−eu−(n+1)dβG
(
σ−1
n (πn(A) ∩ σn(∆e,n))

)
=
∑

16e6ρ

u−(n+1)dβG (πn(A) ∩ σn(∆e,n))

= u−(n+1)dβG (πn(A) ∩ (t16e6ρσn(∆e,n)))

(the sets πn(σ(∆e)) are disjoint since n > e)

= u−(n+1)dβG (πn(A)) = βG(A).

Notice that we used the surjectivity of the map σn : Ln(M, σ−1(0))→
Ln(Rd, 0), which comes from the arc lifting property of a real modification

(see, e.g., [11]).

Next, we state the Denef–Loeser formula for the equivariant zeta functions

with signs. As in the nonequivariant case (see [7] and [8]), we have to

consider coverings of the spaces E0
I . However, in our equivariant setting,

it is necessary to consider coverings of the orbits of these spaces under the

induced action of G.

Proposition 3.17. Keep the notations and assumptions of Proposi-

tion 3.12. We can write the equivariant zeta functions with signs of f as a

rational fraction in terms of its equivariant Nash modification σ. Precisely,

we have the formula

ZG,±f (u, T ) =
∑
I∈Λ/G

(u− 1)|I|−1βG
(
Ẽ0,±
I ∩ σ−1(0)

)∏
i∈I

u−νiTNi

1− u−νiTNi
,

where, for I ∈ Λ/G, Ẽ0,+
I and Ẽ0,−

I are G-coverings of E0
I .

Remark 3.18. We define the spaces Ẽ0,±
I in the proof below, making

precise how the action of G on M induces an action on them.

Proof. To prove the Denef–Loeser formula for equivariant zeta functions

with signs, we follow the same first steps as in the proof of Proposition 3.12,

and we are led to write

ZG,±f (u, T ) =
∑
n>1

u−ndTn
∑
e6cn

u−e
∑
I∈Λ/G

βG
(
πn
(
Z±,In,e (f ◦ σ)

))
,
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where each πn

(
Z±,In,e (f ◦ σ)

)
is the globally invariant set{

γ ∈ Ln(M, σ−1(0)) | γ(0) ∈ E0
I ∩ σ−1(0),

f ◦ σ(γ(t)) =±tn + · · · , ordt jac σ(γ(t)) = e} .

With the same notations as in the proof of Proposition 3.12, let k ∈
A(n, e) and let γ ∈ πn

(
Z±,In,e (f ◦ σ)

)
such that γ(0) ∈ EI ∩ Ux and for i ∈ I,

ordt γji(t) = ki. The condition f ◦ σ(γ(t)) =±tn + · · · can be expressed as

ux
(
ϕ−1
x (γ(0))

)∏
i∈I

ρNiji =±1,

where ρji is the term of order ki in γji(t). Denote

W±I,Ux,ϕx =

{
(z, ρ) ∈ (E0

I ∩ Ux)× (R∗)|I| | ux
(
ϕ−1
x (z)

)∏
i∈I

ρNiji =±1

}

and notice that, since for g ∈G, f ◦ σ ◦ δg = f ◦ σ, we have

ux(y1, . . . , yd)
∏
i∈I

yNiji = f ◦ σ(ϕg·x(νx,g(y1, . . . , yd)))

= ug·x(νx,g(y1, . . . , yd))
∏
i∈I

(λiyji)
Ni

where the constants λi, i ∈ I, are given by the matrix Ax,g. Therefore,

ug·x(νx,g(y1, . . . , yd)) =
1(∏

i∈I λ
Ni
i

)ux(y1, . . . , yd)

and in particular, the action of g ∈G on M sends W±I,Ux,ϕx on W±g·I,Ug·x,ϕg·x .

As a consequence, there is an equivariant Nash isomorphism between

πn
(
Z±,In,e (f ◦ σ)

)
and the gluing of the sets

⊔
k∈A(n,e)

W±g·I,Ug·xr ,ϕg·x ×

(∏
i∈I

Rn−ki
)

(Rn)d−|I| ,

along the spaces E0
g·I ∩ Ug·xr , g ∈G, r = 1, . . . , m.

Thanks to the additivity of the equivariant virtual Poincaré series and

Lemma 3.9, we are then reduced to compute the equivariant virtual Poincaré
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series of the orbit of the set W±I,Ux,ϕx (notice that, for g1, g2 ∈G, the sets(
E0
g1·I ∩ Ug1·x

)
and

(
E0
g2·I ∩ Ug2·x

)
are equal or do not intersect).

Now, consider the isomorphism from W±I,Ux,ϕx to R±I,Ux,ϕx × (R∗)|I|−1

given in the proof of [7, Proposition 3.5], with

R±I,Ux,ϕx :=

{
(z, t) ∈ E0

I ∩ Ux × R | tm =± 1

ux
(
ϕ−1
x (z)

)} ,

where m is the greatest common divisor of the Ni’s, i ∈ I. It is defined using

integers ni, i ∈ I such that
∑

i∈I niNi =m.

These isomorphisms are compatible with the action of g ∈G sending

the element (z, t, κ) of R±I,Ux,ϕx × (R∗)|I|−1 to (δg(z),
t∏

i∈I λ
Ni/m
i

, g · κ) ∈

R±g·I,Ug·x,ϕg·x × (R∗)|I|−1, the jth coordinate of κ being sent to itself times(∏
i∈I λ

Ni/m
i

)−njλj .
Consequently, the equivariant virtual Poincaré series of the orbit of the

set W±I,Ux,ϕx is, using Lemma 3.9, (u− 1)|I|−1 times the equivariant virtual

Poincaré series of the orbit of the set R±I,Ux,ϕx .

Thus,

βG
(
πn
(
Z±,In,e (f ◦ σ)

))
=

∑
k∈A(n,e)

(u− 1)|I|−1βG
(
Ẽ0,±
I

)
und−

∑
i∈I ki

where Ẽ0,±
I is the gluing of the sets R±g·I,Ug·xr ,ϕg·xr along the spaces E0

g·I ∩
Ug·xr , g ∈G, r = 1, . . . , m.

Now, the end of the computation is the same as in step (v) of the proof

of Proposition 3.12 (notice that in the above arguments, we dropped the

intersection with σ−1(0) for the sake of readability).

Remark 3.19. We can also define the naive equivariant zeta function

of the germ of an equivariant Nash function f : (Rd, 0)→ (R, 0) where the

affine spaces Rd and R are both equipped with a linear action of G. Indeed,

if g 7→ κg denotes the linear action of G on R, then, since G is finite, for

all g ∈G, κg =±IdR. Therefore, the spaces of arcs An(f) of f are globally

stable under the action of G on L. Furthermore, Denef–Loeser formula of

Proposition 3.12 is also valid for the naive equivariant zeta function of f .

In order to define equivariant zeta functions with signs for f , we have to

consider the kernel H of the group morphism g 7→ κg. Then the arc spaces

A+
n (f) and A−n (f) are globally stable under the restricted action of H on L
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and we can define the equivariant zeta functions with signs of f with respect

to H, for which we have Denef–Loeser formula (Proposition 3.17).

We can also consider, for all n> 1, the equivariant virtual Poincaré series

of the reunion of A+
n (f) and A−n (f), which is a G-AS-set, and gather this

data into a new zeta function. In a subsequent work, we will study this zeta

function, as well as its relation to the other equivariant zeta functions of

such an equivariant Nash germ f .

§4. Equivariant zeta functions and equivariant blow-Nash equiv-

alence

Denef–Loeser formulas for the equivariant zeta functions allow us to show

that these latter are invariants for equivariant blow-Nash equivalence via

equivariant blow-Nash isomorphisms:

Theorem 4.1. Let Rd be equipped with a linear action of G and let f ,

h : (Rd, 0)→ (R, 0) be two invariant Nash germs. If f and h are G-blow-

Nash equivalent via an equivariant blow-Nash isomorphism, then

ZGf (u, T ) = ZGh (u, T ) and ZG,±f (u, T ) = ZG,±h (u, T ).

Proof. Let us keep the notations of the definition 2.1 of G-blow-Nash

equivalence.

We then apply Proposition 3.12, respectively Proposition 3.17, to both

f and h and the expressions of the naive equivariant zeta functions,

respectively equivariant zeta functions with signs, of f and h given by the

Denef–Loeser formula are equal because

• Φ sends the irreducible components of (f ◦ σf )−1(0) onto the irreducible

components of (h ◦ σh)−1(0);

• the equivariant virtual Poincaré series is invariant under equivariant Nash

isomorphisms;

• the multiplicities N are preserved by Φ thanks to the commutativity of

the diagram defining G-blow-Nash equivalence (see Definition 2.1), and

the multiplicities ν are preserved by Φ because it is an equivariant blow-

Nash isomorphism.

Example 4.2. Consider the affine plane R2 with coordinates (x, y),

equipped with the Z/2Z-action (x, y) 7→ (−x, y). Let f and h be the Nash

germs at (0, 0) defined by

f(x, y) = y4 − x2; h(x, y) = x4 − y2.
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They are Nash equivalent via the Nash isomorphism Φ : R2→ R2; (x, y) 7→
(y, x). In particular, they are blow-Nash equivalent via a blow-Nash isomor-

phism and consequently

Zf (u, T ) = Zh(u, T )

(the zeta functions are invariants for blow-Nash equivalence via blow-Nash

isomorphisms: see [8]).

However, notice that Φ is not equivariant with respect to the considered

action of G := Z/2Z on R2. We compute the naive equivariant zeta functions

of the invariant Nash germs f and h and show that they are notG-blow-Nash

equivalent via an equivariant blow-Nash isomorphism, using Theorem 4.1.

Let σ1 be the equivariant blowing-up of R2 at the origin and let

(R2, (X, Y )) be the chart of the blowing-up in which σ1 is given by

σ1(X, Y ) = (XY, Y ), the action of G on this chart being given by (X, Y ) 7→
(−X, Y ). In this chart, we have f ◦ σ1(X, Y ) = Y 2(Y 2 −X2).

By a second equivariant blowing-up σ2 given by σ2(W, Z) = (W,WZ) in

the chart (R2, (W, Z)), we obtain a function with only normal crossings

f ◦ σ(W, Z) =W 4Z2(Z − 1)(Z + 1),

with σ := σ1 ◦ σ2. It is in particular invariant under the action of G on the

chart, given by (W, Z) 7→ (−W,−Z).

The fiber f ◦ σ−1(0) have four irreducible components, given in the chart

(R2, (W, Z)) by

E1 = {Z = 0}, E2 = {W = 0}, E3 = {Z = 1}, E4 = {Z =−1}.

The exceptional divisors E1 and E2, both isomorphic to a circle, intersect

at a G-fixed point and E2 intersects the irreducible components E3 and E4

of the strict transform of f at two points exchanged by the action.
Therefore, using the equivariant Denef–Loeser formula, since N1 = 2, ν1 =

1, N2 = 4, ν2 = 2 and N3 =N4 = 1, ν3 = ν4 = 0, we have after computation
(use Example 3.7)

ZG
f (u, T ) =

T 2

1− u−2T 2
+ (u2 − u+ 1)

u−3T 4

1− u−3T 4

+ (u− 1)
u−1T 2

1− u−2T 2

u−3T 4

1− u−3T 4
+ (u− 1)2

u−3T 4

1− u−3T 4

u−1T 1

1− u−1T 1
.
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In order to compute the naive equivariant zeta function of h, we

consider the equivariant blowings-up σ1 and σ2 in the respective charts

(R2, (U, T )) and (R2, (R, S)), where they are given by σ1(U, T ) = (U, UT )

and σ2(R, S) = (RS, S). The actions of G on these charts are given by

(U, T ) 7→ (−U,−T ) and (R, S) 7→ (R,−S), and we have

h ◦ σ(R, S) = S4R2(R− 1)(R+ 1)

in the chart (R2, (R, S)).

The four irreducible components of (h ◦ σ)−1(0) are given by

E′1 = {R= 0}, E′2 = {S = 0}, E′3 = {R= 1}, E′4 = {R=−1}

and the exceptional divisor E′2 intersects the strict transform of h at two

points that are both fixed by the action of G. Thus,

ZGh (u, T ) =
T 2

1− u−2T 2
+ (u2 − 2u)

u−3T 4

1− u−3T 4

+ (u− 1)
u−1T 2

1− u−2T 2

u−3T 4

1− u−3T 4

+ (2u(u− 1))
u−3T 4

1− u−3T 4

u−1T 1

1− u−1T 1
.

In particular,

ZGf (u, T ) 6= ZGh (u, T )

and therefore, with respect to the considered Z/2Z-action on R2, f and h

are not G-blow-Nash equivalent via an equivariant blow-Nash isomorphism,

by Theorem 4.1.

§5. Examples

In this section, we compute the equivariant zeta functions of several

invariant Nash germs under linear actions of G := Z/2Z, using Denef–Loeser

formula (Propositions 3.12 and 3.17).

Example 5.1. (See also [7, Example 3.6]) Equip the affine plane R2

with any involution of the type s : (x, y) 7→ (εx, ε′y) with ε, ε′ ∈ {−1, 1}

• Consider the invariant Nash germ f : (x, y) 7→ x2 + y2 at (0, 0). The

equivariant blowing-up of the plane at the origin gives an equivariant
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resolution σ of the singularities of f and the fiber (f ◦ σ)−1(0) consists

just in the exceptional divisor E1 of the blowing-up equipped with the

induced nonfree action of G, and we obtain (see Example 3.7)

ZGf (u, T ) = (u− 1)

(
u+ 2

u

u− 1

)
u−2T 2

1− u−2T 2
= (u2 + u)

u−2T 2

1− u−2T 2
.

Now, since f is a positive function, we know that ZG,−f (u, T ) = 0, and,

since Ẽ0,+
{1} is the boundary of a Möbius band equipped with a nonfree

action of G,

ZG,+f (u, T ) =

(
u+ 2

u

u− 1

)
u−2T 2

1− u−2T 2
.

• Consider the invariant Nash germ h : (x, y) 7→ −x2 − y4. Two successive

equivariant blowings-up provide an equivariant resolution of singularities

τ of h. The two exceptional divisors E′1 and E′2, intersecting at one G-fixed

point, constitute the fiber (h ◦ τ)−1(0) and we have

ZGh (u, T ) = u2 u−2T 2

1− u−2T 2
+ u2 u−3T 4

1− u−3T 4

+ (u− 1)u
u−2T 2

1− u−2T 2

u−3T 4

1− u−3T 4
.

The sets Ẽ0,+
{1} and Ẽ0,+

{2} are both the boundary of a Möbius band minus

two points fixed under the induced action of G. Consequently,

ZG,−h (u, T ) = u
u−2T 2

1− u−2T 2
+ u

u−3T 4

1− u−3T 4
+ 2u

u−2T 2

1− u−2T 2

u−3T 4

1− u−3T 4

(ZG,+h (u, T ) = 0 since h is negative).

In Example 5.2 below, the affine plane R2 is equipped with the action

of G given by the involution s : (x, y) 7→ (−x, y). We compute the naive

equivariant zeta functions of the invariant Nash germs f , gk, k > 2, and hk,

k > 2, at the origin of R2 given by

f(x, y) =±x4 + y3; gk(x, y) =±x2k ± y2; hk(x, y) = x2y ± yk.

These germs are induced from the normal forms of the simple boundary

singularities of manifolds with boundary, by unfolding the positive abscissa
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half-plane along the ordinate axis (see [1]). We will study the classification

of the simple boundary singularities of Nash manifolds with boundary up

to (equivariant) blow-Nash equivalence in a subsequent work.

Example 5.2.

(1) We begin with f . Consider the equivariant blowing-up σ1 at the

origin given in the chart (R2, (X1, Y1)) by σ1(X1, Y1) = (X1, X1Y1). The

action of G on the blowing-up is given in this chart by s1 : (X1, Y1) 7→
(−X1,−Y1) and we have

f ◦ σ1(X1, Y1) =X3
1 (Y 3

1 ±X1).

We do three more successive blowings-up σ2, σ3 and σ4 each given in the

chart (R2, (Xi, Yi)) by σi(Xi, Yi) = (XiYi, Xi). The action of G on the

last blowing-up is given in the chart (R2, (X4, Y4)) by s4 : (X4, Y4) 7→
(X4,−Y4) and we have

f ◦ σ(X4, Y4) =X3
4Y

12
4 (1±X4)

where σ := σ1 ◦ · · · ◦ σ4.

The (equivariant) resolution tree of f is the following, where

Ei(Ni, νi) denotes the exceptional divisor of the blowing-up σi with

Ni =multEi f ◦ σi =multEi f ◦ σ and νi = 1 +multEi jac σi = 1 +

multEi jac σ:

The sets E− and E+ are the respective strict transforms of f−(x, y) =

−x3 + y4 and f+(x, y) = x3 + y4. In both cases, the action of G

globally stabilizes the strict transform, the exceptional divisors and the
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intersections. Then Denef–Loeser formula provides the naive equivari-

ant zeta function of f (using also Example 3.7):

ZGf (u, T ) =

3∑
i=1

u−νi+2TNi

1− u−νiTNi
+ (u− 1)

u−6T 12

1− u−7T 12

+ (u− 1)
u−2T 4

1− u−3T 4

u−5T 8

1− u−5T 8
+ (u− 1)

u−6T 12

1− u−7T 12

×
[

u−5T 8

1− u−5T 8
+

u−2T 3

1− u−2T 3
+

u−1T 1

1− u−1T 1

]

(2) We now compute the naive equivariant zeta function of gk for k > 3.

By k successive equivariant blowings-up σi, i= 1, . . . , k, given in charts

(R2, (Xi, Yi)) by σi : (Xi, Yi) 7→ (Xi, XiYi), we resolve the singularities

of gk :

gk ◦ σ(Xk, Yk) =X2k
k (±1± Y 2

k )

with σ := σ1 ◦ · · · ◦ σk.
First, we deal with the case gk(x, y) =±(x2k − y2). In this case, we

have the following resolution tree for gk:

In the chart (R2, (Xk, Yk)), the action of G is given by
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sk : (Xk, Yk) 7→

{
(−Xk,−Yk) if k is odd,

(−Xk, Yk) if k is even.

Thus, the intersection points of the strict transform E of gk with the

exceptional divisor Ek are exchanged under the involution if k is odd

and fixed if k is even.

Consequently, after computation we obtain

ZGgk(u, T ) =
T 2

1− u−2T 2
+ (u− 1)

k−1∑
j=2

u−jT 2j

1− u−(j+1)T 2j

+
k−1∑
j=1

u−jT 2j

1− u−(j+1)T 2j

u−(j+2)T 2j+2

1− u−(j+2)T 2j+2

+ Λk(u, T )

with

Λk(u, T ) =



(u2 − u+ 1)
u−(k+1)T 2k

1− u−(k+1)T 2k

+ (u− 1)2 u−(k+1)T 2k

1− u−(k+1)T 2k

u−1T 1

1− u−1T 1
if k is odd,

(u− 2)
u−kT 2k

1− u−(k+1)T 2k

+ 2u(u− 1)
u−(k+1)T 2k

1− u−(k+1)T 2k

u−1T 1

1− u−1T 1
if k is even.

In the case gk(x, y) =±(x2k + y2), there is no strict transform and the

naive equivariant zeta function of gk is given by the same formula as

above with

Λk(u, T ) =
u−k+1T 2k

1− u−(k+1)T 2k
.

(3) Let us next consider the invariant Nash germ hk, k > 3. We first look at

the case k odd. If k = 2p+ 1 with p ∈ N, then p successive equivariant
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blowings-up σi : (Xi, Yi)→ (XiYi, Yi) provide the function with only

normal crossings

hk ◦ σ1 ◦ · · · ◦ σp(Xp, Yp) = Y k
p (X2

p ± 1),

together with the following resolution tree

(the above resolution tree corresponds to the case hk(x, y) = x2y −
yk; in the case hk(x, y) = x2y + yk, there is no strict transform). In

the chart (R2, (Xp, Yp)), the action of G is given by sp : (Xp, Yp) 7→
(−Xp, Yp), hence exchanges the intersection points of the strict trans-

form E of hk with the exceptional divisor Ep.

If now we suppose k = 2p with p ∈ N \ {0, 1}, by doing the same first p−
1 successive equivariant blowings-up σ1, . . . , σp−1 as above, regarded

in the same charts, we obtain

hk ◦ σ1 ◦ · · · ◦ σp−1(Xp−1, Yp−1) = Y 2p−1
p−1 (X2

p−1 ± Yp−1).

We obtain the equivariant resolution of singularities of hk by two more

equivariant blowings-up, getting the following tree:
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(where E− and E+ are the respective strict transforms of x2y − yk and

x2y + yk), all the intersection points being fixed by the action of G.

(4) Finally, we take a look at the germs g2 and h2. By applying the same

two equivariant blowings-up regarded in the same charts, we obtain

isomorphic resolution trees for h2 and g2 : (x, y) 7→ ±(x4 − y2) with

same multiplicities, the action of G fixing all intersection points. Notice

that the case g2(x, y) =±(x4 + y2) is treated in Example 5.1 up to

equivariant Nash equivalence.

Acknowledgments. The author wishes to thank G. Fichou and T. Fukui

for useful discussions and comments.

References

[1] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable
Maps, Vols 1 and 2, Birkhäuser, Boston, 1985.
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