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Abstract. Let �n be the free group of rank n and let
⊕

C∗(�n) denote the
direct sum of full group C∗-algebras C∗(�n) of �n (1 ≤ n < ∞). We introduce
a new comultiplication �ϕ on

⊕
C∗(�n) such that (

⊕
C∗(�n), �ϕ) is a non-

cocommutative C∗-bialgebra. With respect to �ϕ , the tensor product π ⊗ϕ π ′ of
any two representations π and π ′ of free groups is defined. The operation ⊗ϕ is
associative and non-commutative. We compute its tensor product formulas of several
representations.

2010 Mathematics Subject Classification. 46K10, 16T10.

1. Introduction. A C∗-bialgebra is a generalisation of bialgebra in the theory of
C∗-algebras, which was introduced in C∗-algebraic framework for quantum groups
[15, 18]. For example, if G is a locally compact group, then the full group C∗-algebra
C∗(G) of G is a cocommutative C∗-bialgebra with respect to the standard (diagonal)
comultiplication.

In this paper, a C∗-bialgebra arising from certain group homomorphisms among
free groups is given as follows: Let �n denote the free group of rank n with free
generators g(n)

1 , . . . , g(n)
n . For n, m ≥ 1, define the group homomorphism φn,m from �nm

to �n × �m by

φn,m
(
g(nm)

m(i−1)+j

)
:= (

g(n)
i , g(m)

j

)
(i = 1, . . . , n, j = 1, . . . , m). (1.1)

The map φn,m is well defined on the whole of �nm by the universality of �nm. Then, the
following diagram is commutative for each n, m, l ≥ 1:

Figure 1.1.

�nml

�φn,ml

�φnm,l

�n × �ml

�nm × �l

�

idn × φm,l

�

φn,m × idl

�n × �m × �l.

Group homomorphisms in (1.1) can be lifted as ∗-homomorphisms ϕn,m among full
group C∗-algebras and their minimal tensors. For {ϕn,m}, the following diagram is also
commutative for each n, m, l ≥ 1:

https://doi.org/10.1017/S0017089515000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000099


120 KATSUNORI KAWAMURA

Figure 1.2.

C∗(�nml)

�ϕn,ml

�ϕnm,l

C∗(�n) ⊗ C∗(�ml)

C∗(�nm) ⊗ C∗(�l)

�

idn ⊗ ϕm,l

�

ϕn,m ⊗ idl

C∗(�n) ⊗ C∗(�m) ⊗ C∗(�l).

By using {ϕn,m}, we can construct a new comultiplication �ϕ on the direct sum

⊕
C∗(�n) = C∗(�1) ⊕ C∗(�2) ⊕ C∗(�3) ⊕ · · · (1.2)

for all finite-rank free groups {�n : 1 ≤ n < ∞} such that (
⊕

C∗(�n), �ϕ) is a non-
cocommutative C∗-bialgebra without antipode (Theorem 1.6).

For any two unitary representations of free groups, we can define the tensor
product ⊗ϕ by using the comultiplication �ϕ which is not commutative (Fact 3.1).
Especially, the ⊗ϕ-tensor product of any two quasi-regular representations is a direct
sum of quasi-regular representations (Theorem 3.2):

λ�n/H ′ ⊗ϕ λ�m/H ′′ ∼=
⊕

μ

λ�nm/Hμ
. (1.3)

In this section, we show our motivation, definitions and the main theorem.

1.1. Motivation. According to [9], given two representations of a group G, their
tensor product is a new representation of G, which decomposes into a direct sum of
indecomposable representations. The problem of finding this decomposition is called
the Clebsch–Gordan problem and the resulting formula for the decomposition is called
the tensor product formula (or Clebsch–Gordan formula [9]). A generalisation of the
Clebsch–Gordan problem for groups is to consider modules over associative algebras
instead of group algebras. However, there lies an obvious obstruction in that there is no
known way to define the tensor product of two left modules over an arbitrary associative
algebra. For group algebras, the extra structure coming from the group yields the
tensor product. For a bialgebra A, the associative tensor product of representations
(=special modules) of A can be defined by using the comultiplicatoin. Hence, one of
most important motivations of the study of bialgebras is the tensor product of their
representations.

We have studied a new kind of C∗-bialgebras which are defined as direct sums
of well-known C∗-algebras, for example, Cuntz algebras, UHF algebras, matrix
algebras [12] and Cuntz–Krieger algebras [13]. They are non-commutative and non-
cocommutative, and there never exist antipodes on them. Such bialgebra structures do
not appear before one takes direct sums. With respect to their comultiplications, new
tensor products among representations of these C∗-algebras and their tensor product
formulas were obtained [11, 14]. In [12], we gave a general method to construct
a C∗-bialgebra from a given system of C∗-algebras and special ∗-homomorphisms
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among them. The essential part of this construction is how to construct such ∗-
homomorphisms for each concrete example. One of our interests is to construct new
examples of C∗-bialgebra from various C∗-algebras.

On the other hand, group C∗-algebras are important examples of C∗-algebras
[4, 6, 20]. Furthermore, quantum groups in the C∗-algebra approach are founded on
the study of group C∗-algebras [15, 18].

Hence, we consider to construct a new C∗-bialgebra associated with group C∗-
algebras by using a new comultiplication instead of their standard comultiplications.
In this paper, we choose free group C∗-algebras for this purpose, and try to construct
a new comultiplication on them according to our method [12].

1.2. C∗-bialgebra. In this subsection, we review terminology about C∗-bialgebra
according to [7, 15, 18]. For two C∗-algebras A and B, we write Hom(A, B) as the set of
all ∗-homomorphisms from A to B. We assume that every tensor product ⊗ as below
means the minimal C∗-tensor product.

DEFINITION 1.3. A pair (A,�) is a C∗-bialgebra if A is a C∗-algebra and � ∈
Hom(A, M(A ⊗ A)), where M(A ⊗ A) denotes the multiplier algebra of A ⊗ A, such
that the linear span of {�(a)(b ⊗ c) : a, b, c ∈ A} is norm dense in A ⊗ A and the
following holds:

(� ⊗ id) ◦ � = (id ⊗ �) ◦ �. (1.4)

We call � the comultiplication of A.

We say that a C∗-bialgebra (A,�) is strictly proper if �(a) ∈ A ⊗ A for any a ∈ A; (A,�)
is unital if A is unital and � is unital; (A,�) is counital if there exists ε ∈ Hom(A, �)
such that

(ε ⊗ id) ◦ � = id = (id ⊗ ε) ◦ �. (1.5)

We call ε the counit of A and write (A,�, ε) as the counital C∗-bialgebra (A,�) with
the counit ε. Remark that Definition 1.3 does not mean �(A) ⊂ A ⊗ A. If A is unital,
then (A,�) is strictly proper. A bialgebra in the purely algebraic theory [1, 10] means
a unital counital strictly proper bialgebra with the unital counit with respect to the
algebraic tensor product, which does not need to have an involution. Hence, a C∗-
bialgebra is not a bialgebra in general. In Definition 1.3, if A is unital and � is unital,
then the condition of the dense subspace in A ⊗ A can be omitted.

According to [12], we recall several notions of C∗-bialgebra.

DEFINITION 1.4.
(i) For two C∗-bialgebras (A1,�1) and (A2,�2), f is a C∗-bialgebra morphism

from (A1,�1) to (A2,�2) if f is a non-degenerate ∗-homomorphism from A1

to M(A2) such that (f ⊗ f ) ◦ �1 = �2 ◦ f . In addition, if f (A1) ⊂ A2, then f is
called strictly proper.

(ii) A map f is a C∗-bialgebra endomorphism of a C∗-bialgebra (A,�) if f is a C∗-
bialgebra morphism from A to A. In addition, if f (A) ⊂ A and f is bijective,
then f is called a C∗-bialgebra automorphism of (A,�).

(iii) A pair (B, �) is a right comodule-C∗-algebra of a C∗-bialgebra (A,�) if B is a
C∗-algebra and � is a non-degenerate ∗-homomorphism from B to M(B ⊗ A)
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such that the following holds:

(� ⊗ id) ◦ � = (id ⊗ �) ◦ �, (1.6)

where both � ⊗ id and id ⊗ � are extended to unital ∗-homomorphisms from
M(B ⊗ A) to M(B ⊗ A ⊗ A). The map � is called the right coaction of A on B.

(iv) A proper C∗-bialgebra (A,�) satisfies the cancellation law if �(A)(I ⊗ A) and
�(A)(A ⊗ I) are dense in A ⊗ A where �(A)(I ⊗ A) and �(A)(A ⊗ I) denote
the linear spans of sets {�(a)(I ⊗ b) : a, b ∈ A} and {�(a)(b ⊗ I) : a, b ∈ A},
respectively.

Let (B, m, η,�, ε) be a bialgebra in the purely algebraic theory, where m is a
multiplication and η is a unit of the algebra B. An endomorphism S of B is called
an antipode for (B, m, η,�, ε) if S satisfies m ◦ (id ⊗ S) ◦ � = η ◦ ε = m ◦ (S ⊗ id) ◦ �

[1, 10].

1.3. Free group algebras and homomorphisms among them. In this subsection,
we briefly review free group C∗-algebras [4, 6], and introduce new homomorphisms
among them in order to define a comultiplication.

For n = ∞, 1, 2, 3, . . ., let �n denote the free group of rank n where we use the
symbol ‘∞’ as the countable infinity for convenience in this paper. Let (Kn, ηn) denote
a direct sum of all irreducible representations (up to unitary equivalence) of the Banach
algebra 
1(�n). Let C∗(�n) denote the full group C∗-algebra of �n, which is defined as the
C∗-algebra generated by the image of 
1(�n) by ηn. Remark that C∗(�1) is ∗-isomorphic
to the C∗-algebra C(�) of all complex-valued continuous functions on the torus �.
With respect to the natural identification of the group algebra ��n over the coefficient
field � with a subalgebra of C∗(�n), ��n is dense in C∗(�n). For n = ∞, 1, 2, 3, . . .,
let {g(n)

i } be the free generators of �n. We also identify g(n)
i with the unitary ηn(g(n)

i ) in
C∗(�n).

We introduce ∗-homomorphisms among C∗(�n)’s as follows.

LEMMA 1.5.
(i) For 1 ≤ n, m < ∞, define the map ϕn,m from C∗(�nm) to the minimal tensor

product C∗(�n) ⊗ C∗(�m) by

ϕn,m
(
g(nm)

m(i−1)+j

)
:= g(n)

i ⊗ g(m)
j (i = 1, . . . , n, j = 1, . . . , m). (1.7)

Then, it is well defined on the whole of C∗(�nm) as a unital ∗-homomorphism.
(ii) For 1 ≤ n < ∞, define the map ϕ∞,n from C∗(�∞) to the minimal tensor product

C∗(�∞) ⊗ C∗(�n) by

ϕ∞,n(g(∞)
n(i−1)+j) := g(∞)

i ⊗ g(n)
j (i ≥ 1, j = 1, . . . , n). (1.8)

Then, it is well defined on the whole of C∗(�∞) as a unital ∗-homomorphism.
(iii) If n, m ≥ 2, then ϕn,m is not injective.
(iv) Assume n, m ≥ 2. Let C∗

r (�n) denote the reduced group C∗-algebra of �n, which is
defined as the C∗-algebra generated by the image of the left regular representation
of �n. Then, the map ϕn,m in (1.7) cannot be extended as a ∗-homomorphism
from C∗

r (�nm) to C∗
r (�n) ⊗ C∗

r (�m).
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Especially, ϕ1,1 equals the standard comultiplication of C∗(�1). The proof of Lemma
1.5 will be given in Section 2.2.

1.4. Main theorem. In this subsection, we show our main theorem. Let C∗(�n),
{g(n)

i }n
i=1, ��n, {ϕn,m}n,m≥1 and {ϕ∞,n}n≥1 be as in Section 1.3.

THEOREM 1.6. Define the C∗-algebra A as the direct sum

A :=
⊕

1≤n<∞
C∗(�n) (1.9)

and define �ϕ ∈ Hom(A,A ⊗ A) and ε ∈ Hom(A, �) by

�ϕ(x) :=
∑

m,l; ml=n

ϕm,l(x) when x ∈ C∗(�n), (1.10)

ε := ε1 ◦ E1 (1.11)

where ε1 ∈ Hom(C∗(�1), �) is defined as ε1|�1 = 1, and E1 is the projection from A onto
C∗(�1). Then the following holds:

(i) The C∗-algebra A is a strictly proper counital C∗-bialgebra with the
comultiplication �ϕ and the counit ε.

(ii) The C∗-bialgebra (A,�ϕ) satisfies the cancellation law.
(iii) By the smallest unitisation, (A,�ϕ, ε) can be extended to the unital counital

C∗-bialgebra (Ã, �̂ϕ, ε̃).
(iv) There never exists any antipode for any dense unital counital subbialgebra of

(Ã, �̂ϕ, ε̃) in (iii).
(v) Define the algebraic direct sum ��∗ := ⊕alg{��n : 1 ≤ n < ∞}. Then,

�ϕ(��∗) ⊂ ��∗ � ��∗ where � means the algebraic tensor product, and ��∗
is identified with a ∗-subalgebra of A with respect to the canonical embedding.

(vi) Define �ϕ ∈ Hom(C∗(�∞), M(C∗(�∞) ⊗ A)) by

�ϕ(x) :=
∏

1≤n<∞
ϕ∞,n(x) (x ∈ C∗(�∞)), (1.12)

where we identify the multiplier M(C∗(�∞) ⊗ A) with the direct product∏
n≥1 C∗(�∞) ⊗ C∗(�n). Then, C∗(�∞) is a right comodule-C∗-algebra of (A,�ϕ)

with respect to the coaction �ϕ .

REMARK 1.7.
(i) The R.H.S. in (1.10) is always a finite sum when x ∈ C∗(�n).

(ii) The C∗-bialgebra (A,�ϕ) is non-cocommutative. In fact, the following holds:

�ϕ(g(6)
2 ) = g(1)

1 ⊗ g(6)
2 + g(2)

1 ⊗ g(3)
2 + g(3)

1 ⊗ g(2)
2 + g(6)

2 ⊗ g(1)
1 . (1.13)

(iii) In (1.9), every free group C∗-algebras C∗(�n) (1 ≤ n < ∞) appear at once. This
is an essentially new structure of the class of free group C∗-algebras. On the
other hand, C∗(�∞) appears as a comodule-C∗-algebra of (A, �ϕ). This shows
a certain naturality of this bialgebra structure.
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(iv) From Theorem 1.6(iv), the C∗-bialgebra (A,�ϕ) is not a locally compact
quantum group in the sense of Kustermans–Vaes [15] and Masuda–Nakagami–
Woronowicz [18] because any locally compact quantum group has an antipode
([15], p550).

In Section 2, we prove Theorem 1.6. In Section 3, we show tensor product
formulas of representations of �n’s with respect to �ϕ , and show some C∗-bialgebra
automorphisms.

2. Proofs of theorems. In this section, we prove Lemma 1.5 and Theorem 1.6.

2.1. C∗-weakly coassociative system. According to Section 3 in [12], we recall
a general method to construct a C∗-bialgebra from a set of C∗-algebras and ∗-
homomorphisms among them. A monoid is a set M equipped with a binary associative
operation M × M � (a, b) �→ ab ∈ M, and a unit with respect to the operation. For
example, � = {1, 2, 3, . . .} is an abelian monoid with respect to the multiplication. In
order to show Theorem 1.6, we give a new definition of C∗-weakly coassociative system
which is a generalisation of Definition 3.1 of [12].

DEFINITION 2.1. Let M be a monoid with the unit e. A data {(Aa, ϕa,b) : a, b ∈ M}
is a C∗-weakly coassociative system (= C∗-WCS) over M if Aa is a unital C∗-algebra
for a ∈ M and ϕa,b is a unital ∗-homomorphism from Aab to Aa ⊗ Ab for a, b ∈ M such
that

(i) for all a, b, c ∈ M, the following holds:

(ida ⊗ ϕb,c) ◦ ϕa,bc = (ϕa,b ⊗ idc) ◦ ϕab,c, (2.1)

where idx denotes the identity map on Ax for x = a, c,
(ii) there exists a counit εe of Ae such that (Ae, ϕe,e, εe) is a counital C∗-bialgebra,

(iii) for each a ∈ M, the following holds:

(εe ⊗ ida) ◦ ϕe,a = ida = (ida ⊗ εe) ◦ ϕa,e. (2.2)

The condition (2.2) is weaker than the older, ‘ϕe,a(x) = Ie ⊗ x and ϕa,e(x) =
x ⊗ Ie for x ∈ Aa and a ∈ M’ ([12], Definition 3.1). In fact, the older
definition satisfies (2.2). From the new definition, the same result holds as
follows.

THEOREM 2.2 ([12], Theorem 3.1). Let {(Aa, ϕa,b) : a, b ∈ M} be a C∗-WCS over a
monoid M. Assume that M satisfies that

#Na < ∞ for each a ∈ M (2.3)

where Na := {(b, c) ∈ M × M : bc = a}. Define C∗-algebras

A∗ := ⊕{Aa : a ∈ M}, Ca := ⊕{Ab ⊗ Ac : (b, c) ∈ Na} (a ∈ M).

Define �
(a)
ϕ ∈ Hom(Aa, Ca), �ϕ ∈ Hom(A∗, A∗ ⊗ A∗) and ε ∈ Hom(A∗, �) by
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�(a)
ϕ (x) :=

∑

(b,c)∈Na

ϕb,c(x) (x ∈ Aa), �ϕ := ⊕{�(a)
ϕ : a ∈ M},

ε := εe ◦ Ee (2.4)

where Ee denotes the projection from A∗ onto Ae. Then (A∗,�ϕ, ε) is a strictly proper
counital C∗-bialgebra.

Proof. By (2.3), �
(a)
ϕ is well defined. Furthermore, Ca is unital and �

(a)
ϕ is unital for

each a. Since M × M = ∐
a∈M Na, A∗ ⊗ A∗ = ⊕{Af ⊗ Ag : f, g ∈ M} = ⊕{Ca : a ∈ M}.

Since �
(a)
ϕ is unital for each a, �ϕ is non-degenerate. From (2.1), the following holds

for x ∈ Aa:

{(�ϕ ⊗ id) ◦ �ϕ}(x) = ∑
b,c,d∈M, bcd=a(ϕb,c ⊗ idd)(ϕbc,d(x))

= ∑
b,c,d∈M, bcd=a(idb ⊗ ϕc,d)(ϕb,cd(x))

= {(id ⊗ �ϕ) ◦ �ϕ}(x).
(2.5)

Hence, (�ϕ ⊗ id) ◦ �ϕ = (id ⊗ �ϕ) ◦ �ϕ on A∗. Therefore, �ϕ is a comultiplication of
A∗. On the other hand, for x ∈ Aa, we see that

{(ε ⊗ id) ◦ �ϕ}(x) = (ε ⊗ id)(�(a)
ϕ (x))

= ∑
(b,c)∈Na

(ε ⊗ id)(ϕb,c(x))
= (εe ⊗ ida)(ϕe,a(x))
= x (from (2.2)).

(2.6)

Hence, (ε ⊗ id) ◦ �ϕ = id. In like wise, we see that (id ⊗ ε) ◦ �ϕ = id. Therefore, ε is a
counit of (A∗,�ϕ). In consequence, we see that (A∗,�ϕ, ε) is a counital C∗-bialgebra.
By definition, (A∗,�ϕ) is strictly proper. �
We call (A∗,�ϕ, ε) in Theorem 2.2 by a (counital) C∗-bialgebra associated with
{(Aa, ϕa,b) : a, b ∈ M}.

The following lemma holds independently of the generalisation in
Definition 2.1(iii).

LEMMA 2.3. For the following C∗-WCS {(Aa, ϕa,b) : a, b ∈ M}, we assume the
condition (2.3).

(i) ([12], Lemma 2.2). For a given strictly proper non-unital counital C∗-bialgebra
(A,�, ε), let Ã := A ⊕ � denote the smallest unitisation of A. Then there exist
a unique extension (�̂, ε̃) of (�, ε) on Ã such that (Ã, �̂, ε̃) is a strictly proper
unital counital C∗-bialgebra.

(ii) ([12], Lemma 3.2). For a C∗-WCS {(Aa, ϕa,b) : a, b ∈ M} over M, let (A∗,�ϕ, ε)
be as in Theorem 2.2 and let (Ã∗, �̂ϕ, ε̃) be the smallest unitisation of (A∗,�ϕ, ε)
in (i). Assume that any element in M has no left inverse except the unit e. Then the
antipode for any dense unital counital subbialgebra of (Ã∗, �̂ϕ, ε̃) never exists.

(iii) ([12], Lemma 3.1). Let {(Aa, ϕa,b) : a, b ∈ M} be a C∗-WCS over a monoid M
and let (A∗,�ϕ) be as in Theorem 2.2 associated with {(Aa, ϕa,b) : a, b ∈ M}.
Define

Xa,b := ϕa,b(Aab)(Aa ⊗ Ib), Ya,b := ϕa,b(Aab)(Ia ⊗ Ab) (a, b ∈ M) (2.7)

where ϕa,b(Aab)(Aa ⊗ Ib) and ϕa,b(Aab)(Ia ⊗ Ab) mean the linear spans
of {ϕa,b(x)(y ⊗ Ib) : x ∈ Aab, y ∈ Aa} and {ϕa,b(x)(Ia ⊗ y) : x ∈ Aab, y ∈ Ab},
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respectively. If both Xa,b and Ya,b are dense in Aa ⊗ Ab for each a, b ∈ M, then
(A∗,�ϕ) satisfies the cancellation law.

(iv) ([12], Theorem 3.2). For a C∗-WCS {(Aa, ϕa,b) : a, b ∈ M} over a monoid
M, assume that B is a unital C∗-algebra and a set {ϕB,a : a ∈ M} of unital
∗-homomorphisms such that ϕB,a ∈ Hom(B, B ⊗ Aa) for each a ∈ M and the
following holds:

(ϕB,a ⊗ idb) ◦ ϕB,b = (idB ⊗ ϕa,b) ◦ ϕB,ab (a, b ∈ M). (2.8)

Then, B is a right comodule-C∗-algebra of the C∗-bialgebra (A∗,�ϕ) with the
unital coaction �ϕ := ∏

a∈M ϕB,a.

2.2. Homomorphisms among free groups. In this subsection, we show properties
of φn,m in (1.1) and prove Lemma 1.5.

LEMMA 2.4. For each n ≥ 1, we write 1 as the unit of �n.
(i) For any x ∈ �n, there exists (y, z) ∈ �m × �nm such that φn,m(z) = (x, y).

(ii) For any y ∈ �m, there exists (x, z) ∈ �n × �nm such that φn,m(z) = (x, y).
(iii) For any (x, y) ∈ �n × �m, there exists (x′, z) ∈ �n × �nm such that φn,m(z)(x′, 1) =

(x, y).
(iv) For any (x, y) ∈ �n × �m, there exists (y′, z) ∈ �m × �nm such that φn,m(z)(1, y′) =

(x, y).
(v) When n, m ≥ 2, φn,m is not injective.

Proof.
(i) Let a1, . . . , an, b1, . . . , bm, c1, . . . , cnm be the free generators of �n, �m, �nm,

respectively. Assume that x ∈ �n is written as a reduced word x = aε1
i1 · · · aεl

il
where εi = 1 or −1 for i = 1, . . . , l. For example, define (y, z) ∈ �m × �nm by
y := bε1

1 · · · bεl
1 and z := cε1

m(i1−1)+1 · · · cεl
m(il−1)+1. Then y belongs to the abelian

subgroup generated by the single element b1, and it is not always a reduced
word in �m. Then the statement holds for (y, z).

(ii) As the proof of (i), this is proved.
(iii) From (ii), we can find (x′′, z) ∈ �n × �nm such that φn,m(z) = (x′′, y). Define

x′ := (x′′)−1x, then the statement holds.
(iv) As the proof of (iii), this is proved from (i).
(v) Let c1, . . . , cnm be as in the proof of (i). For i, l ∈ {1, . . . , n}, k, j ∈ {1, . . . , m},

define x(i, l; j, k) ∈ �nm by

x(i, l; j, k) := cm(i−1)+j c−1
m(i−1)+k cm(l−1)+k c−1

m(l−1)+j. (2.9)

Then, x(i, l; j, k) �= 1 when k �= j, i �= l, but x(i, l; j, k) ∈ ker φn,m for any i, l, j, k.
�

In the proof of Lemma 2.4(v), if n = m = 2, then the reduced word c1c−1
2 c4c−1

3 in �4

satisfies φ2,2(c1c−1
2 c4c−1

3 ) = (1, 1).

Proof of Lemma 1.5
(i) Let φn,m be as in (1.1) and let (Kn, ηn) be as in Section 1.3. Define the

unitary representation ϕ0
n,m of �nm on Kn ⊗ Km by ϕ0

n,m := (ηn ⊗ ηm) ◦ φn,m.
The representation ϕ0

n,m is well defined by the universality of �nm. Since the
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image of ϕ0
n,m is included in C∗(�n) ⊗ C∗(�m), ϕ0

n,m is uniquely extended to
ϕn,m in (1.7) such that ϕn,m(ηnm(x)) = ϕ0

n,m(x) for each x ∈ �nm ([4], Proposition
2.5.2). Hence the statement holds.

(ii) In analogy with (i), the statement holds.
(iii) For x(i, l; j, k) in (2.9), we see that ϕn,m(x(i, l; j, k) − 1) = 0 for each i, l, j, k.

Hence the statement holds.
(iv) If such an extension ϕ̃n,m of ϕn,m exists, then ϕ̃n,m must be injective because

C∗
r (�nm) is simple when nm ≥ 2 [21]. On the other hand, ϕ̃n,m never be injective

for m, n ≥ 2 by (iii).

�

2.3. Proof of Theorem 1.6. We prove Theorem 1.6 in this subsection. Let � :=
{1, 2, 3, . . .}. Remark that (2.3) holds for any element in the multiplicative monoid
(�, ·).

(i) From Theorem 2.2, it is sufficient to show that {(C∗(�n), ϕn,m) : n, m ∈ �} is a
C∗-WCS over the monoid �. By the definition of ϕn,m in (1.7), we can verify that
(ϕn,m ⊗ idl) ◦ ϕnm,l = (idn ⊗ ϕm,l) ◦ ϕn,ml for n, m, l ∈ � where ida denotes the
identity map on C∗(�a) for a = n, l. Hence (2.1) is satisfied. On the other hand,
since ε1|�1 = 1, {(ε1 ⊗ idn) ◦ ϕ1,n}(g(n)

j ) = (ε1 ⊗ idn)(g(1)
1 ⊗ g(n)

j ) = ε1(g(1)
1 ) g(n)

j =
g(n)

j for each j = 1, . . . , n and n ∈ �. By the same token, we obtain (idn ⊗
ε1) ◦ ϕn,1 = idn. Hence (2.2) is verified. Therefore {(C∗(�n), ϕn,m) : n, m ∈ �} is
a C∗-WCS over the monoid �.

(ii) For n, m ∈ �, define three subsets Pn,m,Qn,m,Rn,m of C∗(�n) ⊗ C∗(�m) by

Pn,m := {ϕn,m(z)(x ⊗ Im) : x ∈ �n, z ∈ �nm}, (2.10)

Qn,m := {ϕn,m(z)(In ⊗ y) : y ∈ �m, z ∈ �nm}, (2.11)

Rn,m := {x ⊗ y : x ∈ �n, y ∈ �m}. (2.12)

Then their linear spans are dense subspaces of ϕn,m(C∗(�nm))(C∗(�n) ⊗ Im),
ϕn,m(C∗(�nm))(In ⊗ C∗(�m)) and C∗(�n) ⊗ C∗(�m), respectively. From Lemma
2.4(iii), it is sufficient to show that Rn,m ⊂ Pn,m and Rn,m ⊂ Qn,m.
We prove Rn,m ⊂ Pn,m as follows: For (x, y) ∈ �n × �m, there exists (x′, z) ∈
�n × �nm such that φn,m(z)(x′, 1) = (x, y) from Lemma 2.4(iii). By definitions
of φn,m and ϕn,m, this implies ϕn,m(z)(x′ ⊗ Im) = x ⊗ y. Therefore Rn,m ⊂ Pn,m.
In a similar fashion, we obtain Rn,m ⊂ Qn,m from Lemma 2.4(iv). Hence the
statement holds.

(iii) From (i) and Lemma 2.3(i), the statement holds.
(iv) Remark that the monoid � has no left invertible element except the unit 1.

From the proof of (i) and Lemma 2.3(ii), the statement holds.
(v) From the proof of (i) and the definition of ϕn,m in (1.7), we see that ϕn,m(��nm) ⊂

��n � ��m. This implies the statement.
(vi) By definition, we see that (ϕ∞,n ⊗ idm) ◦ ϕ∞,m = (id∞ ⊗ ϕn,m) ◦ ϕ∞,nm for

n, m ∈ �. From Lemma 2.3(iv) for ϕC∗(�∞),n := ϕ∞,n, the statement
holds.
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3. Tensor product formulas of representations, and automorphisms. In this section,
we show tensor product formulas of unitary representations of �n’s with respect to the
comultiplication �ϕ in Theorem 1.6, and C∗-bialgebra automorphisms.

3.1. General facts about representations. We introduce a new tensor product
of representations of �n’s and show tensor product formulas of quasi-regular
representations.

3.1.1. Representations of �n. We identify �n with the unitary subgroup of C∗(�n)
with respect to the canonical embedding. Let Repu�n denote the class of all unitary
representations of �n. For (π, π ′) ∈ Repu�n × Repu�m, define the new representation
π ⊗ϕ π ′ ∈ Repu�nm by

π ⊗ϕ π ′ := (π ⊗ π ′) ◦ ϕn,m, (3.1)

where ϕn,m is as in (1.7). Then we see that the new operation ⊗ϕ is associative, and
it is distributive with respect to the direct sum. Furthermore, ⊗ϕ is well defined on
the unitary equivalence classes of representations. It will be shown that ⊗ϕ is non-
commutative in Fact 3.1.

3.1.2. Tensor product formulas of one-dimensional unitary representations of free
groups. In this subsection, we show tensor product formulas of one-dimensional
unitary representations of free groups with respect to ⊗ϕ in (3.1) as a basic example
of tensor product formula. For groups G and H, let Hom(G, H) denote the set of all
homomorphisms from G to H. Define

Ch(�n) := Hom(�n, U(1)). (3.2)

Since an element in Ch(�n) can be regarded as a one-dimensional unitary representation
of �n, we can regard π1 ⊗ϕ π2 as an element in Ch(�nm) for π1 ∈ Ch(�n) and π2 ∈
Ch(�m).

Let g1, . . . , gn be free generators of �n. For z = (z1, . . . , zn) ∈ �n := U(1)n, define
χ

(n)
z ∈ Ch(�n) by

χ (n)
z (gi) := zi (i = 1, . . . , n). (3.3)

Clearly, χ
(n)
z is irreducible for any z ∈ �n. For z, w ∈ �n, χ

(n)
z and χ

(n)
w are unitarily

equivalent if and only if z = w. By the correspondence

�n � z �→ χ (n)
z ∈ Ch(�n), (3.4)

we see that Ch(�n) is equivalent to �n as a set.
For z ∈ �n and w ∈ �m, define the Kronecker product z � w ∈ �nm as (z �

w)m(i−1)+j := ziwj for (i, j) ∈ {1, . . . , n} × {1, . . . , m}. By definition, the following holds:

χ (n)
z ⊗ϕ χ (m)

w = χ
(nm)
z�w

(z ∈ �n, w ∈ �m). (3.5)

This implies that the correspondence in (3.4) gives a semigroup isomorphism from
(
⋃

n≥1 Ch(�n), ⊗ϕ) to (
⋃

n≥1 �n, �). This shows a naturality of the operation ⊗ϕ .
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FACT 3.1. The operation ⊗ϕ in (3.1) is non-commutative as the following sense:
There exist n, m ≥ 2 and representations π1, π2 of �n and �m, respectively such that
π1 ⊗ϕ π2 and π2 ⊗ϕ π1 are not unitarily equivalent.

Proof. In (3.5), let (n, m) = (2, 3) and z = (1,−1) ∈ �2 and w =
(1, 1, 1) ∈ �3. Then χ

(2)
z ⊗ϕ χ

(3)
w = χ

(6)
z�w

�∼= χ
(6)
w�z = χ

(3)
w ⊗ϕ χ

(2)
z because z � w =

(1, 1, 1,−1,−1,−1) and w � z = (1,−1, 1,−1, 1,−1). �

3.1.3. Quasi-regular representations. In this subsection, we review quasi-regular
representations of discrete groups, and show the general formula of the ⊗ϕ-tensor
product of quasi-regular representations of free groups.

For a discrete group � and a subgroup �0, let �/�0 denote the left coset space, that
is, �/�0 := {x�0 : x ∈ �}. Define the quasi-regular representation [8] (or permutation
representation [16]) (
2(�/�0), λ�/�0 ) of � associated with �0 as the natural (unitary)
left action of � on the standard basis of 
2(�/�0):

λ�/�0 : � � 
2(�/�0). (3.6)

Especially, the regular representation λ� and the trivial representation 1 of � are
quasi-regular representations associated with subgroups {e} and � of �, respectively.
For the trivial representation 1�0 of �0, λ�/�0 coincides with the induced representation
Ind�

�0
(1�0 ).

Since �/�0 is a �-homogeneous space, λ�/�0 is a cyclic representation. When �

acts on a set X , the permutation representation of � on 
2(X) are decomposed into the
direct sum of quasi-regular representations as follows:


2(X) ∼=
⊕

μ


2(�/Hμ), (3.7)

where Hμ is a subgroup of � such that Xμ
∼= �/Hμ for the orbit decomposition X =∐

μ Xμ with respect to the �-action. About the irreducibility and unitary equivalence
of quasi-regular representations, see Appendix A.

Next, we consider the tensor product ⊗ϕ in (3.1) for quasi-regular representations
of free groups.

THEOREM 3.2. Let H ′, H ′′ be subgroups of �n and �m, respectively. For φn,m in (1.1),
define the left action φ̃n,m of �nm on the direct product set X := �n/H ′ × �m/H ′′ by

φ̃n,m(g)(xH ′, yH ′′) := (g′xH ′, g′′yH ′′) ( (xH ′, yH ′′) ∈ X, g ∈ �nm ), (3.8)

where (g′, g′′) := φn,m(g). With respect to the action φ̃n,m, let X = ∐
μ Xμ be the orbit

decomposition and choose Hμ as a stabiliser subgroup of �nm associated with Xμ. Then
the following holds:

λ�n/H ′ ⊗ϕ λ�m/H ′′ ∼=
⊕

μ

λ�nm/Hμ
. (3.9)

Proof. Let {ξ ′
a : a ∈ �n/H ′} and {ξ ′′

b : b ∈ �nm/H ′′} denote standard bases of

2(�n/H ′) and 
2(�nm/H ′′), respectively. By definition, (λ�n/H ′ ⊗ϕ λ�m/H ′′)(g)(ξ ′

a ⊗ ξ ′′
b ) =

ξ ′
g′a ⊗ ξ ′′

g′′b for g ∈ �nm where (g′, g′′) := φn,m(g). On the other hand, the permutation
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representation (
2(X), L) of �nm by φ̃n,m satisfies Lgξ(a,b) = ξφ̃n,m(g)(a,b) = ξ(g′a, g′′b) where
{ξ(a,b) : (a, b) ∈ X} denotes the standard basis of 
2(X). By the natural identification
of 
2(X) with 
2(�n/H ′) ⊗ 
2(�m/H ′′), we see that L and λ�n/H ′ ⊗ϕ λ�m/H ′′ are unitarily
equivalent.

By definition, Xμ
∼= �nm/Hμ as �nm-homogeneous spaces, and the statement holds

from the decomposition in (3.7). �

Theorem 3.2 states that the ⊗ϕ-tensor product of any two quasi-regular representations
is decomposed into the direct sum of quasi-regular representations. That is, the category
of direct sums of quasi-regular representations of free groups is closed with respect to
the ⊗ϕ-tensor product. This shows a naturality of the ⊗ϕ-tensor product. In Sections
3.2 and 3.3, we will show concrete examples of the formula (3.9).

3.2. Tensor product of some irreducible representations. In this subsection, we
show tensor product formulas of some irreducible quasi-regular representations of �n’s
as examples of Theorem 3.2.

We review some irreducible quasi-regular representations of �n [2, 19, 22]. Let
g1, . . . , gn be the free generators of �n. Fix i ∈ {1, . . . , n} and let H(n)

i denote the abelian
subgroup of �n generated by the single element gi:

H(n)
i := {gl

i : l ∈ �} ⊂ �n. (3.10)

PROPOSITION 3.3.

(i) For any i = 1, . . . , n, λ
�n/H(n)

i
is irreducible.

(ii) λ
�n/H(n)

i
∼= λ

�n/H(n)
j

if and only if i = j.

Proof. See Appendix A. �

We show the tensor product formula of λ
�n/H(n)

i
’s in Proposition 3.3. For the map

φn,m in (1.1), define the subgroup Gn,m of �nm by

Gn,m := ker φn,m. (3.11)

From Lemma 2.4(v), Gn,m �= {1} when n, m ≥ 2 and Gn,1 = G1,n = {1} for any n ≥ 1.
Since, Gn,m is a normal subgroup of �nm, Gn,mH := {gh : (g, h) ∈ Gn,m × H} is also a
subgroup of �nm and Gn,mH = HGn,m for any subgroup H of �nm.

THEOREM 3.4. Let H(n)
i and Gn,m be as in (3.10) and (3.11), respectively. Define

Kn,m,l := Gn,mH(nm)
l for l = 1, . . . , nm.

(i) For n, m ≥ 1 and (i, j) ∈ {1, . . . , n} × {1, . . . , m},

λ
�n/H(n)

i
⊗ϕ λ

�m/H(m)
j

∼= λ�nm/Kn,m,m(i−1)+j . (3.12)

(ii) For any l = 1, . . . , nm, λ�nm/Kn,m,l is irreducible.
(iii) λ�nm/Kn,m,l and λ�nm/Kn,m,l′ are unitarily equivalent if and only if l = l′.

Proof. See Appendix B. �

https://doi.org/10.1017/S0017089515000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000099


C∗-BIALGEBRA DEFINED BY FREE GROUPS 131

3.3. Tensor product of regular representations. In this subsection, we consider
regular representations of �n’s as examples of Theorem 3.2.

We recall characterisation of representations by using von Neumann algebras. A
nondegenerate representation π of a C∗-algebra A is said to be (pure) type X if π (A)

′′

is of type X for X=I, II, III, II1, II∞ [3]. For a group G and a unitary representation U
of G, U is said to be type X if U(G)′′ is of type X for X=I, II, III, II1, II∞. U is factor
if the centre of U(G)′′ is trivial.

In the proof of Theorem 3.2, λ�n = λ�n/H ′ and λ�m = λ�m/H ′′ when H ′ = {1} ⊂ �n

and H ′′ = {1} ⊂ �m.

PROPOSITION 3.5. Let n, m ≥ 1.

(i) λ�n ⊗ϕ λ�m
∼= (λ�nm/Gn,m )⊕∞ where Gn,m is as in (3.11).

(ii) If n, m ≥ 2, then λ�nm/Gn,m is a type II1 factor representation.

Proof.

(i) Let X := �n × �m and let φ̃n,m be the action of �nm on X in (3.8). From
Lemma 2.4(iii), we see that the orbit decomposition is given as follows:

X =
∐

x∈�n

Ox, Ox := {φ̃n,m(y)(x, 1) : y ∈ �nm}. (3.13)

Furthermore, the equivalence (Ox, φ̃n,m|Ox ) ∼= (�nm/Gn,m, L) holds as �nm-
homogeneous spaces for all x ∈ �n where L denotes the natural left action
of �nm on �nm/Gn,m. Therefore, the equivalence (X, φ̃n,m) ∼= (�nm/Gn,m, L)#�n of
�nm-homogeneous spaces holds. From this and the proof of Theorem 3.2, the
statement holds.

(ii) See Appendix C.

�

3.4. Automorphisms. In this subsection, we show examples of some C∗-bialgebra
automorphism of (A,�ϕ). For t ∈ �, define α

(n)
t ∈ AutC∗(�n) by

α(n)
t (g(n)

i ) := e
√−1t log n g(n)

i (i = 1, . . . , n). (3.14)

Then, α
(∗)
t := ⊕n≥1α

(n)
t is a C∗-bialgebra automorphism of (A,�ϕ) such that α

(∗)
t ◦

α
(∗)
s = α

(∗)
t+s for s, t ∈ �.

Define β(n) ∈ AutC∗(�n) by

β(n)(g(n)
i ) := g(n)

n−i+1 (i = 1, . . . , n). (3.15)

Then, β(∗) := ⊕n≥1β
(n) is a C∗-bialgebra automorphism of (A,�ϕ) such that β(∗) ◦

β(∗) = id.
The automorphism β(∗) commutes α

(∗)
t for each t. Hence, these give the action of

the group � × (�/2�) on the C∗-bialgebra (A,�ϕ).
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Appendix

A. Applications of commensurator to quasi-regular representations of discrete
groups. Recall that two subgroups �0 and �1 of a group � are commensurable if
�0 ∩ �1 is of finite index in both �0 and �1, that is, [�0, �0 ∩ �1] · [�1, �0 ∩ �1] < ∞,
in such case, we write �0 ≈ �1. Define the commensurator Com�(�0) of �0 in � as

Com�(�0) := {g ∈ � : �0 ≈ g�0g−1}. (A.1)

Then the inclusions �0 ⊂ Com�(�0) ⊂ � of subgroups hold. According to [5], we
review applications of commensurator to quasi-regular representations of discrete
groups by Mackey [16].

THEOREM A.1. ([5], Theorem 2.1). Let � be a discrete group and let �0, �1 be
subgroups of �.

(i) The representation (
2(�/�0), λ�/�0 ) of � is irreducible if and only if Com�(�0) =
�0.

(ii) Assume Com�(�i) = �i for i = 0, 1. Then λ�/�0 and λ�/�1 are unitarily equivalent
if and only if �0 and �1 are quasiconjugate in �, that is, there exists g ∈ � such
that �0 ≈ g�1g−1.

LEMMA A.2. Let H(n)
i be as in (3.10).

(i) If a, b ∈ �n satisfy ab = ba, then there exists w ∈ �n such that a = wl and b = wl′

for some l, l′ ∈ �.
(ii) If a, b ∈ �n satisfy albk = bkal for some l, k ∈ �, l, k �= 0, then ab = ba.

(iii) If a ∈ �n satisfies ab = ba for some b ∈ H(n)
i and b �= 1, then a ∈ H(n)

i .
(iv) If i, j ∈ {1, . . . , n} and g ∈ �n satisfy H(n)

i ≈ gH(n)
j g−1, then i = j and g ∈ H(n)

i .

Proof. Let c1, . . . , cn be free generators of �n and let Hi := H(n)
i .

(i) See [17], p42, 6.
(ii) See [17], p41, 4.

(iii) By (i), both a and b can be written as a = wl and b = wl′ for some w ∈ �n

and l, l′ ∈ �. By the choice of b, b = ck
i for some k ∈ � and k �= 0. Hence

ck
i = wl′ . Therefore ck

i w
l′ = wl′ck

i . From (ii), ciw = wci. From (i), we see w ∈ Hi.
Therefore a = wl ∈ Hi.

(iv) If i, j and g satisfy the assumption, then [Hi, Hi ∩ gHjg−1] < ∞ by definition.
Since #Hi = ∞, there exists x ∈ Hi ∩ gHjg−1 such that x �= 1. Then, cl

i =
x = gcl′

j g−1 for some l, l′ ∈ �. For χ
(n)
z in (3.3), zl

i = χ
(n)
z (cl

i) = χ
(n)
z (gcl′

j g−1) =
χ

(n)
z (cl′

j ) = zl′
j for any z ∈ �n. This implies i = j and l = l′. In consequence,

cl
i = gcl

ig
−1 for some l ∈ �. By the choice of x and l, l �= 0. From (iii), g ∈ Hi.

�
Proof of Proposition 3.3
(i) From Lemma A.2(iv), Com�n (H(n)

i ) = H(n)
i . (This has been shown by Lemma

6 in p15, [19].) By Theorem A.1(i), the statement holds.
(ii) From Lemma A.2(iv), H(n)

i and H(n)
j are quasiconjugate if and only if i = j.

From this and Theorem A.1(ii), the statement holds.
�
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B. Proof of Theorem 3.4. In this section, we prove Theorem 3.4. Let
φn,m, H(n)

i , Gn,m be as in (1.1), (3.10) and (3.11), respectively. Since, Gn,m is a normal
subgroup of �nm, we can define the quotient group

Qn,m := �nm/Gn,m. (B.1)

Then, Q1,n ∼= Qn,1
∼= �n for any n ≥ 1.

Let g1, . . . , gn be free generators of �n. Define p(n) ∈ Hom(�n, �) by

p(n)(g) := ε1 + · · · + εk when g = gε1
i1 · · · gεk

ik ∈ �n (B.2)

where εi ∈ {1,−1} for i = 1, . . . , k. By definition, the following holds.

FACT B.1.
(i) For g ∈ �nm, if φn,m(g) = (g′, g′′), then p(nm)(g) = p(n)(g′) = p(m)(g′′).

(ii) If g ∈ Gn,m, then p(nm)(g) = 0.
(iii) For any i = 1, . . . , n, the restriction p(n)|H(n)

i
: H(n)

i → � is an isomorphism.
(iv) Let p̂(nm) : Qn,m → � by p̂(nm)(ĝ) := p(nm)(g) for ĝ = gGn,m ∈ Qn,m and define the

subgroup Ĥ(nm)
l of Qn,m by

Ĥ(nm)
l := {hGn,m ∈ Qn,m : h ∈ H(nm)

l }. (B.3)

Then, p̂(nm) is well defined and is a group homomorphism. Furthermore, the
restriction p̂(nm)|Ĥ(nm)

l
: Ĥ(nm)

l → � is an isomorphism for any l = 1, . . . , nm.

Remark that Ĥ(1·n)
l

∼= Ĥ(n·1)
l

∼= H(n)
l for any n ≥ 1.

LEMMA B.2. Let n, m ≥ 1,(i, j) ∈ {1, . . . , n} × {1, . . . , m} and g ∈ �nm.
(i) If φn,m(g) ∈ H(n)

i × H(m)
j , then there exists h ∈ H(nm)

m(i−1)+j such that φn,m(h) =
φn,m(g).

(ii) If φn,m(g) ∈ H(n)
i × H(m)

j , then g ∈ Gn,mH(nm)
m(i−1)+j .

Proof.
(i) Let (g′, g′′) := φn,m(g). From Fact B.1(i), p(n)(g′) = p(nm)(g) = p(m)(g′′). When

l := p(nm)(g), g′ = (g(n)
i )l and g′′ = (g(m)

j )l by Fact B.1(iii). Hence, h :=
(g(nm)

m(i−1)+j)
l ∈ H(nm)

m(i−1)+j satisfies the relation.

(ii) From (i), φn,m(h−1g) = (1, 1) for some h ∈ H(nm)
m(i−1)+j. Therefore, h−1g ∈ Gn,m

and g ∈ hGn,m ⊂ H(nm)
m(i−1)+jGn,m = Gn,mH(nm)

m(i−1)+j.

�
LEMMA B.3. For n, m ≥ 1 and (i, j) ∈ {1, . . . , n} × {1, . . . , m}, two �nm-homogeneous

spaces (�nm/(Gn,mH(nm)
m(i−1)+j), L) and (�n/H(n)

i × �m/H(m)
j , φ̃n,m) are equivalent where L

denotes the natural left action of �nm on �nm/K and φ̃n,m is as in (3.8).

Proof. Rewrite K := Gn,mH(nm)
m(i−1)+j, φ := φn,m, H ′ := H(n)

i and H ′′ := H(m)
j here.

Define the map

θ : �nm/K → �n/H ′ × �m/H ′′; θ ([x]) := ([x′], [x′′]), (B.4)
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where (x′, x′′) := φ(x) and [a] denotes the coset with the representative a. By definition,
we see that the map θ is well defined and satisfies θ ◦ Lg = φ̃n,m(g) ◦ θ for all g ∈ �nm.
It is sufficient to show that θ is injective and surjective.

(i) Injectivity: For [x], [y] ∈ �nm/K , assume θ ([x]) = θ ([y]). Then [x′] = [y′]
and [x′′] = [y′′]. Hence x′ = y′h′ and x′′ = y′′h′′ for some (h′, h′′) ∈ H ′ ×
H ′′. Therefore φ(x) = (x′, x′′) = (y′h′, y′′h′′) = φ(y)(h′, h′′). Hence φ(y−1x) =
(h′, h′′). From Lemma B.2(ii), y−1x ∈ K . Therefore [x] = [y]. Hence θ is
injective.

(ii) Surjectivity: For ([x′], [x′′]) ∈ �n/H ′ × �m/H ′′, there exists (w′, z) ∈ �n × �nm

such that φ(z)(w′, 1) = (x′, x′′) from Lemma 2.4(iii). Let g(n)
1 , . . . , g(n)

n be free
generators of �n. Assume w′ = (g(n)

j1 )ε1 · · · (g(n)
jl )εl for εi ∈ {1,−1}. Let h′′ :=

(g(m)
j )ε1 · · · (g(m)

j )εl = (g(m)
j )ε1+···+εl . Then (x′, x′′h′′) = φ(z)(w′, h′′) = φ(z)φ(w) =

φ(zw) for some w ∈ �nm. Therefore ([x′], [x′′]) = ([x′], [x′′h′′]) = θ ([zw]). Hence
θ is surjective.

�

Let χ
(n)
z be as in (3.3) and let �n � �m := {z � w : (z, w) ∈ �n × �m}. For u ∈

�n � �m, we see Gn,m ⊂ ker χ
(nm)
u by (3.5). From this, χ

(nm)
u (gh) = χ

(nm)
u (g) for any

g ∈ �nm and h ∈ Gn,m. Hence

χ̂ (nm)
u : Qn,m → U(1); χ̂ (nm)

u (gGn,m) := χ (nm)
u (g), (B.5)

is well defined for any u ∈ �n � �m as a homomorphism.

LEMMA B.4. Let n, m ≥ 1 and let Ĥ(nm)
l be as in (B.3). If i, j ∈ {1, . . . , nm} and

ĝ ∈ Qn,m satisfy Ĥ(nm)
i ≈ ĝĤ(nm)

j ĝ−1, then i = j and ĝ ∈ Ĥ(nm)
i .

Proof. Let Hi := H(nm)
i , G := Gn,m and let c1, . . . , cnm be free generators of �nm.

For g ∈ �nm, let ĝ := gG ∈ Qn,m. If i, j and ĝ satisfy the assumption, then [Ĥi, Ĥi ∩
ĝĤjĝ−1] < ∞ by definition. Since #Ĥi = ∞, there exists x̂ ∈ Ĥi ∩ ĝĤjĝ−1 such that x̂ �=
1. Then, cl

iG = xG = gcl′
j g−1G for some l, l′ ∈ �. For χ̂

(nm)
u in (B.5), ul

i = χ̂
(nm)
u (cl

iG) =
χ̂

(nm)
u (gcl′

j g−1G) = ul′
j for any u = (u1, . . . , unm) ∈ �n � �m. This implies i = j and l = l′.

From this, the first statement is verified. In consequence, cl
iG = gcl

ig
−1G for some l ∈ �.

By the choice of x and l, l �= 0. Since cl
igG = gcl

iG, cl
ig = gcl

iw for some w ∈ G. For
(g′, g′′) := φn,m(g),

(al
i′g

′, bl
i′′g

′′) = φn,m(cl
ig) = φn,m(gcl

iw) = φn,m(gcl
i) = (g′al

i′ , g′′bl
i′′ ), (B.6)

where a1, . . . , an and b1, . . . , bm are free generators of �n and �m, respectively,
and (i′, i′′) ∈ {1, . . . , n} × {1, . . . , m} is defined as i = m(i′ − 1) + i′′. Hence al

i′g
′ =

g′al
i′ and bl

i′′g
′′ = g′′bl

i′′ . From these and Lemma A.2(iii), g′ ∈ H(n)
i′ and g′′ ∈ H(m)

i′′ .
Hence φn,m(g) = (g′, g′′) ∈ H(n)

i′ × H(m)
i′′ . Therefore, g ∈ HiG by Lemma B.2(ii). Hence

ĝ ∈ Ĥi. �

PROPOSITION B.5. Let Qn,m and Ĥ(nm)
l be as in (B.1) and (B.3), respectively.

(i) For any l ∈ {1, . . . , nm}, λQn,m/Ĥ(nm)
l

is irreducible.
(ii) For l, l′ ∈ {1, . . . , nm}, λQn,m/Ĥ(nm)

l

∼= λQn,m/Ĥ(nm)
l′

if and only if l = l′.
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Proof.
(i) From Lemma B.4, ComQn,m (Ĥ(nm)

l ) = Ĥ(nm)
l . From this and Theorem A.1(i),

the statement holds.
(ii) From Lemma B.4, Ĥ(nm)

l and Ĥ(nm)
l′ are quasiconjugate if and only if l = l′.

From this and Theorem A.1(ii), the statement holds.
�

Proof of Theorem 3.4
(i) From Lemma B.3, the statement holds.

(ii) Let Kl := Gn,mH(nm)
l . By identifying �nm/Kl with Qn,m/Ĥ(nm)

l as a �nm-
homogeneous space, we see that

λ�nm/Kl (g
(nm)
l ) = λQn,m/Ĥ(nm)

l
(ĝ(nm)

l ) (l = 1, . . . , nm). (B.7)

Hence λ�nm/Kl (�nm) = λQn,m/Ĥ(nm)
l

(Qn,m). From Proposition B.5(i), λ�nm/Kl is also
irreducible.

(iii) From Proposition B.5(ii) and (B.7), the statement holds.
�

C. Proof of Proposition 3.5(ii). In this section, we prove Proposition 3.5(ii). For
this purpose, we prove the following proposition.

PROPOSITION C.1. Let Qn,m be as in (B.1). If n, m ≥ 2, then the group Qn,m is ICC,
that is, every conjugacy class in Qn,m, other than its unit is infinite [3].

Proof. Rewrite φ := φn,m and G := Gn,m, and let ĝ := gG ∈ Qn,m and (g′, g′′) :=
φ(g) for g ∈ �nm. Fix ĝ ∈ Qn,m \ {1}. By the choice of g, (g′, g′′) �= (1, 1).

Assume g′ �= 1. Choose an infinite sequence {al : l ≥ 1} ⊂ �n such that alg′a−1
l �=

al′g′a−1
l′ when l �= l′. Since �n is ICC, such a sequence always exists. By the choice of {al},

al �= al′ when l �= l′. From Lemma 2.4(i), there exists {(bl, cl) : l ≥ 1} ⊂ �m × �nm such
that φ(cl) = (al, bl) for any l ≥ 1. By the choice of {cl}, φ̂(clgc−1

l G) = (alg′a−1
l , blg′′b−1

l )
where φ̂ : Qn,m → �n × �m denotes the natural homomorphism induced by φ. From
this and the choice of {al}, φ̂(clgc−1

l G) �= φ̂(cl′gc−1
l′ G) when l �= l′. From this, ĉl ĝĉ−1

l =
clgc−1

l G �= cl′gc−1
l′ G = ĉl′ ĝĉ−1

l′ when l �= l′. Therefore, {ĉl ĝĉ−1
l : l ≥ 1} is an infinite

subset of the conjugacy class of ĝ.
If g′ = 1, then g′′ �= 1. In a similar way, we can construct an infinite subset of

the conjugacy class of ĝ from g′′ by using Lemma 2.4(ii). Hence, the statement is
verified. �

Proof of Proposition 3.5(ii) By definition, the group Qn,m in (B.1) acts on

2(�nm/Gn,m) = 
2(Qn,m) by its left regular representation λQn,m . For the natural left
action L′ of Qn,m on Qn,m, L(g)(hGn,m) = ghGn,m = L′(gGn,m)(hGn,m) for any g, h ∈ �nm

where L denotes the natural left action of �nm on �nm/Gn,m. Hence λ�nm/Gn,m (�nm) =
λQn,m (Qn,m). By Proposition C.1, λQn,m is a type II1 factor representation ([3], III.3.3.7
Proposition). Hence, the statement holds. �
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