MONTEL ALGEBRAS ON THE PLANE

W. E. MEYERS

1. Introduction. The results of Rudin in [7] show that under certain conditions, the maximum modulus principle characterizes the algebra A(G) of functions analytic on an open subset G of the plane C (see below). In [2], Birtel obtained a characterization of A(C) in terms of the Liouville theorem; he proved that every singly generated F-algebra of continuous functions on C which contains no non-constant bounded functions is isomorphic to A(C) in the compact-open topology. In this paper we show that the Montel property of the topological algebra A(G) also characterizes it. In particular, any Montel algebra A of continuous complex-valued functions on G which contains the polynomials and has continuous homomorphism space M(A) homeomorphic to G is precisely A(G).

An example is given to show that this is not true if we do not require M(A) = G. For each $n \ge 1$, a subalgebra of continuous complex-valued functions on G is constructed which contains the polynomials and is isomorphic to $P(G^n)$, the closure of polynomials in n variables in the topology of uniform convergence on compact subsets of the open set G^n in C^n . For polynomially convex open sets G, the algebras so constructed are Montel but cannot be isomorphic to A(G) unless n = 1. In case G = C, the algebras obtained provide an answer to a question asked in [3]: Do there exist subalgebras of continuous functions on the plane which properly contain A(C) but contain no non-constant bounded functions?

2. Preliminaries. We shall use the result of Rudin mentioned above in the following form. Define a *uniform algebra* on a topological space X to be an algebra of continuous complex-valued functions on X which contains the constants and is closed under uniform convergence on compact subsets of X. By a maximum modulus algebra on X we shall mean a uniform algebra A on X having the property that for every compact subset K of X, the Šilov boundary of the restriction algebra A|K is contained in the topological boundary of K. Rudin's result can be formulated as follows: if A is a maximum modulus algebra on an open subset G of C, if A contains the polynomials, and if M(A) = G, then A = A(G).

Let A be a uniform algebra on X and K a compact subset of X. The A-convex hull of K, denoted hull_A K, is the set $\{x \in M(A): |\hat{a}(x)| \leq ||a||_{\kappa}, a \in A\}$, where $\hat{a}(x) = x(a)$ defines the Gelfand transform \hat{a} of a. For compact subsets K of X, hull_A K is compact and the algebra A_{κ} obtained as the uniform

Received October 22, 1968.

closure of the restriction algebra A | K has non-zero continuous homomorphism space $M(A_K) = \text{hull}_A K$ [6].

If X is a σ -compact locally compact space, then any uniform algebra on X is an F-algebra; by σ -compactness, the topology of uniform convergence on compact subsets is metrizable, and it is complete since X is a k-space [5]. Moreover, there exist compact subsets K_n of X such that $K_{n+1} \supset K_n$, $X = \bigcup_{n=1}^{\infty} K_n$, and every compact subset of X is contained in some K_n . Such a sequence $\{K_n\}_{n=1}^{\infty}$ is called a *hemi-compact covering* of X. If X has a hemicompact covering $\{K_n\}_{n=1}^{\infty}$ and A is a uniform algebra on X, then $\{\text{hull}_A K_n\}_{n=1}^{\infty}$ is a hemi-compact covering of M(A) [5]. It follows that when X is σ -compact and locally compact, the algebra \hat{A} of Gelfand transforms of elements in A is a uniform algebra on M(A) and \hat{A} is algebraically and topologically isomorphic to A. If M(A) = X (topologically), we shall identify the isomorphic algebras A and \hat{A} and say that A is a uniform algebra on M(A).

If K is a compact subset of C^n , then $\operatorname{hull}_{P(C^n)} K$ is also a compact set in C^n , denoted by \hat{K} . Call a subset X of C^n polynomially convex provided $\hat{K} \subset X$ whenever K is a compact subset of X. For arbitrary X, define \hat{X} to be the intersection of all polynomially convex sets containing X.

When A is a uniform algebra on M(A), this concept of polynomial convexity may be generalized to one of A-convexity (cf. Rickart [6]). A subset $Y \subset M(A)$ is said to be A-convex provided hull_A $K \subset Y$ whenever K is a compact subset of Y. For arbitrary $Y \subset M(A)$, define hull_A Y to be the intersection of all A-convex subsets of M(A) which contain Y. Since M(A) is A-convex, hull_A Y always exists, and is A-convex. If Y is σ -compact and locally compact, then Lemma 1 below shows that the non-zero continuous homomorphism space $M(A_Y)$ of the uniform algebra A_Y (defined as the closure of the restriction algebra A|Y in the space C(Y), in the topology of uniform convergence on compact subsets of Y) is hull_A Y.

Finally, suppose that A is a uniform algebra on X and $S \subset X$. If there is a neighbourhood U of S and an element $a \in A$ such that a(x) = 1 for $x \in S$ and |a(x)| < 1 for $x \in U - S$, then S is said to be a *local peak set* in X, and a is said to *peak locally at S within U*. If U can be taken to be the whole space X, then S is a *peak set* of A. We obtain our characterization of Montel algebras by showing that, in the cases under consideration, they can have no (non-trivial) local peak sets.

3. A characterization of A(G). A uniform algebra A on X is said to be *Montel* if every bounded subset (that is, every set of functions in A which is uniformly bounded on compact subsets of X) is relatively compact in A.

Note that the Montel property is preserved under topological isomorphisms.

PROPOSITION 1. Let A be a uniform algebra on a σ -compact locally compact space X. If A is Montel, then every local peak set of A in M(A) is open and closed in M(A).

Proof. Suppose that $f \in A$ peaks locally on S within U in M(A). For every positive integer n, the set $U_n = \{x \in U: |f(x) - 1| < 1/n\}$ is a neighbourhood of S in M(A), and $\{U_n\}_{n=1}^{\infty}$ is a fundamental sequence of neighbourhoods of S. Let $\{K_n\}_{n=1}^{\infty}$ be a hemi-compact covering of M(A) by A-convex sets K_n . There is an integer n_0 such that $S \cap K_n \neq \emptyset$ for $n \ge n_0$. Thus for $n \ge n_0$, $S \cap K_n$ is a local peak set of $A|K_n$ in K_n ; hence by a well-known result (see [4, p. 62]) it is known that $S \cap K_n$ is a peak set of A_{K_n} in K_n . It follows that there exist functions $f_n \in A$ such that $||f_n - 1||_{S \cap K_n} < 1/n$, $||f_n||_{K_n-U_n} < 1/n$, and $||f_n||_{K_n} < 2, n \ge n_0$. However, $\{f_n\}_{n=n_0}^{\infty}$ is a bounded subset of A and therefore relatively compact. Let $\{f_{n_i}\}_{i=1}^{\infty}$ be a subsequence converging uniformly on compact subsets of X to $f \in A$. Clearly f(x) = 1 for $x \in S$ and if $y \in M(A) - S$, then f(y) = 0. Since $f \in C(M(A))$, it must be that S is open and closed in M(A).

COROLLARY 1. Let A be a uniform algebra on a connected σ -compact, locally compact space X. If A is Montel, then A is a maximum modulus algebra on M(A).

Proof. Suppose that there is a compact subset K of M(A) and a function $f \in A$ such that $\{x \in M(A): |f(x)| = ||f||_{\kappa}\}$ does not meet the boundary of K in M(A). If x is chosen to be any element of this set, then the function $g \in A$ defined by g = ((f/f(x)) + 1)/2 peaks in K on $\{y \in K: f(y) = f(x)\} = S$, which is in the interior of K. Thus S is a local peak set of A in M(A), hence S is open and closed in M(A), whence S = M(A), which is impossible.

Applying the result of Rudin in the form stated above, we obtain the following result.

COROLLARY 2. Let A be a uniform algebra on an open subset G of C and suppose that A contains the polynomials and M(A) = G. Then A is Montel if and only if A = A(G).

4. Montel algebras of non-analytic functions. In this section we show that if G is a polynomially convex open connected subset of C and $n \ge 1$, there is a uniform algebra A on G which is algebraically and topologically isomorphic to the algebra of all analytic functions on an open subset of C^n , in the compact-open topology. Since the Montel property is preserved under isomorphisms, the algebra is Montel. However, if n > 1, then $A \ne A(G)$ since the continuous homomorphism space of A is an open subset of C^n while that of A(G) is G (cf. [4, p. 58]).

In the construction, the following standard fact is used.

LEMMA. If K is a compact connected subset of C and ϵ is any positive real number, then there exists a simple closed curve J such that K is contained in the relatively compact component of C - J and every point of J is at a distance less than ϵ from some point of K; cf. [8, p. 35].

PROPOSITION 2. If G is an open connected subset of C and $n \ge 1$, then $P(G^n)$ is algebraically and topologically isomorphic to a subalgebra of C(G).

Proof. G is σ -compact and locally compact, thus there exists a hemicompact covering $\{K_j\}_{j=1}^{\infty}$ of G. Since G is connected, locally connected, and locally compact, every compact subset of G is contained in a compact connected subset, thus we may assume that $\{K_j\}_{j=1}^{\infty}$ is chosen so that each K_j is connected.

Choose a sequence of simple closed curves J_j in G as follows. K_1 is a compact connected subset of the open set G in C, thus there exists a simple closed curve J_1 in G such that the relatively compact component $i(J_1)$ of $C - J_1$ contains K_1 . Applying the lemma now to the compact connected set J_1 , a simple closed curve J_2 in G may be chosen so that the closure $c(J_1)$ of $i(J_1)$ in C lies in $i(J_2)$ and $c(J_2) - i(J_1) \subset G$. Suppose by way of induction that J_j have been chosen, $1 \leq j \leq 2k$, such that

(1) $J_j \subset G, 1 \leq j \leq 2k$,

(2) $K_i \cup c(J_{2i-2}) \subset i(J_{2i-1}) \subset c(J_{2i-1}) \subset i(J_{2i}), 1 \leq i \leq k$, and (3) $c(J_{2i}) - i(J_{2i-1}) \subset G, 1 \leq i \leq k$.

Now $K_{k+1} \cup J_{2k}$ is a compact subset of G, hence is contained in a compact connected subset L_{k+1} . By the lemma, there exists a simple closed curve J_{2k+1} in G such that $L_{k+1} \subset i(J_{2k+1})$ and another curve J_{2k+2} such that $J_{2k+1} \subset i(J_{2k+2})$ and $c(J_{2k+2}) - i(J_{2k+1}) \subset G$. Thus

(1) $J_{2k+1}, J_{2k+2} \subset G$,

(2)
$$K_{k+1} \cup c(J_{2k}) \subset i(J_{2k+1}) \subset c(J_{2k+1}) \subset i(J_{2k+2}),$$

(3) $c(J_{2k+2}) - i(J_{2k+1}) \subset G$,

and by induction, (1), (2), and (3) hold for all positive integers. Define $R_j = c(J_{2j}) - i(J_{2j-1}), j \ge 1$. Note that $\bigcup_{j=1}^{\infty} R_j$ is closed in G.

Since $\{K_j\}_{j=1}^{\infty}$ is a hemi-compact covering of G, it follows from the definition of \hat{G} that $\hat{G} = \bigcup_{j=1}^{\infty} \hat{K}_j$. Furthermore, $\hat{J}_j = (c(J_j))^{\wedge} = c(J_j)$ for all j, thus by (2) above, $\hat{G} = \bigcup_{j=1}^{\infty} \hat{K}_j \subset \bigcup_{j=1}^{\infty} (c(J_j))^{\wedge} = \bigcup_{j=1}^{\infty} c(J_j)$. Moreover, by (1), we have $\bigcup_{j=1}^{\infty} c(J_j) = \bigcup_{j=1}^{\infty} \hat{J}_j \subset \hat{G}$, hence

(4)
$$\hat{G} = \bigcup_{j=1}^{\infty} c(J_j).$$

Now let $\{T_j\}_{j=1}^{\infty}$ be a sequence of disjoint closed annuli $T_j = \{t \in C: r_j' \leq |t| \leq r_j\}$ whose outer radii r_j increase to infinity. Let I_j be the closed interval $I_j = \{t \in C: \arg(t) = 0 \text{ and } r_j' \leq t \leq r_j\}$. By the representation (4) of \hat{G} and the fact that $c(J_j) \subset i(J_{j+1}), j \geq 1$, there is a homeomorphism $\varphi: \hat{G} \to C$ such that $\varphi(R_j) = T_j, j \geq 1$. To show the existence of φ , it is enough to note that if J' and J are simple closed curves with $J' \subset i(J)$ and if r' and r are real numbers with r' < r, then any onto homeomorphism

$$\varphi: c(J') \to \{t \in C: |t| \leq r'\}$$

can be extended to a homeomorphism $\bar{\varphi}$: $c(J) \rightarrow \{t \in C: |t| \leq r\}$.

For each positive integer j, take a space-filling continuous function

$$g_j: I_j \to C^{n-1}$$
 with $g_j(I_j) = D_{r_j}^{n-1}$,

where $D_{r_i}^{n-1}$ is by definition the polydisc

 $\{s = (s_1, \ldots, s_{n-1}) \in C^{n-1}: |s_k| \leq r_j, 1 \leq k \leq n-1\}.$

For $1 \leq k \leq n-1$, let π_k denote the projection map to the *k*th coordinate and define functions h_k on $\bigcup_{j=1}^{\infty} R_j$ by

$$h_k(t) = \pi_k(g_j(|\varphi(t)|)), \qquad t \in R_j$$

Then h_k is continuous on the closed subset $\bigcup_{j=1}^{\infty} R_j$ of the normal space G and by the Tietze extension theorem has a continuous extension to a function, which we shall also call h_k , on G to C. Let $f_k = \varphi^{-1} \circ h_k$, $1 \leq k \leq n - 1$.

Define a map $F: G \to C^n$ by $F(t) = (f_1(t), \ldots, f_{n-1}(t), t)$ for $t \in G$. Clearly $F(G) \subset (\hat{G})^n$ by definition of the functions f_1, \ldots, f_{n-1} . On the other hand, if $s = (s_1, \ldots, s_n)$ is an element of $(\hat{G})^n$, then by the representation (4) there is a positive integer j such that $s_1, \ldots, s_n \in c(J_{2j-3})$, thus

$$\varphi(s_1),\ldots,\varphi(s_n)\in D_{r_j-1}\subset D_{r_j}$$

To see this, observe that the image under the homeomorphism φ of the connected set $i(J_{2j-2}) - R_{j-1} = i(J_{2j-3})$ must lie in a single component of $C - \varphi(R_{j-1})$. However, $\varphi(c(J_{2j-3}))$ is compact and equal to the closure of $\varphi(i(J_{2j-3}))$; therefore $\varphi(i(J_{2j-3}))$ must be contained in the bounded component of the complement of $\varphi(R_{j-1}) = T_{j-1}$. Thus $|\varphi(t)| \leq r_{j-1}$ for all $t \in c(J_{2j-3})$. It now follows that there exists $r \in I_j$ such that $g_j(r) = (\varphi(s_1), \ldots, \varphi(s_{n-1}))$, and $|\varphi(s_n)| \leq r_{j-1} < r$. Let p be any polynomial on C^n (in fact, any entire function on C^n). Then

(5)
$$|p(s)| \leq \sup\{|p(s_1, \dots, s_{n-1}, t)| : t \in \hat{G}, |\varphi(t)| \leq r\} \\ = \sup\{|p(s_1, \dots, s_{n-1}, t)| : t \in \hat{G}, |\varphi(t)| = r\} \\ = \sup\{|p(s_1, \dots, s_{n-1}, t)| : t \in G, |\varphi(t)| = r\} \\ \leq \sup\{|p(F(t))| : t \in G, |\varphi(t)| = r\}.$$

However, $\{F(t): t \in G \text{ and } |\varphi(t)| = r\}$ is a compact subset of F(G), thus $s \in (F(G))^{\wedge}$. That φ is a homeomorphism is used to conclude that $\{t \in \hat{G}: |\varphi(t)| \leq r\}$ is compact and that $|\varphi(t)| = r$ implies $t \in G$.

We have shown that $F(G) \subset (\hat{G})^n \subset F(G)^{\wedge}$ and thus $F(G) \subset (G^n)^{\wedge} \subset F(G)^{\wedge}$ since $(\hat{G})^n = (G^n)^{\wedge}$ is immediate.

If L is a compact subset of F(G), then $\pi_n(L)$ is compact in G and $L = F(\pi_n(L))$. However, G, and hence F(G), is hemi-compact; since F(G) is also first countable, it is σ -compact and locally compact [1]. It follows from Lemma 1 below that $P(F(G)) = P((G^n)^{\wedge}) = P(G^n)$. Finally, we use Lemma 2 to conclude that $P(G^n)$ is algebraically and topologically isomorphic to the subalgebra A of C(G) generated by the functions f_1, \ldots, f_{n-1} , and z.

LEMMA 1. Suppose that A is a uniform algebra on M(A) and Y is a σ -compact locally compact subset of M(A). If $Y \subset X \subset \text{hull}_A Y$, then $A_X = A_Y$ and

120

 $M(A_X) = \operatorname{hull}_A Y$; in particular, the restriction map $f \to f|Y$ is an algebraic and topological isomorphism.

Proof. Let $\{K_n\}_{n=1}^{\infty}$ be a hemi-compact covering of Y. Then $\{\operatorname{hull}_A K_n\}_{n=1}^{\infty}$ is a hemi-compact covering of $M(A_Y)$, thus

$$M(A_Y) = \bigcup_{n=1}^{\infty} \operatorname{hull}_A K_n \subset \operatorname{hull}_A Y.$$

However, $M(A_Y)$ is easily seen to be A-convex, whence hull_A $Y = M(A_Y)$ is a hemi-compact union of the hull_A K_n . Clearly, $f \to f | Y$ is an algebraic homomorphism of A_X into A_Y . If $g \in A_Y$, the Gelfand transform $\hat{g} \in \widehat{A_Y}$ is such that $\hat{g} | Y = g$. However, $\hat{g} \in A_{\text{hull}_A Y}$; for if L is a compact subset of hull_A Y and $\epsilon > 0$, then taking a compact subset K of Y such that $L \subset \text{hull}_A K$ and an element $p \in A$ such that $||g - p||_K < \epsilon$, it follows that

$$||\hat{g} - p||_L \leq ||\hat{g} - p||_{\operatorname{hull}_A K} = ||g - p||_K < \epsilon,$$

or $\hat{g} \in A_{\text{hull}_A Y}$. Let $f = \hat{g}|X$. Then $f \in A_X$ and $f \to f|Y = g$, thus the homomorphism is onto. This also shows that the map is one-to-one. Thus $f \to f|Y$ is an algebraic isomorphism. The inequalities $||f|Y||_{\mathcal{K}} \leq ||f||_{\text{hull}_A \mathcal{K}}$ and $||f||_{\text{hull}_A \mathcal{K}} = ||f|Y||_{\mathcal{K}}$ which hold for K and L as above show that the map is in fact topological, whence $A_X = A_Y$ and $M(A_X) = M(A_Y)$.

LEMMA 2. Let X be σ -compact and locally compact and let f_1, \ldots, f_n be functions in C(X). Suppose that the map $F: X \to C^n$ defined by $F(x) = (f_1(x), \ldots, f_n(x))$, $x \in X$, has the property that if L is a compact subset of F(X), then there exists K compact in X such that $L \subset F(K)$. Then the uniform algebra A on X generated by f_1, \ldots, f_n is algebraically and topologically isomorphic to P(F(X)).

Proof. X is σ -compact and locally compact, and the property of F assumed in the hypothesis guarantees that F(X) is also σ -compact and locally compact, since it is hemi-compact and first countable. Thus the uniform algebras A and P(F(X)) are F-algebras. Define a mapping φ on P(F(X)) by $\varphi(g) = g \circ F$. Note that the image under φ of a dense subset of P(F(X)) is dense in A. Furthermore, if K is a compact subset of X, then F(K) is compact in F(X)and if p is any polynomial on C^n , then $||p||_{F(K)} = ||p \circ F||_K = ||\varphi(p)||_K$. Thus φ is continuous and, since A is complete, into A. It is clear that φ is one-to-one. We show that φ is onto. Suppose that $f \in A$ and K is a compact subset of X, δ a real number with $\delta > 0$. Choose a polynomial $p_{(K,\delta)}$ such that

$$||p_{(K,\delta)} \circ F - f||_{K} < \delta.$$

If the indices (K, δ) are ordered by $(K_1, \delta_1) < (K_2, \delta_2)$ if and only if $K_1 \subseteq K_2$ and $\delta_2 \leq \delta_1$, then $\{p_{(K,\delta)}\}$ may be shown to be a Cauchy net as follows. Let Lbe an arbitrary compact set in F(X) and let $\epsilon > 0$. Choose a compact set $K_L \subset X$ such that $F(K_L) \supseteq L$. Then, if $(K_L, \frac{1}{2}\epsilon) < (K_i, \delta_i)$ (i = 1, 2), we have $||p_{(K_1,\delta_1)} - p_{(K_2,\delta_2)}||_L < \epsilon$, thus $\{p_{(K,\delta)}\}$ is a Cauchy net. By completeness of P(F(X)), $\{p_{(L,\epsilon)}\}$ has a limit $g \in P(F(X))$. By continuity, $\varphi(g) = f$. We have established that φ is a continuous algebraic isomorphism of an *F*-algebra onto another, and the interior mapping principle enables us to conclude that φ is topological.

For polynomially convex open sets G in C, $P(G^n) = A(G^n)$ by Runge's theorem, hence we have the following corollary to Proposition 2.

COROLLARY 3. If G is a polynomially convex open connected subset of C, then for each positive integer n there is a uniform algebra A_n on G containing the polynomials and such that $A_n = A(G^n)$ (algebraically and topologically).

By an earlier remark, each of the algebras A_n is Montel since $A(G^n)$ is, thus we have found infinitely many non-isomorphic Montel algebras A_n on G. Of course, for n > 1, $M(A_n) = M(A(G_n)) = G^n \neq G$, thus $A(G) \subset A_n$ $(A(G) \neq A_n)$.

In the case G = C, the algebras A_n constructed above contain no nonconstant bounded functions. For suppose that $f \in A_n$ is bounded. By Lemmas 1 and 2, $f = g \circ F$, where g can be taken in the algebra $P(F(C)) = P(C^n) = A(C^n)$. However, g is bounded on F(C); thus by (5), g is bounded on C^n . It follows that g, and hence f, is constant. We have therefore also found (infinitely many non-isomorphic) uniform algebras on C having no non-constant bounded functions and properly containing A(C), answering a question about the existence of such algebras raised by Birtel and Lindberg [3].

References

- 1. R. Arens, A topology for spaces of transformations, Ann. of Math. (2) 47 (1946), 480-495.
- 2. F. T. Birtel, Singly-generated Liouville F-algebras, Michigan Math. J. 11 (1964), 89-94.
- F. T. Birtel and J. A. Lindberg, Jr., A Liouville algebra of non-entire functions, Studia Math. 25 (1964/65), 27-31.
- 4. R. C. Gunning and H. Rossi, Analytic functions of several complex variables (Prentice-Hall, Englewood Cliffs, N.J., 1965).
- E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. No. 11 (1952), 79 pp.
- 6. C. E. Rickart, Holomorphic convexity in general function algebras, Can. J. Math. 20 (1968), 272–290.
- 7. W. Rudin, Analyticity, and the maximum modulus principle, Duke Math. J. 20 (1953), 449-457.
- 8. G. T. Whyburn, Topological analysis (Princeton Univ. Press, Princeton, N.J., 1964).

The University of British Columbia, Vancouver, British Columbia

122