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We study the linear stability of bubbles in a capillary tube under external flow. Yu et al.
(J. Fluid Mech., vol. 911, 2021, pp. 1–19) showed that a rich variety of bubble dynamics
occurs when a downward external flow is applied, opposing the buoyancy-driven ascent of
the bubble. They found experimentally and numerically the existence of two branches
of solutions that overlap over a finite range of the capillary number of the downward
external flow in cases where the Reynolds number is small and the Bond number is larger
than the critical value for which the bubble can rise spontaneously (Bretherton, J. Fluid
Mech., vol. 10, issue 2, 1961, pp. 166–188). Furthermore, inertialess, symmetry-breaking
steady-state shapes were found as the bubble transits near the tipping points of the solution
branches. In this work, using steady axisymmetric simulations, we show that the reported
multiplicity of solutions can be described using bifurcation diagrams with three branches
of steady axisymmetric solutions and two limit points. The linear global stability analysis
of the different branches of the stationary axisymmetric solutions demonstrates that the
symmetry breaking is due to the development of three-dimensional instabilities with
azimuthal wavenumber |m| = 1.

Key words: bubble dynamics, capillary flows

1. Introduction

The flow of an elongated gas bubble in a cylindrical vertical tube is of interest in many
industrial applications, such as flows in porous media, enhanced oil recovery (Kovscek &
Radke 1994) and coating processes, e.g. Yu, Khodaparast & Stone (2018a). The dynamics
of the bubble is determined by the interaction of gravitational, interfacial, viscous and
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inertial parametric forces. One flow regime is that of negligible inertia and dominant
capillary forces. In this case, the elongated bubble traps a thin film of liquid against
the channel wall, and the front and rear menisci are separated by a region of uniform
film thickness (Bretherton 1961; Bashforth et al. 1963; Yu et al. 2018b; Magnini et al.
2019). A recent study by Yu et al. (2021) also focused on this regime and showed the
existence of two different flow configurations for the same values of the control parameters
when the Bond number exceeded a critical value within a range of the imposed downward
external capillary number. These results were unexpected in an operating regime where the
inertial forces of the fluid, responsible for an important part of the nonlinear terms of the
equations governing the bubble dynamics, are negligible. Another interesting result found
by Yu et al. (2021) is the loss of bubble symmetry in the parameter range within which
there is a multiplicity of solutions. Numerous experimental studies had already reported
this phenomenon but in the regime of large inertial forces (Figueroa-Espinoza & Fabre
2011; Fabre & Figueroa-Espinoza 2014; Fershtman et al. 2017). In these cases, there is a
critical liquid velocity beyond which the bubble shape loses axisymmetry. The viscously
dominated flow limit is the focus of this paper.

To the best of our knowledge, the study by Lu & Prosperetti (2006), who performed
a linear stability analysis of a buoyant Taylor bubble moving in a downward flowing
liquid, using potential flow theory and with negligible surface tension, represents the
first attempt in the literature to understand via linear theory the mechanism behind the
transition of the bubble shape from symmetric to asymmetric profiles in the inertial
regime. In particular, and in agreement with experimental observations, they found that
a bubble subjected to irrotational flow perturbations becomes unstable beyond a negative
critical (downward) liquid velocity. More recently, Abubakar & Matar (2022) studied a
Taylor bubble translating at constant speed in stagnant and flowing liquids and performed
a global stability analysis using a domain perturbation method (Carvalho & Scriven 1999)
for a wide range of control parameters. They found numerous examples in which the
bubble loses stability under a non-axisymmetric perturbation with azimuthal wavenumber
|m| = 1. However, they did not explore the parametric region analysed by Yu et al. (2021),
who characterised the bubble shape and motion for Bond number of order unity with
negligible inertia, nor did they report the existence of a multiplicity of axisymmetric steady
solutions.

In this work we implement a variant of the numerical technique developed by Herrada
& Montanero (2016), which is based on the use of analytical Jacobians and non-singular
mappings for flows with a free interface. This approach has been used for the global linear
stability studies of different multiphase flows, such as electrosprays (Ponce-Torres et al.
2018) and flows in channels with hyperelastic walls (Herrada et al. 2022). The method
developed here allows the study of bubbles and droplets flowing in tubes because it
includes the complete modelling of the interior phase. However, in this work it will be
used only to study elongated bubbles in tubes for the same parameters as those reported
by Yu et al. (2021) in order to explain the existence of a multiplicity of axisymmetric
solutions and the loss of symmetry of these solutions observed both experimentally and
numerically.

The rest of the paper is organised as follows. In § 2 we provide details of the governing
equations and the numerical techniques used to carry out the computations of the steady
axisymmetric flows and the stability analysis. In § 3, a discussion of the base state results
is given and the linear stability analysis is presented. Finally, concluding remarks are
provided in § 4.
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Figure 1. Sketch of the flow geometry considered in this study: a bubble rising in a tube with an applied axial
flow.

2. Model formulation

We consider the configuration sketched in figure 1, where an elongated bubble of a gas of
density ρg, viscosity μg and volume V rises in a cylindrical vertical capillary of radius R
containing a liquid of density ρl and viscosity μl. To model the movement of the bubble
under the combined action of gravitational acceleration g and an imposed flow rate through
the tube Q, the system is solved in a frame moving with the bubble where a non-inertial
cylindrical coordinate system (r, θ , z) aligned with the gravity vector and anchored to
the bubble is selected. This system is, in turn, linked to an inertial Cartesian coordinate
system (X, Y , Z) anchored to the tube walls and also aligned with the gravity field and
the non-inertial system. To model the apparent forces in the momentum equations in this
non-inertial coordinate system, we have to include all of the accelerations of the system.
In our case, since both coordinate systems are aligned, we will only have to consider the
axial acceleration a = (dU/dt)eZ of the reference frame, where U(t) is the axial velocity
of the top point of the liquid–gas interface (green arrow in figure 1) and Ul = Q/(πR2) is
the mean velocity of the liquid flowing through the tube (both velocities measured in the
inertial Cartesian coordinate system). Figure 1 also indicates the computational domain
used in the simulations (a cylinder of radius R and length H) and the boundary conditions
applied at the outer boundaries of this domain.

2.1. Governing equations
The conservation of mass and a balance of linear momentum in the liquid (i = l) and gas
(i = g) subdomains is given by

∇ · vi = 0, (i = l, g), (2.1a)

ρi

(
∂vi

∂t
+ (vi · ∇) vi

)
= ∇ · σ i, (i = l, g), (2.1b)

where vi = wiez + uier + vieθ is the velocity field and σ i is the stress tensor of material
i (i = g, l). We consider in both regions the incompressible flow of a Newtonian fluid,
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where the stress tensor takes the form

σ i = −piI + μi
(∇vi + ∇vT

i
)
, (i = l, g) (2.1c)

where pi (i = l, g) is the reduced pressure, pi = p∗
i + ρigz + ρi(dU/dt)z, p∗ is the static

pressure and the other two terms arise from the gravitational potential and the potential
associated with the linear acceleration of the reference frame, respectively.

At the top boundary, z = H/3, (see figure 1) we assume a parabolic axial velocity profile

wl = −U(t) + 2Ul[1 − (r/R)2], ul = 0, vl = 0. (2.1d)

At the bottom, z = −2H/3, the static pressure is set to zero

p∗
l = 0. (2.1e)

At the wall, r = R, no-slip boundary conditions are applied

wl = −U(t), ul = 0, vl = 0. (2.1f )

Across the gas–liquid interface (see magenta line in figure 1), parametrised in terms
of a meridional arc length s (0 ≤ s ≤ 1) and the azimuthal angle θ , rI = F(s, θ, t) and
zI = G(s, θ, t), we impose that the velocity field must be continuous, i.e.

wl = wg, ul = ug, vl = vg, (2.1g)

and impose a balance of normal and tangential stresses between the liquid and the gas in
the form

n · (σ l − σ g) · n = γ κ + (ρl − ρg)

(
g + dU

dt

)
zI, (2.1h)

t1 · (σ l − σ g) · n = 0, t2 · (σ l − σ g) · n = 0, (2.1i)

where

n = Gser − Fsez + (FsHθ − FθGθ )/Feθ

[G2
s + F2

s + ((FsGθ − FθGθ )/F)2]1/2 , t1 = Gsez + Fser

(F2
s + G2

s )
1/2 , t2 = n × t1,

(2.1j)

are normal (n) and tangential vectors (t) to the surface, the subscripts s and θ represent
derivatives with respect to s and θ , respectively, κ = ∇ · n is twice the mean curvature and
γ is the surface tension. In addition, the kinematic boundary condition on the interface is
written (

ul − ∂F
∂t

)
∂G
∂s

−
(

wl − ∂G
∂t

)
∂F
∂s

+ vl

F

(
∂F
∂s

∂G
∂θ

− ∂F
∂θ

∂G
∂s

)
= 0. (2.1k)

To ensure a uniform distribution of points along the arc length s, the following equation
is applied:

∂F
∂s

∂2F
∂s2 + ∂G

∂s
∂2G
∂s2 = 0. (2.1l)

At the axis, r = 0, regularity conditions are considered.
Finally, to close the problem we need an additional condition for the bubble velocity

U(t), which is unknown if the flow rate Q is considered specified. This is achieved by
imposing that a particular point of the interface has a zero axial velocity in the non-inertial
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reference frame. Therefore, we choose that the top point of the interface crossing the axis
verifies

wl = 0, zI = G = 0, rI = F = 0, at s = 1. (2.1m)

For unsteady simulations, the kinematic equation (2.1k) and the continuity equations
(2.1a) guarantee that the volume of the bubble remains constant during the simulation.
However, for steady axisymmetric simulations, to fix the volume of the bubble, the
following additional equation must be imposed:

V =
∫ 1

0
πF2 ∂G

∂s
ds. (2.1n)

More details on the discretisation of the domains and the additional equations needed to
solve the problem are given in Appendix A.

2.2. Axisymmetric steady solutions
Steady-state solutions of the nonlinear equations (2.1) with all variables independent of
time and θ are obtained by solving all equations simultaneously (a so-called monolithic
scheme) using a Newton technique. We denote the steady axisymmetric solution of the
system with the subscript b. The steady bubble profile hb(s), is defined as

hb(s) = R − Fb(s), 0 ≤ s ≤ 1. (2.2)

As described in Yu et al. (2021), for long bubbles hb is characterised by three distinct
regions: I the bubble ‘nose’ hb /= cte; II, uniform film region hb(s) = cte = b; and III, the
bubble ‘tail’ hb /= cte (see figure 2). We trace the steady solutions as a function of the
model parameters and quantify them using the steady bubble length, Lb, defined as

Lb =
∫ 1

0

√(
∂Gb

∂s

)2

+
(

∂Fb

∂s

)2

ds. (2.3)

2.3. Nonlinear axisymmetric dynamical simulations
The numerical method can be extended to compute unsteady solutions. Temporal
derivatives are discretised using second-order backward differences and at each time
step the resulting system of (nonlinear algebraic) equations is solved using the Newton
technique (as in § 2.2). The simulations use the same mesh as the stationary simulations
with a fixed time step to calculate the time transition between the two stable axisymmetric
stationary solutions. To characterise these unsteady solutions we will use the bubble profile
defined as

h(s, t) = R − F(s, t), 0 ≤ s ≤ 1, (2.4)

and the bubble length, L(t), defined as

L(t) =
∫ 1

0

√(
∂G
∂s

)2

+
(

∂F
∂s

)2

ds. (2.5)
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ẑ
Figure 2. Steady bubble profile ĥb as a function of the axial coordinate ẑ for Bo = 0, V̂ = 3.3 and two external
capillary numbers showing three different regions: ‘nose’, ‘uniform film region’ and the ‘tail’. Theoretical
predictions for b̂ given by Bretherton (1961) and extended by Aussillous & Quéré (2000) are also depicted for
comparison.

2.4. Small amplitude three-dimensional perturbations
To test the stability of a given steady axisymmetric state we calculate the linear global
modes by assuming the temporal and azimuthal dependencies

Ψ (r, θ, z; t) = Ψb(r, z) + εδΨ (r, z) exp(−iωt + imθ) (ε � 1), (2.6)

where Ψ (r, θ, z; t) represents any dependent variable while Ψb(r, z) and δΨ (r, z) denote
the base (steady) solution and the spatial dependence of the eigenmode for that variable,
respectively, while ω = ωr + iωi is the frequency (an eigenvalue) and m is the azimuthal
wavenumber. For a given m, both the eigenfrequencies and the corresponding eigenmodes
are calculated as a function of the governing parameters. The dominant eigenmode is that
with the largest growth factor ωi, so that if it is positive, the base flow is asymptotically
unstable.

The numerical procedure used to solve the steady problem can be easily adapted to
solve the eigenvalue problem that determines the linear global modes of the system. In this
case, the temporal and azimuthal derivatives are computed assuming the dependence (2.6).
The spatial dependence of the linear perturbation δΨ (q) is the solution to the generalised
eigenvalue problem J ( p,q)

b δΨ (q) = iωQ( p)
b δΨ (q), where J ( p,q)

b is the Jacobian of the
system evaluated with the basic solution Ψ

(q)
b and Q( p,q)

b accounts for the temporal
dependence of the problem. This generalised eigenvalue problem is solved using the
MATLAB eigs function.

2.5. Control parameters
To non-dimensionalise the system we use the tube radius R, the surface tension γ and the
liquid viscosity μl. The resulting problem is governed by six dimensionless parameters

Re = ρlγ R

μ2
l

, Bo = ρlGR2

γ
, Cal = μlUl

γ
, ρ = ρg

ρl
, μ = μg

μl
, V̂ = V

4/3πR3 .

(2.7a–f )

958 A45-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.123


Global stability of bubbles rising in a vertical capillary

Here, Re is a Reynolds number based on the natural velocity γ /μl, Bo is the Bond number,
Cal is the external capillary number based on the mean liquid speed, V̂ is the dimensionless
bubble volume and ρ and μ are the density and viscosity ratios, respectively. In this
work we will neglect the inertia of the fluids by letting Re → 0 and we fix density and
viscosity ratios, ρ = 0.000949 and μ = 0.000018, which correspond to the experimental
values of air bubbles in glycerol used by Yu et al. (2021). In the simulations, the length
of the computational domain will be kept fixed, Ĥ = H/R = 15. The main dimensionless
equations are given in Appendix B.

3. Results

In this section we predict the bubble capillary number, Cab = μlUb/γ , the dimensionless
uniform film thickness, b̂ = b/R, the steady dimensionless bubble length L̂b = Lb/R
and the global stability of the axisymmetric base flow around the bubble as a function
of Cal and Bo for elongated bubbles (V̂ � 1). We first validate our model against the
results of Bretherton (1961), Aussillous & Quéré (2000) and Yu et al. (2021). Also,
we show that the multiplicity of solutions reported in the latter work can be described
using bifurcation diagrams with three branches of steady solutions and two limit points
(§ 3.1). We then show the nonlinear axisymmetric transition between branches when these
limit points are exceeded (§ 3.2). Finally, we consider the onset of three-dimensional
(3-D) perturbations associated with these steady states and relate it to the loss of the
stability of the axisymmetric state observed in the experiments and full nonlinear unsteady
simulations (§ 3.3).

3.1. Axisymmetric 2-D steady solutions
To validate our numerical results, first we analysed the case of a bubble flowing through
a tube with negligible buoyancy effects (Bo = 0) so this corresponds to motion in a
horizontal tube or zero-gravity environment. In figure 2 we have plotted the profile of
the bubble, hb, as a function of the axial z-coordinate for two values of the external
capillary number for a bubble with V̂ = 3.3. This volume is large enough to guarantee
the existence of a region with a constant film thickness (‘uniform film region’). This
region is connected upstream (downstream) to the ‘nose’ (‘tail’) of the bubble. The dashed
horizontal lines in the figure correspond to the theoretical prediction for the film thickness
parameter b̂ = b/R = 0.643(3Cab)

2/3 given by Bretherton (1961). We can see that for
Cal = −0.001 our numerical results agree quite well with this theoretical law, but that for
Cal = −0.02, the numerical value of b̂ is much smaller than Bretherton’s prediction. This
was expected since this law is only valid for small capillary numbers. This relationship was
further extended to larger capillary numbers (Cab < 2) by Aussillous & Quéré (2000),
who proposed b̂ = b/R = 1.34Ca2/3

b /(1 + 3.35Ca2/3
b ), which is also plotted in figure 2

for Cal = −0.02. In this case, there is a good agreement of the numerical results with the
extended theoretical prediction.

We now consider the case of Bo > 0. We find that according to the results reported by Yu
et al. (2021), for a Bond number larger than a critical value, Bo > Bocr = 0.842, (predicted
by Bretherton) and Cal < 0 the system can admit multiple solutions at the same point in
the parameter space. For example, figure 3 shows that the dimensionless steady bubble
length, L̂b, when represented as a function of the external capillary number, Cal, lies on a
curve with three branches connected by two limit points, where these three branches are
labelled I, II and III. Along branch I (solid red line in figure 3), whose points correspond
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Figure 3. Nonlinear axisymmetric steady solutions of the model for Bo = 1.56 and V̂ = 3.3 showing the
steady length of the bubble interface, L̂b, as a function of the external flow. A hysteresis loop is formed by
two fold (Cal1 and Cal2) bifurcations.

to a flow as depicted in inset A, the bubble is compressed by the action of the external
downward flow (Cal < 0). This branch persists as the external flow increases until the
saddle-node point at the parameter value Cal = Cal1. For external flow values above Cal1
the bubble becomes unstable and the solution jumps to branch III (solid blue line) through
an axisymmetric nonlinear time evolution (see figure 7(a,c) in § 3.2), where the bubble
becomes more elongated with an increasing film thickness (right inset). Branch III persists
as we decrease the external flux below Cal1 until the limit point of the branch is reached
(denoted Cal = Cal2, where Cal2 < Cal1). For an even smaller external flux the system
jumps to branch I (see figure 7(b,d) in § 3.2), the bubble becomes less elongated with a
drastic reduction of the film thickness.

We have found that these two branches of steady axisymmetric stable solutions (I
and III) are connected by another branch of steady solutions. To calculate this unstable
branch II (dashed green line in figure 3) we have used a continuation technique consisting
of increasing (decreasing) L̂b starting from the limit point Cal1 (Cal2) leaving free the
capillary number obtained as part of the solution of the problem. It can be observed that
the behaviour of Cal in the branch is not monotonic as L̂b rises, the capillary number
decreases, reaches a minimum, then increases until reaching another local maximum and
finally decreases very slowly (almost vertical curve) until reaching the other limit point.
An example of the flow for this branch is depicted in inset C of figure 3. As can be seen
in that figure, the solutions of branch II do not have a region of constant thickness, but
have two regions of nearly constant thickness changing along the branch. That means that
the parameter b̂ used in Yu et al. (2021) to characterise the solutions of branches I and III
(which have a region of uniform thickness) cannot be used to calculate the solutions of
branch II. This has led us to use the L̂b parameter to compute branch II. This parameter
was previously used by Gallino, Schneider & Gallaire (2018) to describe the two branches
of solutions (one stable and one unstable) that exist in the fluid droplet problem suspended
in an extensional flow.

Next, we report results for different Bo and Cal to show that the results in figure 3
are the 2-D projection in a plane (where the Bond number is held fixed) of a complex
3-D bifurcation. Figure 4(a) shows how the limit points (Cal1 and Cal2) and their
corresponding limit bubble lengths (L̂b1 = L̂b(Cal1) and L̂b2 = L̂b(Cal2); see figure 4b)
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Figure 4. Overview of the critical conditions for multiplicity of steady axisymmetric solutions. Results are
reported for (a) the external capillary number and (b) the steady bubble length as a function of Bond number
for V̂ = 3.3.

vary continuously as the Bond number decreases until reaching the critical value, Bocusp =
0.842, where both curves merge. This type of bifurcation, in which different steady
solutions coexist for the same control parameters, has been reported in other nonlinear
problems such as swirling flows in pipes and open jets (Lopez 1994; Shtern & Hussain
1996; Herrada, Pérez-Saborid & Barrero 2003), uniform flow past a rotating circular
cylinder (Sierra et al. 2020) or in flows in channels with flexible walls (Herrada et al. 2022)
and it was recently termed ‘double hysteresis’ (Shtern 2018). An interesting difference
compared with these other problems is that, while in the latter the appearance of the
bifurcation occurs when the Reynolds number of the problem becomes larger than a
critical value, Re > Recusp, in our case Re = 0 and the bifurcation appears when the Bond
number exceeds a critical value Bo > Bocusp. The existence of a multiplicity of solutions
can only be attributed to nonlinear phenomena, so it is natural that in a wide variety of fluid
mechanics problems in which this type of bifurcation has been reported, the Reynolds
number is the parameter that controls the process since an increase in Re produces an
increase in the nonlinearity of the system. However, in the present case we are considering
only the non-inertial flow regime (Re → 0) so a linear flow response of the system would
be expected if the bubble is not deformable. The key ingredient for the appearance of a
bifurcation here is precisely that the bubble is deformable: the nonlinear terms associated
with curvature and free surface stresses give rise to hysteresis as buoyancy forces increase.

Figure 4(a) gives also a general picture of the axisymmetric problem. For Bo < Bocusp
we have two types of stationary and stable solutions in the duct, bubbles under a
backward flow (Cal < 0), which are shorter and with smaller width (solutions in branch
I), and bubbles under an upward flow (Cal > 0), which are larger and with a small
width (solutions in branch III). In both cases, when the external flow ceases, Cal = 0,
the bubble stops. This apparent symmetry is broken when the buoyancy forces reach a
critical value, i.e. when Bo > Bocusp. In this case, region III of solutions, aided by gravity
forces, can penetrate into the backward flow region (Cal < 0) as shown by the blue curve
Cal = Cal2(Bo)) in figure 4(a). On the other hand, solutions in branch I cease to exist
before the external flow cancels out (Cal = 0) also due to the effect of buoyancy forces
as shown by the red curve (Cal = Cal1(Bo)). The region between the two curves is where
the two stable stationary solution branches (branches I and III) coexist. In this region,
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Figure 5. Overlapping solution branches and the non-unique film profiles for Bo > Bocusp. Results at (a,b)
Bo = 0.97, (c,d) Bo = 1.16 and (e, f ) Bo = 1.56 are shown, comparing lubrication theory (solid curves),
experiments (circles), numerical volume-of-fluid simulations (squares) and the current simulations (dashed
lines). The lubrication, experimental and numerical volume-of-fluid simulation data are from Yu et al. (2021).

there is also another branch of stationary (but unstable) solutions (branch II) that connects
branches I and III.

To close this section, in figure 5 we compare our results with those reported by Yu
et al. (2021) for cases with Bo > Bocusp. The experimental (circles), numerical (squares),
and theoretical (solid lines) results for b̂ and Cab were obtained in that work, while the
solid red and blue lines correspond to our results. There is good agreement between the
different results. Only for Bo = 1.56 are there appreciable discrepancies in values of the
uniform film thickness b̂ between the theoretical law, which is based on the lubrication
approximation, and our full asymmetric simulations for the branch III solutions. As in
the gravity-free case depicted in figure 2, we believe that the lubrication approximation
overestimates the value of b̂ in this case. For example, in figure 6 we have plotted the
profile of the bubble, hb, as a function of the axial z-coordinate and the ‘nose’ profile
computed using the lubrication approximation describe in Yu et al. (2021) for V̂ = 3.3
and Cal = 0.02. We have also included in Appendix C several numerical tests to rule
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Figure 6. Steady bubble profile hb as a function of the axial coordinate z for Bo = 1.56, V̂ = 3.3 and
Cal = 0.02. The ‘nose’ profile computed using the lubrication approximation is also depicted for comparison.

7.5 L̂b
(III )

L̂(t̂ )
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ẑ ẑ
Figure 7. Nonlinear axisymmetric unsteady solutions of the model for Bo = 1.56 and V̂ = 3.3 showing the
transition between solution branches. (a,c) Show the bubble length and bubble profiles at different times when
the system transits from branch I to III. (b,d) Show the bubble length and bubble profiles at different times
when the system transits from branch III to I.

out that the small differences observed in the parameter b̂ are due to inconsistency of
our numerical method. As for the small discrepancies observed between our simulations
and the experimental results, these may be associated with the estimated value of the
surface tension in the experiments. To test this hypothesis, numerical simulations were
performed which show that the results are very sensitive to the surface tension value
used. For example, if we lower the surface tension value by only 3 % with respect to the
reported experimental value, substantial improvements in the degree of agreement with
the experiments are achieved. Tests were also performed in which inertia was included in
the simulations, as characterised by the Reynolds number, which, however, are so small
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Figure 8. Steady bubble profiles hb as a function of the axial coordinate z for Bo = 1.56 and V̂ = 3.3 for the
three branches of steady solutions with the same Cal number.

(around 0.23 in the worst case) that when they are included in the simulations the results
are virtually indistinguishable from those of not including inertia (Re = 0).

3.2. Transition between branches for Bo > Bocusp

As we have already pointed out in the previous section, as the external capillary number
increases beyond limit point Cal1, the system abruptly transitions from branch I to the
branch III steady state. This transition is explored in figure 7(a), where we plot the
unsteady evolution of the bubble length from Cal1 when Cal is instantaneously increased.
Figure 7(c) shows the instantaneous bubble profiles for different times corresponding to
the symbols marked in figure 7(a). These figures show that the length increases with time,
reaches a maximum, then a local minimum and finally reaches the stationary value of
branch III for long times, while the bubble profile undergoes important modifications
before reaching the stationary profile corresponding to branch III.

By the other hand, as the external capillary number decreases beyond the other limit
point Cal2, the system abruptly transitions from branch III to the branch I steady state. This
transition is explored in figure 7(b) where we plot L from Cal3 when Cal is instantaneously
decreased. In this case the bubble length behaviour is monotonic with a decreasing bubble
length until it reaches the stationary length corresponding to branch III. Figure 7(d) shows
the instantaneous bubble profiles for different times corresponding to the symbols marked
in figure 7(b). An interesting feature of these transient profiles is that, unlike the stationary
profiles, they do not have a single region of constant film thickness. In this they resemble
the unstable stationary solutions of branch II. The reason is that these non-stationary
solutions, like the solutions of branch II, are mixed states between the solutions of branches
I and III. For example, in figure 8 the stationary bubble profile for the three different
branches are compared for the same value of Cal. It is observed that the film thicknesses
in intermediate solution II are a mixture of the thicknesses of branches I and III.

3.3. Linear 3-D stability results
For cases with Bo > Bocusp, both experiments and 3-D unsteady simulations carried
out by Yu et al. (2021) yield symmetry-breaking profiles when the bubble attempts to
transit between steady states near the ends of the two solution branches. The authors
also observed that symmetry breaking occurs before the theoretically predicted branch
termination condition resulting in a 3-D configuration where the bubble is no longer
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Figure 9. Bubble profiles at the two fold points with Bo = 1.56 and V̂ = 3.3. The deformation of the interface
induced by the instability (dashed black line) has been obtained by adding the m = 0 perturbation of the shape
to the steady profile (solid magenta line). The amplitude of the perturbation has been chosen appropriately to
distinguish the effect on the base flow.

aligned with the tube axis. In this section, we will demonstrate that the symmetry breaking
is the result of a global linear instability of the system.

First, we analyse the stability of the different solution branches against axisymmetric
perturbations (m = 0). As expected, we find that the solutions of branches I and III are
stable while those of branches II are unstable against stationary perturbations (ωr = 0).
To better understand the transition process between branches described in the previous
section, it is useful to analyse the linear perturbations of the flow near the two saddle points
(Cal1 and Cal1) where branches I and III lose their stability see figure 10. To this end, we
have plotted in figure 9 the stationary bubble profiles (magenta lines) corresponding to
the fold points Cal = Cal1 (a) and Cal = Cal2 (b), respectively. The instability-induced
deformation of the interface can be seen by adding the m = 0 perturbation of the shape
to the stable profile (dashed back lines). For Cal = Cal1 the deformations are appreciable
in both the ‘nose’ and the ‘tail’ of the bubble while they are negligible in the ‘uniform
region’. For Cal = Cal2 the larger deformations are in the ‘tail’ region. It is this linear
instability that gives rise to the subsequent nonlinear time evolution of the system that
leads to the jump between branches.

We now analyse the temporal stability of the two axisymmetric stable steady solution
branches (I and III) depicted in figure 3 against 3-D non-axisymmetric perturbations. We
find that there is a critical external capillary number, Ca∗I

l (Ca∗I
l < Cal1), above which

the solutions in branch I become unstable under non-axisymmetric perturbations with
|m| = 1. On the other hand, we have also found that there exists another critical capillary
number Ca∗III

l , (Cal2 < Ca∗III
l ) below which the solutions in branch III are unstable under

non-axisymmetric perturbations with |m| = 1.
To demonstrate this conclusion, in figure 10 the imaginary part of the m = 1 least (most)

stable (unstable) mode of each branch is plotted as a function of Cal. If we move along
branch I (see figure 10a) gradually increasing Cal, it happens that before reaching the
limit point (Cal1), the bubble becomes unstable (ωi > 0) against stationary perturbations
(ωr = 0) when Cal > Ca∗I

l , which causes the bubble to cease to be aligned with the axis of
the duct. On the other hand, if we move along branch III gradually decreasing the capillary
number, it happens that before reaching the other limit point (Cal2), the bubble becomes
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Figure 10. Imaginary part of the most/least unstable/stable mode with m = 1 (solid line) and m = 0 (dotted
line) as a function of the capillary number for (a) branch I and (b) branch III for the case Bo = 1.56 and
V̂ = 3.3. The black vertical lines indicate the critical values of the capillary numbers Ca∗I

l and Ca∗III
l that

separate the stable solutions of branch I and branch III from the unstable ones for m = 1 perturbations. The
blue and red dashed vertical lines correspond to the end of branches I and III respectively.

unstable against stationary perturbations (ωr = 0) when Cal < Ca∗III
l ), which causes the

bubble to cease to be aligned with the axis of the duct. The system considered in this work
is O(2) symmetric (invariant to arbitrary rotations about the axis and to reflections about
any meridional plane) and the results in the figure just show that in our problem this O(2)

symmetry is broken when the external capillary number exceeds a critical value when
buoyancy forces are sufficiently strong (Bo > Bocusp). Some recent studies on this general
topic include the symmetric breaking of plumes driven by localised heating (Lopez &
Marques 2013) or a swirling plume in a stratified ambient (Marques & Lopez 2014).

We can illustrate how the bubble is no longer aligned with the tube axis when the critical
value of the capillary is exceeded. For this purpose, in figure 11 we have represented the
steady axisymmetric profile of the bubbles (solid magenta lines) for an unstable case in
branch I (figure 11a) and in branch III (figure 11b). Adding to this profile the perturbation
of the shape induced by the instability with m = 1 (black dashed lines) shows that the
process of loss of symmetry in the bubble is not the same in the solutions of branches I
and III. In the case of the branch I solution, there is only a loss of symmetry at the nose
of the bubble. In contrast, for the solution of branch III, the 3-D perturbation induces an
off-axis displacement of the whole bubble.

Finally, we have computed the critical capillary numbers for both branches for other
Bond numbers and the results are presented in figure 12, which gives a general picture of
the full problem. If we start from a solution in branch I gradually increasing Cal (which
experimentally is achieved by decreasing the backward flow rate) it happens that before
reaching the limit point (Cal1), the bubble becomes unstable (when Cal > Ca∗I

l ) which
causes the bubble to cease to be aligned with the axis of the duct. If Cal continues to
increase above the limit value Cal1 where the branch ends, contrary to what the previous
axisymmetric analysis predicts, the solution does not evolves towards the solution of the
stationary branch III (although this branch is stable against small perturbations in that
parameter range) but remains off axis. On the other hand, if we start from a stable solution
in branch III gradually decreasing the capillary number (which experimentally is achieved

958 A45-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.123


Global stability of bubbles rising in a vertical capillary

3-D shape

Branch I: Cal
∗I < Cal Branch III: Cal

∗III > Cal

2-D shape

3-D shape
2-D shape

Gravity
direction

Flow
direction

Gravity
direction

Flow
direction

(b)(a)

Figure 11. Bubble profiles for two unstable cases with Bo = 1.56 and V̂ = 3.3. The 3-D shape (back dashed
line) has been obtained by adding the m = 1 perturbation of the shape to the original axisymmetric profile
(solid magenta line). The amplitude of the perturbation has been chosen appropriately to distinguish the effect
on the base flow.
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Figure 12. Diagram showing symmetry breaking in branches I and III for V̂ = 3.3.

by increasing the backward flow rate) it happens that before reaching the other limit point
(Cal2), the bubble becomes unstable, which causes the bubble to cease to be aligned with
the axis of the duct. If the capillary number continues to decrease below the limit value
Cal2 where the branch ends, and contrary again to what the axisymmetric analysis predicts,
the solution does not evolve to the solution of the stationary branch I (although this branch
is stable against small perturbations for that value of the capillary) but remains off axis.

The results described in figure 12(b) can be understood as the natural continuation
for the case of Bo of order unity and negligible inertia of the results obtained recently
by Abubakar & Matar (2022) and reflected in their figure 21. In both cases, in order
to destabilise the bubble, the backward flow must be intensified. However, the results
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presented here in figure 12(a) are completely new and reflect the existence of another
branch of solutions that behaves differently. These new results, which agree fully with
the experimental observations, have important technical implications. Depending on the
experimental design, i.e. whether we start from branch I or branch III solutions, there
will always be a loss of bubble symmetry after a certain critical flow rate. In the case of
longer bubbles with larger width, the bubble moves off axis by intensifying the back flow
(Cal < Ca∗III

l ). But for shorter bubbles with smaller width the bubble moves off axis by
weakening the back flow (Cal > Ca∗I

l ).

4. Concluding remarks

We propose a method for the study of the global stability analysis of bubbles in a vertical
capillary with an external flow. We tested the method by first comparing the film thickness
parameter with the theoretical predictions of Bretherton (1961) and Aussillous & Quéré
(2000) for the case without buoyancy effects and found very good agreement. We then
tested the method by comparing our steady axisymmetric solutions with the experiments
and simulations carried out by Yu et al. (2021). The result of this comparison shows good
agreement both in the terminal velocity of the bubble and in the determination of the film
profiles. Also, we show that the multiplicity of solutions reported by Yu et al. (2021)
for sufficiently high Bond numbers can be described using bifurcation diagrams with
three branches of steady axisymmetric solutions connected by two folding points. The
axisymmetric analysis of branches I and III predicts an abrupt transition between these
branches when the folding points are exceeded. However, the 3-D global stability analysis
modifies these predictions because before the folding points are reached, both branches
lose stability under 3-D perturbations with |m| = 1. The results are also in agreement with
the experimental and numerical results and explain the loss of symmetry observed in the
bubble profile when the external capillary number approaches the critical value in any of
the branches. As future work, it will be interesting to explore whether the existence of a
multiplicity of solutions found here (with its important consequences on the stability of
the system) extends to regions of larger Bond numbers and with non-negligible inertial
forces.
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Appendix A. Domain discretisation

The spatial domain occupied by the gas is mapped onto a rectangular domain by means of
a non-singular mapping

r = fg(s, ηg, θ, t), z = gg(s, ηg, θ, t), [0 ≤ s ≤ 1] × [0 ≤ ηg ≤ 1], (A1a,b)
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Global stability of bubbles rising in a vertical capillary

where the shape functions fg and gg are obtained as a part of the solution by using
a quasi-elliptic transformation (Dimakopoulos & Tsamopoulos 2003). Some additional
boundary conditions for the shape functions are needed to close the problem.

At the free surface, located at ηg = 1,

fg(s, 1, θ, t) = F(s, θ, t), gg(s, 1, θ, t) = G(s, θ, t). (A2a,b)

At the axis, located at ηg = 0, regularity conditions are considered.
The spatial domain occupied by the liquid is also mapped into a rectangular domain by

means of a non-singular mapping in the form

r = fl(sl, ηl, θ, t), z = gl(sl, ηl, θ, t), [0 ≤ sl ≤ 1] × [0 ≤ ηl ≤ 1], (A3a,b)

which is obtained again using a quasi-elliptic transformation. The additional boundary
conditions for the shape functions are:

(i) At the axis, located at ηl = 0 and 0 < sl < 1/3 or 2/3 < sl < 1, regularity
conditions are applied.

(ii) At the gas–liquid interface, located at ηl = 0 and 1/3 ≤ sl ≤ 2/3, the shape
functions must be continuous,

fl(sl, 0, θ, t) = fg(s, 1, θ, t), gl(sl, 0, θ, t) = gg(s, 1, θ, t). (A4a,b)

(iii) At the top boundary, located at sl = 1,

fl(1, ηl, θ, t) = ηlR, gl(1, ηl, θ, t) = H/3. (A5a,b)

(iv) At the bottom boundary, located at sl = 0,

fl(0, ηl, θ, t) = ηlR, gl(0, ηl, θ, t) = −(2H)/3. (A6a,b)

(v) Finally, at the wall, located at ηl = 1,

fl(sl, 1, θ, t) = R,
∂gl

∂ηl
(sl, 1, θ, t) = 0. (A7a,b)

An example of the mappings used in this work is shown in figure 13. The green
(magenta) lines represent the liquid (gas) mesh in the real space (right panel) and in the
computational domain (left panel). The unknown variables in the liquid domain are fg,
gg, wl, ul, vl, pl and U while the unknown variables in the gas domain are fg, gg, wg, ug,
ug and pg, and all the derivatives appearing in the governing equations are expressed in
terms of s, sl, ηg, ηl, θ and t. These mappings are applied to the governing equations (2.1)
and the resulting equations are discretised in the η-direction with nηl and nηg Chebyshev
spectral collocation points in the liquid and gas domains, respectively. Conversely, in the
s-direction we use second-order finite differences with nsl and ns equally spaced points
in the liquid and gas domains, respectively. To compute the basic axisymmetric flows we
remove all θ derivatives from the system, while a classical modal decomposition is used
to compute the θ derivatives in the perturbed 3-D flow. The results presented in this work
were carried out using ns = 851, nsl = 1353, nηg = 10 and nηl = 11 and time step Δt̂ = 50
for the unsteady simulations in § 3.2. We verified that the results presented in this work do
not depend on the mesh.
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rl = fl (sl, ηg, θ, t)

rg = fg (s, ηg, θ, t)
zg = gg (s, ηg, θ, t)

zl = gl (sl, ηg, θ, t)

z

sl
ηl

s
ηg

r

Figure 13. Computational subdomains and grids for the original and mapped variables. In particular, the green
(magenta) lines represent the liquid (gas) mesh in the real space (right panel) and in the computational domain
(left panel).

0.5

0
–8 –7 –6 –5
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Figure 14. Steady bubble profiles comparison for Bo = 1.56 and Cal = 0.02: (a) For different numerical
domains, (b) different meshes and (c) different volumes.

Appendix B. Dimensionless equations

Bulk

∇̂ · v̂i = 0, (i = l, g), (B1)

ρ̂iRe
(

∂ v̂i

∂ t̂
+ (v̂i · ∇̂)v̂i

)
= −∇̂p̂i + μ̂i∇̂2v̂i, (i = l, g), (B2)

where ρ̂l = 1, ρ̂g = ρ, μ̂l = 1 and μ̂g = μ.
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Global stability of bubbles rising in a vertical capillary

Normal and tangential stresses

n · (σ̂ l − σ̂ g) · n = κ̂ + (1 − ρ)

(
Bo + Re

dÛ
dt̂

)
ẑI, (B3)

t1 · (σ̂ l − σ̂ g) · n = 0, t2 · (σ̂ l − σ̂ g) · n = 0. (B4a,b)

Inlet

ŵl = −Û(t̂) + 2Cal(1 − r̂2). (B5)

Appendix C. Convergence study of the numerical method

We have performed several numerical tests to rule out that the small differences in the b̂
parameter observed in figure 5 are due to the inconsistency of our numerical method.

In figure 14(a) we can see how the bubble profile do not depend on the numerical box
characterised by parameter, Ĥ, used in the simulations. Figure 14(b) shows the comparison
with a finer mesh (ns = 951, nsl = 1453, nηg = 12 and nηl = 13). Finally in figure 14(c)
we can see the comparison with a bubble with a larger volume. In this case the profiles of
the bubbles are different but the parameter b̂ is the same for the two volumes.
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