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Abstract

We aim to link random fields and marked point processes, and, therefore, introduce a
new class of stochastic processes which are defined on a random set in R

d . Unlike for
random fields, the mark covariance function of a random marked set is in general not
positive definite. This implies that in many situations the use of simple geostatistical
methods appears to be questionable. Surprisingly, for a special class of processes based
on Gaussian random fields, we do have positive definiteness for the corresponding mark
covariance function and mark correlation function.
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1. Introduction

Quantities measured in space are mostly modelled as so-called regionalized variables under
the implicit assumption that these quantities can, in principle, be measured everywhere and
that the choice of sampling points does not depend on the values of these quantities. Based
on this assumption, several geostatistical methods like variogram analysis or kriging can be
applied [6]. However, there are two types of situation where this assumption does not hold [24]
and, hence, uncritical use of geostatistical methods might result in incorrect or meaningless
results.

The first type of problem is caused by the investigators themselves following some kind of
preferential sampling [9]. For instance, this happens when data are sampled at places where
only high values of the variable of interest are expected. The second type of problem is intrinsic
to the investigated object itself. An obvious situation is the investigation of individuals, e.g. trees
in a forest, where interactions among individuals are present. In this particular situation the
theory of marked point processes provides a formal framework for data analysis [10], [13].

In this paper we draw the reader’s attention to some further, deceptive situations which
belong to the second type of problem and where implicit conditioning has mostly been ignored
in the literature [14, p. 157], [16], [29]. For instance, the investigation of pesticides in soil is
restricted to cropland and the height of forest litter is restricted to silvicultural areas. In both
cases, an unintended preselection cannot be excluded since environmental conditions directly
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influence land use. A further, simple example which has motivated this work is the prediction
of the altitude by geostatistical methods based on measurements that are taken above sea level
only.

Such conditioning might be considered minor, but can cause major effects, nonetheless. We
advise caution because of the following facts.

• Any characteristic, such as the covariance function or the variogram, has to be understood
as a conditional quantity, given that measurements can be taken at certain locations.

• In general, the covariance function is not positive definite and the variogram is not
conditionally negative definite.

Since Gaussian random fields are rather popular, a bigger part of this paper deals with the
following hypothetical model: the sea level is at 0 and the altitude is given by some (smooth)
stationary Gaussian random field Z with mean −t and variance 1. Then we face the following
oddities when inference is based on measurements above sea level only.

1. The theoretical variogram is not conditionally negative definite, in general.

2. The naive definition of the covariance function

C(x, y) = E[Z(x)Z(y) | Z(x) ≥ 0, Z(y) ≥ 0] − m̄2

leads in general to a function that is not positive definite for any m̄ ∈ R.

3. A more suitable definition of the covariance function for the altitude above sea level as
the conditional covariance given that Z(x) ≥ 0 and Z(y) ≥ 0 leads to a function that is
never differentiable unless the field is spatially constant.

4. If t = 0, the conditional covariance function is positive definite, although no random
field exists that is independent of the sampling locations and that can model the altitude
above sea level.

Before discussing the above setup in detail, we introduce the theoretical framework that
allows both a meaningful definition of second-order characteristics and usual random fields as
well as the inclusion of marked point processes as particular cases. For this reason, we extend
the notion of a random upper semicontinuous (u.s.c.) function (taking values in R̄ = [−∞, ∞])
on R

d such that the domain is a random subset of R
d . To this end, we make use of Matheron’s

[17] idea and consider the hypograph

Af = {(x, t) ∈ X × R̄ : t ≤ f (x)}, X ⊆ R
d ,

of a function f : X → R̄. In fact, Af is closed if and only if f is u.s.c. on closed X, and the
mapping f �→ Af is a bijection.

The paper is organized as follows. In Section 2 we formally introduce the notion of a random
marked closed set and discuss some examples. In Section 3 we generalise the definitions of
several characteristics of random fields and random marked sets. We show that, in general,
they do not share the same definiteness properties as their random field analogues. In Section 4
we study Gaussian random fields Z(x) given that Z(x) exceeds a certain threshold t ∈ R. In
Section 5 we collect the proofs of the statements of the preceding sections.
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2. Random marked closed sets

Denote by R̄ = R ∪ {−∞, +∞} the extended real line. Let

�usc = {(X, f ) : X ⊆ R
d is closed, f : X → R̄ is u.s.c.}.

Observe that �usc is isomorphic to the system Ucl of all closed sets A ⊆ R
d × R̄ which satisfy,

for all x ∈ R
d and all t ∈ R̄,

(x, t) ∈ A 
⇒ {x} × [−∞, t] ⊆ A

by the bijection
τ : �usc → Ucl

(X, f ) �→ {(x, t) ∈ X × R̄ : t ≤ f (x)}, (X, f ) ∈ �usc.

The subsequent proposition follows immediately from the fact that the space F (Rd × R̄) of
closed subsets of R

d × R̄ is compact [17], [20, p. 399] and that Ucl is closed in F (Rd × R̄).

Proposition 1. �usc is compact in the topology induced by Ucl.

Definition 1. Let (�, A, P) be a complete probability space, and let (�, Z) : � → �usc be a
mapping with

{ω ∈ � : τ((�, Z)(ω)) ∩ B 
= ∅} ∈ A

for every compact set B in R
d × R̄. Then (�, Z) is called a random marked closed set.

The distribution law of a random closed set is characterized by the probabilities of hitting
compact sets [18], [20] whereas, by [18, Proposition 2.3.1], it suffices to consider a suitable
base. When choosing the same base of all finite unions of half cylinders Bi × [ti , ∞] as in [25,
Theorem XII-6] for random u.s.c. functions on R

d , we obtain the following characterization of
random marked closed sets.

Theorem 1. The distribution of a random marked closed set (�, Z) (as a probability measure
on �usc) is completely determined by the joint probabilities

P
(

sup
x∈Bi∩�

Z(x) < ti, Bi ∩ � 
= ∅, i ∈ I ; Bj ∩ � = ∅, j ∈ {1, . . . , n} \ I
)
,

where B1, . . . , Bn are compact subsets of R
d , t1, . . . , tn ∈ R̄, and I is a subset of {1, . . . , n},

n ∈ N.

Definition 2. A random marked closed set (�, Z) is called stationary if

P(τ (�, Z) + (x, 0) ∈ · ) = P(τ (�, Z) ∈ · )
for all x ∈ R

d , and it is called isotropic if

P(θτ (�, Z) ∈ · ) = P(τ (�, Z) ∈ · )
for all rotations θ ∈ SOd+1 with θ(Rd × {0}) = R

d × {0}.
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Example 1. A particular model of a random marked closed set that describes an unbiased
sampling of a random field [27] is given when Z is a random u.s.c. function on R

d that is
independent of the random closed set �. We call (�, Z) a random field model.

If the data are consistent with a random field model, any analysis is simplified considerably
since the domain and the marks can be investigated separately (see also Remark 5 below) by
using standard techniques for random sets [26] and for geostatistical data [6], [10]. For the
particular case of marked point processes, several tests for the random field model hypothesis
have been developed [11], [24].

Example 2. Let � be a random closed set, and let Z(x) = d(∂�, x) be the Euclidean distance
of x ∈ R

d to the boundary of �. Then Z is continuous even on �. Since local maxima of Z

are only attained at locations in the interior of �, the random marked set (�, Z) is a random
field model if and only if � = ∂� almost surely, in which case Z is trivial.

Example 3. Cressie et al. [7] considered the spatial prediction on a river network. Here, � is
the flow of the river (as a one-dimensional line or a two-dimensional stripe) and Z models the
dissolved oxygen.

Example 4. Let � be a random closed set represented as a locally finite union of closed
C2-smooth hypersurfaces in R

d such that any two hypersurfaces intersect at most in a set of
measure 0 with respect to the (d − 1)-dimensional Hausdorff measure. For any x ∈ �, the
mark Z(x) might be the maximum of the mean curvatures of the hypersurfaces at x. The mean
curvature has its importance, for example, in the analysis of foams [15].

Remark 1. In [19] Molchanov studied labelled random closed sets in the sense that a random
closed set is split into several closed subsets; see also [20, p. 141]. Here the marks are at the
nominal scale. Since random marked sets link real-valued marked point processes and real-
valued random fields, the concept of the present paper may be seen as an implicit generalisation
of labelled random closed sets.

3. Characteristics for random marked closed sets

For the description of random fields, a set of second-order characteristics like the variogram,
the covariance function, and the correlation function are used [6]. In analogy to these summary
functions, several second-order characteristics for marked point processes have been introduced
as conditional quantities given the existence of points of the respective unmarked point process
[23], [26]. Since point processes can be described as random (counting) measures, these
quantities have been derived as Radon–Nikodym derivatives of certain second-order moment
measures [4, Section 2.7]. Nevertheless, random measures are not always appropriate for the
definition of second-order characteristics as the following example illustrates.

Example 5. Let the stationary random closed set � in R
1 be given by

� = ξ +
⋃
z∈Z

[2z − p, 2z + p] ∪ {2z + 1},

where p ∈ (0, 1
3 ) and ξ is uniformly distributed on [0, 1]. Obviously, interpoint distances

r ∈ (0, 2p] are only possible if both points belong to the same segment ξ + [2z − p, 2z + p],
and interpoint distances r ∈ (1 − p, 1 + p] are only possible if one point belongs to a segment
ξ + [2z − p, 2z + p] and the other is from one of the singletons, {ξ + 2z − 1} or {ξ + 2z + 1}.
Since P(0, r ∈ �) = 0 for all r ∈ (1 − p, 1 + p], the approach of defining second-order
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characteristics using a random measure, which is here based on the Lebesgue measure on R
1,

cannot account for segment-singleton point pairs, and, hence, these characteristics are undefined
for r ∈ (1 − p, 1 + p]. Nonetheless, it does make sense to also consider the correlation of two
marks given that the corresponding points are a distance r, r ∈ (1 − p, 1 + p], apart.

In what follows, Bε(x) denotes the Euclidean ball in R
d with centre x ∈ R

d and radius
ε ≥ 0, ‘⊕’ denotes Minkowski addition, and we use the shorthand �⊕ε for � ⊕ Bε(o), where
o is the origin in R

d . Furthermore, 1A denotes the indicator of A.
Let (�, Z) be a random marked closed set in R

d with marks in R. For ease, we assume
stationarity, but the approach can be extended to a nonstationary setup. For any ε ≥ 0, define
the (stationary) random field Zε by

Zε(x) =
⎧⎨⎩ max

y∈�∩Bε(x)
Z(y), x ∈ �⊕ε,

0, otherwise.

Let f : R
2 → R be a right-continuous function. For all h ∈ R

d , define

κf (h) = lim
ε→0+ E[f (Zε(o), Zε(h)) | o, h ∈ �⊕ε] (1)

whenever κ|f |(h) < ∞ and P(o, h ∈ �⊕ε) > 0 for all ε > 0; otherwise, κf (h) is undefined.
In particular, for the following choices of f ,

e(m1, m2) = m1, c(m1, m2) = m1m2, and v(m1, m2) = m2
1, (2)

define
E(h) = κe(h), (3)

γ (h) = 1
2 (κv(h) + κv(−h)) − κc(h), (4)

cov(h) = κc(h) − κe(h)κe(−h), (5)

cor(h) = κc(h) − κe(h)κe(−h)

(κv(h) − κe(h)2)1/2(κv(−h) − κe(−h)2)1/2 , (6)

kmm(h) = (m̄)−2 κc(h), m̄ 
= 0, (7)

where m̄ = E[Z(o) | o ∈ �] is the mean mark.
We call γ the mark variogram, cov the mark covariance function, cor the mark correlation

function, and kmm Stoyan’s kmm-function of (�, Z) [23]. Note that, if � ≡ R
d , these definitions

are compatible with the classical definitions for random fields (see Remark 5 below).
Whenever (�, Z) is assumed to be both stationary and isotropic, the characteristics given by

(3)–(7) are rotation invariant. By a slight abuse of the notation we will write E(r), r ∈ [0, ∞),
instead of E(h), h ∈ R

d . The same applies for the functions defined in (4)–(7).

Remark 2. Let �ε = νd( ·∩�⊕ε) be the random volume measure associated with the random
closed set �⊕ε. Here, νd is the d-dimensional Lebesgue measure. If µ

(2)
ε denotes the second-

order moment measure of �ε then, for B1, B2 ∈ B(Rd), we have∫
B2

∫
B1

E[f (Zε(x), Zε(y)) 1�⊕ε (x) 1�⊕ε)(y)] dx dy

= E

[∫
B2

∫
B1

f (Zε(x), Zε(y))�ε(dx)�ε(dy)

]
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=
∫

B1×B2

∫
R2

f (m1, m2)Qε;x,y(d(m1, m2))µ
(2)
ε (d(x, y))

=
∫

B2

∫
B1

∫
R2

f (m1, m2)Qε;x,y(d(m1, m2)) P(x, y ∈ �⊕ε) dx dy,

where Qε;x,y is the two-point mark distribution of the weighted random measure (�ε, Zε) [4].
Hence, for almost all (x, y) with P(x, y ∈ �⊕ε) > 0, we have

E[f (Zε(x), Zε(y)) | x, y ∈ �⊕ε] =
∫

R2
f (m1, m2)Qε;x,y(d(m1, m2)).

Remark 3. In the case P(o, h ∈ �) > 0, h ∈ R
d , the above definition takes the simpler form

κf (h) = E[f (Z(o), Z(h)) | o, h ∈ �] (8)

for f ∈ {e, c, v} if we impose the integrability conditions

E[|Z(o)|2 1�(o)] < ∞, κv(h) < ∞,

and lim
ε→0+ E[(Z(p(�, o))−)2 1�⊕ε\�(o)] < ∞.

Here e, c, and v are given by (2), a− denotes the negative part of a ∈ R, and p(A, x) is the
metric projection [12] of x ∈ R

d \ � onto the boundary ∂� of � with the smallest coordinates
lexicographically ordered, say. Note that the latter is not crucial, since, due to stationarity, the
probability that the projection of o onto ∂� is not unique is 0; see [12].

Equality (8) can be seen as follows. Denoting by a+ the positive part of a ∈ R we always
have

Zε(o)+ 1�⊕ε (o) 1�⊕ε (h) ≤ Zε̄1(o)+ 1�⊕ε̄1
(o) 1�⊕ε̄1

(h) ≤ |Zε̄1(o)| 1�⊕ε̄1
(o) 1�⊕ε̄1

(h)

for all 0 < ε ≤ ε̄1, where the right-hand side is integrable for small enough ε̄1 as κ|e|(h) < ∞.
Similarly,

Zε(o)− 1�(o) 1�⊕ε (h) ≤ Zε(o)− 1�(o) ≤ Z(o)− 1�(o) ≤ |Z(o)| 1�(o).

Finally, since Zε(o)− = minx∈�∩Bε(o) Z(x)− for o ∈ �⊕ε \ �, we have

Zε(o)− 1�⊕ε\�(o) 1�⊕ε (h) ≤ Zε(o)− 1�⊕ε\�(o)

≤ Z(p(�, o))− 1�⊕ε\�(o)

≤ Z(p(�, o))− 1�⊕ε̄2
(o)

for all 0 < ε ≤ ε̄2, where the right-hand side is integrable for small enough ε̄2. Note that

E[|Z(o)| 1�(o)] < ∞, κ|e|(h) < ∞, lim
ε→0+ E[Z(p(�, o))− 1�⊕ε\�(o)] < ∞

by the Cauchy–Schwarz inequality. Similarly, we find that

|Zε̄1(o)|2 1�⊕ε̄1
(o) 1�⊕ε̄1

(h) + |Z(o)|2 1�(o) + (Z(p(�, o))−)2 1�⊕ε̄2
(o)

is an integrable upper bound of |Zε(o)|2 1�⊕ε (o) 1�⊕ε (h) and is half of the integrable upper
bound of |Zε(o)Zε(h)| 1�⊕ε (o) 1�⊕ε (h) due to the estimate |Zε(o)Zε(h)| ≤ 1

2 (|Zε(o)|2 +
|Zε(h)|2).
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Since Z is u.s.c. on �, a value ε > 0 exists for every x ∈ � and every δ > 0 such that
Z(y) ≤ Z(x) + δ for all y ∈ Bε(x) ∩ �. Hence, we have Zε(x) → Z(x) from above as
ε → 0+. Furthermore, x /∈ � implies that x /∈ �⊕ε for all sufficiently small ε. We then have

f (Zε(o), Zε(h)) 1�⊕ε (o) 1�⊕ε (h) → f (Z(o), Z(h)) 1�(o) 1�(h) almost surely

as ε → 0+. Hence, by the dominated convergence theorem we have

κf (h) = lim
ε→0+

E[f (Zε(o), Zε(h)) 1�⊕ε (o) 1�⊕ε (h)]
P(o, h ∈ �⊕ε)

= E[f (Z(o), Z(h)) 1�(o) 1�(h)]
P(o, h ∈ �)

.

Remark 4. There exists an alternative concept of random marked sets inspired by the notion
of random fields that allows second-order characteristics in the sense of the preceding remark
to be defined.

Let R̄∅ = R̄ ∪ {ζ∅} be the extension of R̄ by some ζ∅. We denote by B(R̄∅) the respective
Borel σ -field which is generated by all sets B1 ∪ B2 for B1 ∈ B(R) and B2 ⊂ {−∞, ∞, ζ∅}.

A family of random variablesZ(·, x) : � → R̄∅, x ∈ R
d , on the probability space (�, A, P)

is called a random field with random domain � if

� = {x ∈ R
d : Z(·, x) 
= ζ∅}.

Clearly, when Z only takes values different from ζ∅ or {−∞, ∞, ζ∅}, this notion of a random
marked set includes the usual R̄- or R-valued random field on R

d .
Note that � is a random set in a very general sense [18, pp. 40–45], entirely determined by

its indicator 1�(x) = 1
R̄
(Z(x)). If Z is jointly measurable, i.e. Z is (A ⊗ B(Rd), B(R̄∅))-

measurable, then the realizations of � are almost surely Borel measurable. If we additionally
have almost surely closed (open) realizations of � then Z is called a random field with random
closed (open) domain; see also [20].

If P(o ∈ �) > 0 holds for a stationary random field Z with random domain �, we can
define second-order characteristics without any further assumption on path regularity. Let Z̃

be the (stationary) random field given by Z̃(x) = Z(x) for x ∈ �, and Z̃(x) = 0 otherwise.
Let f : R

2 → R be a measurable function. For all h ∈ R
d , define

κf (h) = E[f (Z̃(o), Z̃(h)) | o, h ∈ �]
whenever P(o, h ∈ �) > 0 and E[|f (Z̃(o), Z̃(h))| 1�(o) 1�(h)] < ∞.

Remark 5. Let (�, Z) be a stationary real-valued random-field model, and let

Zε(x) =
⎧⎨⎩ max

y∈�∩Bε(x)
Z(y), x ∈ �⊕ε,

Z(x), otherwise.

Since Z is u.s.c. on �, we have Zε(x) → Z(x) from above for x ∈ �, and, hence, by the
definition of Zε, for all x ∈ R

d as ε → 0+. Then, using the independence of Z and �, we
obtain

κf (h) = lim
ε→0+ E[f (Zε(o), Zε(h)) | o, h ∈ �⊕ε]

= lim
ε→0+ E[f (Zε(o), Zε(h))]

= E[f (Z(o), Z(h))]
for all h ∈ R

d which satisfy P(o, h ∈ �⊕ε) > 0 for all ε > 0 and, depending on the choice of
f according to (2), one of the integrability conditions in Remark 3 with � replaced by R

d .
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Remark 6. The definition of κf according to (1) is, in important situations, consistent with
the classical definition of the second-order characteristics of stationary marked point processes
[23]. Let �̃ be a stationary simple marked point process on R

d × R. Then � is the support of
the unmarked point process � = �̃( · × R). We assume that the second-order moment measure
µ(2) of � is locally finite. Denoting by 1{·} the indicator of the event {·}, we have

E[f (Zε(o), Zε(h)) 1�⊕Bε(o)(o) 1�⊕Bε(o)(h)]
= E[f (Zε(o), Zε(h)) 1{�(Bε(o))=1} 1{�(Bε(h))=1}]

+ E[f (Zε(o), Zε(h)) 1{�(Bε(o))>1} 1{�(Bε(h))≥1}]
+ E[f (Zε(o), Zε(h)) 1{�(Bε(o))=1} 1{�(Bε(h))>1}]

for ‖h‖ > 0. For any 0 < ε < ‖h‖/2, the first summand equals

E

[ ∑
(x1,m1),(x2,m2)∈�̃

f (m1, m2) 1Bε(o)(x1) 1Bε(h)(x2)

]
=: µ

(2)
f (Bε(o) × Bε(h)).

We can extend the argumentation in [8, Proposition 9.3.XV] in order to conclude that

P(o, h ∈ �⊕ε)

µ(2)(Bε(o) × Bε(h))
= P(�(Bε(o)) ≥ 1, �(Bε(h)) ≥ 1)

µ(2)(Bε(o) × Bε(h))
→ 1

as ε → 0+. If we additionally impose the condition that, for some ε̄ > 0,

sup
ε∈(0,ε̄)

E[|f (Zε(o), Zε(h))| 1{�(Bε(o))>1} 1{�(Bε(h))≥1} 1{|f (Zε(o),Zε(h))|>M}]
P(�(Bε(o)) ≥ 1, �(Bε(h)) ≥ 1)

→ 0

as M → ∞, we obtain

κf (h) = lim
ε→0+

µ
(2)
f (Bε(o) × Bε(h))

µ(2)(Bε(o) × Bε(h))
,

which equals µ(2)-almost everywhere the Radon–Nikodym derivative

dµ
(2)
f (x, x + h)

dµ(2)(x, x + h)
.

For instance, the above condition is satisfied if E |f (Zε(o), Zε(h))|α is uniformly bounded on
(0, ε̄) for some α > 1.

A function f : R
d → R is called positive definite if

n∑
i=1

n∑
j=1

aiajf (xi − xj ) ≥ 0

for any n ∈ N, x1, . . . , xn ∈ R
d , and a1, . . . , an ∈ R, and it is called conditionally negative

definite if
n∑

i=1

n∑
j=1

aiajf (xi − xj ) ≤ 0

for any n ∈ N, x1, . . . , xn ∈ R
d , and all a1, . . . , an ∈ R with

∑n
i=1 ai = 0.
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For a random field model, all second-order characteristics coincide with those of a random
field with u.s.c. paths (see Remark 5), and, thus, share the same definiteness properties. On
the other hand, for marked point processes, it has been shown through examples [28] and
systematically [23] that the mark covariance function, the mark correlation function, and
the kmm-function need not be positive definite, and that the mark variogram need not be
conditionally negative definite in contrast to random fields. Some of the constructions used in
[23] are based on the fact that, for a marked point process, � is a locally finite subset of R

d and
has therefore Lebesgue measure 0. However, the next example shows that in general we cannot
expect the mark covariance function to be positive definite (or the mark correlation function
and kmm-function) even when we have E[νd(� ∩ [0, 1]d)] = P(o ∈ �) > 0.

Example 6. (Example 2 continued.) Let p ∈ ( 2
3 , 1], ξ be a random variable uniformly

distributed on [0, 1], � = Z ⊕ [ξ, p + ξ ], and Z(ξ, · ) be a 1-periodic function defined by

Z(ξ, x) =

⎧⎪⎪⎨⎪⎪⎩
x − ξ, x ∈ Z ⊕ [

ξ, 1
2p + ξ

)
,

p − (x − ξ), x ∈ Z ⊕ [ 1
2p + ξ, p + ξ

)
,

0, x ∈ Z ⊕ [p + ξ, 1 + ξ).

Then Z and � are jointly stationary and each of the characteristics given by (3)–(7) is 1-periodic.
In particular, on [0, 1

2 ) we have

cov(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p4−4p3r−12p2r2+48pr3−36r4

48(p−r)2 , r ∈ [0, 1 − p),

32r3(2p−1)+24r(1−r)−48pr(1−p)(1−r)−12p2(2pr−p+1)−3p4+8p−4
48(2p−1)2 , r ∈ [

1 −p, 1
2p

)
,

− 4p4−8p3+6p2−2p+12r4−24r3+18r2−6r+1
12(2p−1)2 , r ∈ [ 1

2p, 1
2

]
,

and, by symmetry, cov(r) = cov(1−r) for r ∈ ( 1
2 , 1). Since cov is 1-periodic the 0th coefficient

of the Fourier series of cov is proportional to∫ 1

0
cov(r) dr = 7

6
p3 ln

(
p

2p − 1

)
+ 409p5 − 790p4 + 565p3 − 280p2 + 120p − 24

120(2p − 1)2 ,

which is negative for 2
3 ≤ p < 1 (and vanishes for p = 1, which is the random field case).

Since cov is continuous, Bochner’s theorem [22] implies that cov cannot be a positive definite
function.

In the next section we concentrate on our major example since some results might be of
interest not only to the field of random marked sets but also to the theory of positive definite
functions.

4. Gaussian random fields exceeding t ∈ RRR

Let Z be a stationary and isotropic centred unit variance Gaussian random field in R
d . Then,

for t ∈ R, we define
�t = {x ∈ R

d : Z(x) ≥ t}.
If, in particular, Z is almost surely continuous [1], [2] then �t is almost surely closed, i.e. (�t , Z)

is a random marked closed set. Note that �t is a so-called excursion set which has been
extensively studied in the literature; see [1], [2], and the references therein.
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Since Z is assumed to be both stationary and isotropic, its covariance function, cov(x, y) =
E[Z(x)Z(y)], x, y ∈ R

d , is translation and rotation invariant, i.e. there exists a function
R : [0, ∞) → R such that cov(x, y) = R(‖x − y‖) for x, y ∈ R

d .
First, we consider the case t = 0.

Theorem 2. Let Z be a stationary and isotropic centred unit variance Gaussian random field in
R

d with covariance function given by R : [0, ∞) → R. Then, for r ∈ [0, ∞), the second-order
characteristics of (�0, Z) are given by

E(r) =
√

π

2

1 + R(r)

arcsin(R(r)) + π/2
, (9)

cov(r) = R(r) +
√

1 − R(r)2

arcsin(R(r)) + π/2
− π

2

(1 + R(r))2

(arcsin(R(r)) + π/2)2 ,

γ (r) = (1 − R(r))

(
1 −

√
1 − R(r)2

arcsin(R(r)) + π/2

)
,

kmm(r) = π

2

(
R(r) +

√
1 − R(r)2

arcsin(R(r)) + π/2

)
,

cor(r) = R(r)(arcsin(R(r))+π/2)2+
√

1−R(r)2(arcsin(R(r))+π/2)−π(1+R(r))2/2

(arcsin(R(r))+π/2)2+R(r)
√

1−R(r)2(arcsin(R(r))+π/2)−π(1+R(r))2/2
.

Obviously, each of the second-order characteristics of (�0, Z) is a continuous transform of R.
In particular, this means that the continuity of R is preserved, and, due to the monotonicity of
the transform for cov (see Theorem 3 below), the curve progression of cov indicates whether
or not R is continuous at the origin [6].

Since, for every stationary random field model, E(h), h ∈ R
d , is constant, (9) implies that

(�0, Z) is not a random field model, i.e. there does not exist a random field in R
d whose second-

order characteristics coincide with those of (�0, Z) unless R is constant. This is underlined by
the fact that the kmm-function of (�0, Z) is not positive definite, in general.

Proposition 2. Let Z be a stationary and isotropic centred unit variance Gaussian random
field in R

d with covariance function given by a continuous function R : [0, ∞) → R. Then the
kmm-function of (�0, Z) is positive definite if and only if R ≡ 1.

Proof. Let q(ρ) = ρ + √
1 − ρ2 (arcsin(ρ) + π/2)−1. Then q(1) = 1 and

q(ρ) ≥ ρ + π−1
√

1 − ρ2 > 1, ρ ∈ ((π2 − 1)/(π2 + 1), 1).

Hence, kmm(r) is not a positive definite function if R 
≡ 1 [22, Theorem 1.4.1].

Furthermore, the mark variogram of (�0, Z) is in general not conditionally negative definite,
which can be seen as follows. Consider (�0, Z) for dimension d = 1 and R(r) = cos(r). Since
γ is conditionally negative definite if and only if e−sγ is positive definite for all s > 0 [22,
Theorem 6.1.9], it suffices to show that e−γ is not positive definite. Observe that e−γ (r) inherits
2π -periodicity from cos(r), and, hence, it is positive definite if and only if its Fourier coefficients
are nonnegative. Numerical calculations show that the first Fourier coefficient is near -0.033 64.

It is quite surprising to see that we are not able to falsify the claim that (�0, Z) is a random
field model by using the mark covariance function or the mark correlation function of (�0, Z).
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Theorem 3. The functions f0 : [−1, 1] → R defined by

f0(ρ) = ρ +
√

1 − ρ2

arcsin ρ + π/2
− π

2

(1 + ρ)2

(arcsin ρ + π/2)2

and g0 : [−1, 1] → R defined by

g0(ρ) = ρ(arcsin ρ + π/2)2 + √
1 − ρ2(arcsin ρ + π/2) − π(1 + ρ)2/2

(arcsin ρ + π/2)2 + ρ
√

1 − ρ2(arcsin ρ + π/2) − π(1 + ρ)2/2

are absolutely monotone on [0, 1], i.e. they have only nonnegative derivatives there.

See [3] for a proof of Theorem 3.

Corollary 1. cov(r) and cor(r) are positive definite functions.

Now consider the more general case t ∈ R. Unfortunately, unlike the case t = 0, we
cannot express all the second-order characteristics of (�t , Z) in closed form. In particular, for
a stationary and isotropic centred unit variance Gaussian random field Z in R

d with covariance
function given by R : [0, ∞) → R, we have

P(o, h ∈ �t) =
∫ R(‖h‖)

0
ϕ(t, t, s) ds + �(t)2;

see [5, Equation (10.8.3)]. Here,

�(t) =
∫ ∞

t

ϕ(s) ds, ϕ(t) = 1√
2π

e−t2/2, t ∈ R,

denotes the tail probability function of the standard Gaussian distribution. By ϕ(x, y, ρ) we
denote the density of the bivariate Gaussian distribution with unit variances and correlation ρ.
In the following we concentrate on the mark covariance function and the mark variogram of
(�t , Z), and write

Pt(ρ) =
∫ ρ

0
ϕ(t, t, s) ds + �(t)2, ρ ∈ [−1, 1].

Lemma 1. Let Z be a stationary and isotropic centred unit variance Gaussian random field in
R

d with covariance function given by R : [0, ∞) → R. Then, for t ∈ R and h ∈ R
d , we have

E[Z(o) 1�t (o) 1�t (h)] = Et(R(‖h‖)),

Et (ρ) = ϕ(t)
(
ρ + 1

)
�

(
t

√
1 − ρ

1 + ρ

)
,

E[Z(o)Z(h) 1�t (o) 1�t (h)] = Ct(R(‖h‖)),
where

Ct(ρ) = (1 − ρ2)ϕ(t, t, s) + 2ρtϕ(t)�

(
t

√
1 − ρ

1 + ρ

)
+ ρPt (ρ),

E[Z(o)2 1�t (o) 1�t (h)] = Vt (R(‖h‖)),
and

Vt (ρ) = ρ(1 − ρ2)ϕ(t, t, s) + (1 + ρ2)tϕ(t)�

(
t

√
1 − ρ

1 + ρ

)
+ Pt(ρ).
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Figure 1: ft (left) and f ′
t (right) for t = −1 (dashed lines), t = 0 (dotted lines), and t = 1 (solid lines).

Then the mark covariance function of (�t , Z) is given by

cov(r) = ft (R(r)), ft (ρ) = Ct(ρ)

Pt (ρ)
− Et(ρ)2

Pt(ρ)2 ,

and the mark variogram of (�t , Z) is given by

γ (r) = vt (R(r)), vt (ρ) = Vt (ρ) − Ct(ρ)

Pt (ρ)
.

There is strong evidence that the mark covariance function of (�t , Z), t 
= 0, is also positive
definite for a certain class of Gaussian random fields Z. In Figure 1 we plot ft (ρ) and f ′

t (ρ)

for several t , and see that, for these t, the functions ft (ρ) are both increasing and convex
for ρ ∈ [0, 1]. Hence, if this is really true then Pólya’s criterion [21] for instance would
imply that, for any continuous and convex function R : [0, ∞) → R satisfying R(0) = 1 and
limr→∞ R(r) = 0, the function ft (R(| · |)) is positive definite on R.

Remark 7. The mark covariance function cov(r) = ft (R(r)) of (�t , Z) has a right-hand
derivative at 0 which does not vanish. Let Z be a stationary and isotropic centred unit variance
Gaussian random field in R

d with continuous covariance function R : [0, ∞) → R, excluding
R ≡ 1. Then

cov′(0+) = (t2 − 1)�(t)2 − 3tϕ(t)�(t) + 2ϕ(t)2

�(t)3 C′
�t

(0+) < 0.

Here, C�t (‖h‖) = P(o, h ∈ �t) is the set covariance of the excursion set �t , and we have

C′
�t

(0+) = − ϕ(t)√
2π

√−R′′(0+) < 0

when Z is mean-square differentiable, and cov′(0+) = −∞ otherwise. In either case, the
right-hand derivative of the mark variogram γ (r) = vt (R(r)) of (�t , Z) at r = 0 is −R′(0+).
See [3] for a proof.
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5. Proofs

First, we prove Lemma 1 of Section 4 which is needed in the proof of Theorem 2.

5.1. Proof of Lemma 1

We will repeatedly apply the identities

ϕ′(y) = −yϕ(y), (10)

ϕ(y, x, ρ) = ϕ(x, y, ρ) = 1√
1 − ρ2

ϕ(x)ϕ

(
y − ρx√
1 − ρ2

)
, (11)

∫ ∞

t

1√
1 − ρ2

ϕ

(
t − ρx√
1 − ρ2

)
ϕ(x) dx = ϕ(t)�

(
t

√
1 − ρ

1 + ρ

)
. (12)

By (11), the change of variable x1 = √
1 − ρ2 y + ρx2, (10), and (12), we have

Et(ρ) =
∫ ∞

t

∫ ∞

t

x1
1√

1 − ρ2
ϕ

(
x1 − ρx2√

1 − ρ2

)
ϕ(x2) dx1 dx2

=
∫ ∞

t

∫ ∞

t (1−ρ)/
√

1−ρ2
(
√

1 − ρ2 y + ρx2)ϕ(y)ϕ(x2) dy dx2

=
∫ ∞

t

√
1 − ρ2 ϕ

(
t − ρx2√

1 − ρ2

)
ϕ(x2) + ρx2�

(
t − ρx2√

1 − ρ2

)
ϕ(x2) dx2

= (1 − ρ2)ϕ(t)�

(
t

√
1 − ρ

1 + ρ

)
+

∫ ∞

t

ρx2�

(
t − ρx2√

1 − ρ2

)
ϕ(x2) dx2.

Integration by parts, (10), and (12) finally yield∫ ∞

t

ρx2�

(
t − ρx2√

1 − ρ2

)
ϕ(x2) dx2

= ρϕ(t)�

(
t

√
1 − ρ

1 + ρ

)
+

∫ ∞

t

ρ2√
1 − ρ2

ϕ

(
t − ρx2√

1 − ρ2

)
ϕ(x2) dx2

= (ρ + ρ2)ϕ(t)�

(
t

√
1 − ρ

1 + ρ

)
.

Finally, using identities (10)–(12) and

Pt(ρ) =
∫ ∞

t

∫ ∞

t

1√
1 − ρ2

ϕ

(
x1 − ρx2√

1 − ρ2

)
ϕ(x2) dx1 dx2 =

∫ ∞

t

�

(
t − ρx2√

1 − ρ2

)
ϕ(x2) dx2,

the results for Ct(ρ) and Vt (ρ) can be verified similarly; see [3].

5.2. Proof of Theorem 2

As ϕ(0, 0, ρ) = (2π)−1(1 − ρ2)−1/2 and

P(Z(o) ≥ 0, Z(r) ≥ 0) = 1

2π

(
arcsin(R(r)) + π

2

)
,

the formulae for E, cov, γ, and cor follow immediately from Lemma 1. Finally, m̄ =
E[Z(o) | Z(o) ≥ 0] = √

2/π yields the result for kmm.
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