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1. Introduction
The main goal of the present paper is to extend and generalize well-known results about
limit sets and nilpotency of classical cellular automata, that is, cellular automata with finite
alphabets, to the setting of algebraic cellular automata over algebraic sofic subshifts, where
the alphabet is the set of rational points of an algebraic variety.

Since the pioneering work of John von Neumann in the 1940s [58], the mathematical
theory of cellular automata has led to very interesting questions, with deep connections
to areas such as theoretical computer science, decidability, dynamical systems, ergodic
theory, harmonic analysis, and geometric group theory. In his empirical classification of
the long-term behavior of classical cellular automata, Wolfram [60] introduced the notion
of a limit set. For classical cellular automata, properties of limit sets and their relations with
various notions of nilpotency were subsequently investigated by several authors (see [18,
24, 25, 34, 51]). In particular, Aanderaa and Lewis [1] and, independently, Kari [25] proved
undecidability of nilpotency for classical cellular automata over Z: this undecidability
result constitutes one of the most influential results in the theory of cellular automata and
one of the main motivations for the study of nilpotency in the symbolic dynamics setting.
In general, these properties of limit sets become false when the alphabet is allowed to
be infinite. A major problem arising when working with infinite alphabets is that images
of subshifts of finite type may fail to be closed (e.g. [10, Example 3.3.3]). Nevertheless,
infinite alphabet subshifts and their dynamics are not only intrinsically interesting but also
fundamental to the study of smooth dynamical systems (cf. e.g. [8], [28, Ch. 7], [29, 52,
53] and the references therein).

After Gromov [20], the study of injectivity and surjectivity of algebraic cellular
automata was pursued in [11, 12, 14, 15, 39] to obtain generalizations of the
Ax–Grothendieck theorem [3], [23, Proposition 10.4.11] and of the Moore–Myhill Garden
of Eden theorem [35, 36]. Nilpotency is in the opposite direction since a nilpotent map is
never injective nor surjective when the underlying set has at least two elements.

To state our results, let us first introduce some terminology and notation. Let f : X→ X

be a map from a set X into itself. Given an integer n ≥ 1, the nth iterate of f is the map
f n : X→ X defined by f n := f ◦ f ◦ · · · ◦ f (n times). The sets f n(X), n ≥ 1, form a
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Endomorphisms of algebraic sofic shifts 3

decreasing sequence of subsets of X. The limit set �(f ) :=⋂
n≥1 f

n(X) of f is the set of
points that occur after iterating f arbitrarily many times.

Observe that f (�(f )) ⊂ �(f ). The inclusion may be strict, and equality holds if and
only if every x ∈ �(f ) admits a backward orbit, that is, a sequence (xi)i≥0 of points
of X such that x0 = x and f (xi+1) = xi for all i ≥ 0. Clearly, f is surjective if and
only if �(f ) = X. Note also that Per(f ) :=⋃

n≥1{x ∈ X : f n(x) = x} ⊂ �(f ) and that
�(f n) = �(f ) for every n ≥ 1. The map f is stable if f n+1(X) = f n(X) for some n ≥ 1.
If f is stable, then �(f ) �= ∅ unless X = ∅. Clearly, f is stable whenever X is finite. If X
is infinite, there always exist maps f : X→ X with �(f ) = ∅ (cf. Lemma A.1).

Assume that X is a topological space and f : X→ X is a continuous map. One says that
x ∈ X is a recurrent (respectively non-wandering) point of f if for every neighborhood U
of x, there exists n ≥ 1 such that f n(x) ∈ U (respectively f n(U) meets U). Let R(f )
(respectively NW(f )) denote the set of recurrent (respectively non-wandering) points of
f. It is immediate that Per(f ) ⊂ R(f ) ⊂ NW(f ) and that NW(f ) is a closed subset of X.
In general, neither Per(f ), nor R(f ), nor �(f ) are closed in X (see Example 15.1).

Suppose now that X is a uniform space and f : X→ X is a uniformly continuous
map. One says that a point x ∈ X is chain-recurrent if for every entourage E of X,
there exist an integer n ≥ 1 and a sequence of points x0, x1, . . . , xn ∈ X such that
x = x0 = xn and (f (xi), xi+1) ∈ E for all 0 ≤ i ≤ n− 1. We shall denote by CR(f )
the set of chain-recurrent points of f. Observe that CR(f ) is always closed in X.

Let G be a group and let A be a set, called the alphabet. The set AG := {x : G→ A},
consisting of all maps from G to A, is called the set of configurations over the group G and
the alphabet A. We equipAG =∏

g∈G A with its prodiscrete uniform structure, that is, the
product uniform structure obtained by taking the discrete uniform structure on each factor
A of AG. Note that AG is a totally disconnected Hausdorff space and that AG is compact
if and only if A is finite. The shift action of the group G on AG is the action defined
by (g, x) 	→ gx, where gx(h) := x(g−1h) for all g, h ∈ G and x ∈ AG. This action is
uniformly continuous with respect to the prodiscrete uniform structure.

For a subgroup H ⊂ G, define Fix(H) := {x ∈ AG : hx = x for all h ∈ H }. Then
Fix(G) is the set of constant configurations while Fix({1G}) = AG. A configuration
x ∈ AG is said to be periodic if its G-orbit is finite, that is, there is a finite index subgroup
H of G such that x ∈ Fix(H).

A G-invariant subset � ⊂ AG is called a subshift of AG. Note that we do not require
closedness in AG in our definition of a subshift.

Given a finite subset D ⊂ G and a (finite or infinite) subset P ⊂ AD , the set

�(D, P) := {x ∈ AG : (g−1x)|D ∈ P for all g ∈ G} (1.1)

is a closed subshift ofAG (here (g−1x)|D ∈ AD denotes the restriction of the configuration
g−1x to D). One says that�(D, P) is the subshift of finite type associated with (D, P) and
that D is a defining memory set for �.

Let B be another alphabet set. A map τ : BG→ AG is called a cellular automaton if
there exist a finite subset M ⊂ G and a map μ : BM → A such that

τ(x)(g) = μ((g−1x)|M) for all x ∈ BG and g ∈ G. (1.2)
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4 T. Ceccherini-Silberstein et al

Such a set M is then called a memory set and μ is called a local defining map for τ .
It is clear from the definition that every cellular automaton τ : BG→ AG is uniformly
continuous and G-equivariant (see [10]).

More generally, if �1 ⊂ BG and �2 ⊂ AG are subshifts, a map τ : �1 → �2 is a
cellular automaton if it can be extended to a cellular automaton BG→ AG.

Suppose now that U , V are algebraic varieties (respectively algebraic groups) over a
field K, and let A := V (K), B := U(K) denote the sets of K-points of V and U, that is, the
set consisting of all K-scheme morphisms Spec(K)→ V and Spec(K)→ U , respectively.
See [14, Appendix A], [15, §2] for basic definitions and properties of algebraic varieties.
The following definition was introduced in the case U = V in [14, Definition 1.1] and
[39] after Gromov [20]. A cellular automaton τ : BG→ AG is an algebraic (respectively
algebraic group) cellular automaton if τ admits a memory set M with local defining
map μ : BM → A induced by some algebraic morphism (respectively homomorphism
of algebraic groups) f : UM → V (here UM denotes the K-fibered product of a family
of copies of U indexed by M). More generally, given subshifts �1 ⊂ BG and �2 ⊂ AG, a
map τ : �1 → �2 is called an algebraic (respectively algebraic group) cellular automaton
if it is the restriction of some algebraic (resp. algebraic group) cellular automaton
τ̃ : BG→ AG (see §16 for an example).

Every cellular automaton with finite alphabet A is an algebraic cellular automaton over
any field K (see [14, remarks after Definition 1]). Indeed, it suffices to embed A as a subset
of K and then observe that, if M is a finite set, any map μ : AM → A is the restriction
of some polynomial map P : KM → K (which can be made explicit by using Lagrange
interpolation formula). Similarly, any linear cellular automaton (cf. [10, Ch. 8], [16]) is an
algebraic cellular automaton: if A is a finite-dimensional vector space over a field K and M
is a finite set, then any linear map μ : AM → A is clearly a polynomial.

Definition 1.1. One says that � ⊂ AG is an algebraic (respectively algebraic group)
subshift of finite type if there exist a finite subset D ⊂ G and an algebraic subvariety
(respectively algebraic subgroup)W ⊂ VD such that, with the notation introduced in (1.1),
one has � = �(D, W(K)).

By analogy with the definition of sofic subshifts in the classical setting, we define
algebraic sofic subshifts and algebraic group sofic subshifts as follows (see Definition 16.4
for more general notions).

Definition 1.2. Let G be a group and let V be an algebraic variety (respectively algebraic
group) over a field K. Let A := V (K). A subset � ⊂ AG is called an algebraic (respec-
tively algebraic group) sofic subshift if it is the image of an algebraic (respectively algebraic
group) subshift of finite type �′ ⊂ BG, where B = U(K) and U is a K-algebraic variety
(respectively K-algebraic group), under an algebraic (respectively algebraic group) cellular
automaton τ ′ : BG→ AG.

Every algebraic sofic subshift � ⊂ AG is indeed a subshift but it may fail to be closed
in AG (cf. Example 15.1). However, it turns out that, under suitable natural conditions (see
hypotheses (H1), (H2), (H3) below), all algebraic sofic subshifts � ⊂ AG are closed in
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Endomorphisms of algebraic sofic shifts 5

AG (cf. Corollary 8.2). Moreover, we establish a fundamental characterization of algebraic
subshifts of finite type by the descending chain property (cf. Theorem 10.1).

With the notation as in Definition 1.2, we shall investigate in this paper various
dynamical aspects of an algebraic cellular automaton τ : �→ � over an algebraic sofic
subshift � ⊂ AG satisfying one of the following hypotheses (with the same notation
throughout the paper):
(H1) K is an uncountable algebraically closed field (e.g. K = C);
(H2) K is algebraically closed andU , V are complete (e.g. projective) algebraic varieties

over K;
(H3) K is algebraically closed, V is an algebraic group over K, � ⊂ AG is an algebraic

group sofic subshift, and τ : �→ � is an algebraic group cellular automaton.
We shall establish the following result.

THEOREM 1.3. Let G be a group and let V be an algebraic variety over a field K. Let
A := V (K) and let� ⊂ AG be an algebraic sofic subshift. Let τ : �→ � be an algebraic
cellular automaton and assume that one of the conditions (H1), (H2), (H3) is satisfied.
Then the following hold:
(i) �(τ) is a closed subshift of AG;
(ii) τ(�(τ)) = �(τ);
(iii) Per(τ ) ⊂ R(τ ) ⊂ NW(τ ) ⊂ CR(τ ) ⊂ �(τ);
(iv) if (H2) or (H3) is satisfied and �(τ) is a subshift of finite type, then τ is stable;
(v) for every subgroup H ⊂ G, if � ∩ Fix(H) �= ∅, then �(τ) ∩ Fix(H) �= ∅.

See [16, Theorem 1.5] for a linear version of the above theorem.
One says that a map f : X→ X from a set X into itself is nilpotent if there exist a

constant map c : X→ X and an integer n0 ≥ 1 such that f n0 = c. This implies f n = c
for all n ≥ n0. Such a constant map c is then unique and we say that the unique point
x0 ∈ X such that c(x) = x0 for all x ∈ X is the terminal point of f. The terminal point of
a nilpotent map is its unique fixed point.

Observe that if f : X→ X is nilpotent with terminal point x0, then �(f ) = {x0} is a
singleton. The converse is not true in general. Actually, as soon as the set X is infinite,
there exist non-nilpotent maps f : X→ X whose limit set is reduced to a single point (cf.
Lemma A.1). However, in the algebraic setting, we obtain the following result.

THEOREM 1.4. If we keep the same notation and hypotheses as in Theorem 1.3, then the
following conditions are equivalent:
(a) τ is nilpotent;
(b) the limit set �(τ) is reduced to a single configuration.

The analog of Theorem 1.4 for classical cellular automata follows from [18, Theorem
3.5]. However, Theorem 1.4 can be seen as a generalization of an interesting and non-trivial
property of endomorphisms of algebraic varieties (by taking G = {1G}).

Both Theorems 1.3 and 1.4 become false if we remove the hypothesis that the ground
field K is algebraically closed (see Examples 15.1, 15.8, and 15.9). To illustrate the
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6 T. Ceccherini-Silberstein et al

significance of our results, note that for a group G and a finite set A, the space AG

is compact by Tychonoff’s theorem. Consequently, if � ⊂ AG is a closed subshift and
τ : AG→ AG is a cellular automaton, then τn(�) is closed in AG for every n ≥ 1 and
it follows that �(τ) is a closed subshift of AG. A standard compactness argument shows
also that �(τ) �= ∅ if � �= ∅ (cf. [18]). When A is infinite, AG is no longer compact
and, given a closed subshift � ⊂ AG, the limit set of a cellular automaton τ : �→ � is,
in general, no longer closed in AG (cf. Example 15.1). Also, when A is infinite, it may
happen that �(τ) = ∅ while � �= ∅ or even τ(�(τ)) � �(τ) (cf. Proposition A.2 and
Example 15.8).

A self-map f : X→ X on a set X is said to be pointwise nilpotent if there exists a point
x0 ∈ X such that for every x ∈ X, there exists an integer n0 ≥ 1 such that f n(x) = x0 for
all n ≥ n0.

Consider a group G with the following property: for every finite alphabet A, any cellular
automaton τ : AG→ AG with �(τ) finite is nilpotent. Such a group G cannot be finite.
Indeed, for G finite and A := {0, 1}, the identity cellular automaton map τ : AG→ AG

has a finite limit set �(τ) = AG without being nilpotent. By [24, Corollary 4] or [18], we
know that G = Z satisfies the above property. In Theorem 13.1, we show that actually it is
satisfied by all infinite groups.

More generally, we obtain the following various characterizations of nilpotent algebraic
cellular automata.

THEOREM 1.5. Let G be an infinite group and let V be an algebraic variety over a
field K. Let A = V (K) and let � ⊂ AG be a non-empty topologically mixing algebraic
sofic subshift (e.g. AG for A �= ∅). Let τ : �→ � be an algebraic cellular automaton.
Assume that one of the conditions (H1), (H2), (H3) is satisfied. Then the following are
equivalent:
(a) τ is nilpotent;
(b) τ is pointwise nilpotent;
(c) the limit set �(τ) is finite.
If G is finitely generated, then the above conditions are equivalent to
(d) each x ∈ �(τ) is periodic and the set {x(1G) : x ∈ �(τ)} of alphabet values of�(τ)

is finite.

Note that for classical cellular automata, the equivalence of items (a) and (b) does
not require neither the topological mixing nor the soficity conditions on the subshift
� ⊂ AG (this is a result going back to Kari, [50]). We do not know whether or not, in
our more general setting, the above-mentioned conditions can be dropped. For classical
cellular automata, the equivalence of items (b) and (c) is given in Theorem 13.1. Note that,
however, if the alphabet A is infinite, for any group G, there exist non-nilpotent cellular
automata whose limit set is reduced to a single configuration and therefore is finite (cf.
Proposition A.2).

A linear version of the above theorem was given in [16, Theorem 1.9 and Corollary 1.10].
Our general strategy evolves around the analysis of the so-called space-time inverse system
associated with a cellular automaton (cf. §4). Such inverse systems and their variants as
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constructed in the proofs of the main theorems allow us to first conduct a local analysis
of the dynamical system as in Theorems 7.1 and 9.1. We can then pass to the inverse
limit, by means of the key technical algebro-geometric tools Lemmas 3.1 and 3.3, to obtain
global properties such as a closed mapping property in Theorem 8.1 and a characterization
of algebraic subshifts of finite type in Theorem 10.1. Variants of space-time inverse
systems also allow us to reduce Theorem 1.5 to the finite alphabet case studied in
Theorem 13.1.

We remark that by a similar strategy, it is shown in [42] that for a polycyclic-by-finite
group G and an algebraic group V over an algebraically closed field K, all algebraic group
sofic subshifts ofAG, whereA = V (K), are in fact algebraic group subshifts of finite type.
Moreover, our techniques and results, notably the closed mapping property (Theorem 8.1)
and the Noetherianity of algebraic subshifts of finite type (Theorem 10.1), admit a
wide range of applications including the shadowing property of algebraic group cellular
automata [43, 44], the Garden of Eden theorem for algebraic group cellular automata [47],
a dynamical characterization of the Noetherianity of group rings in terms of the Markov
properties [16], properties of images of algebraic subshifts under embeddings of symbolic
varieties [45], and extensions of the direct finiteness conjecture of Kaplansky [17, 40,
41, 46, 48]. Finally, for interested readers, we would like to mention the connections of
our results and their applications with some finiteness results in difference algebras and
proalgebraic groups obtained in, e.g., [38, 56, 59].

Most of our results for arbitrary groups are inferred from the results for finitely
generated groups by the restriction technique applied to cellular automata over subshifts of
sub-finite-type (cf. §§2.4, 2.5, 2.6).

A detailed analysis is given in Example 15.1 to provide a non-trivial counter-example
to Theorems 1.3 and 8.1. Some generalizations of our results are given in §16. In the
Appendix, we study pointwise nilpotency over infinite groups and arbitrary alphabets
(cf. Proposition A.5).

2. Preliminaries
2.1. Notation. We use the symbols Z for the integers, N for the non-negative integers, R
for the reals, and C for the complex numbers.

We write AB for the set consisting of all maps from a set B into a set A. Let C ⊂ B. If
x ∈ AB , we denote by x|C the restriction of x to C, that is, the map x|C : C → A given by
x|C(c) = x(c) for all c ∈ C. If X ⊂ AB , we denote XC := {x|C : x ∈ X} ⊂ AC . Let E, F
be subsets of a group G. We write EF := {gh : g ∈ E, h ∈ F } and define inductively En

for all n ∈ N by setting E0 := {1G} and En+1 := EnE.
Let A be a set and let E be a subset of a group G. Given x ∈ AE , we define gx ∈ AgE

by (gx)(h) := x(g−1h) for all h ∈ gE.

2.2. Algebraic varieties. Let V be an algebraic variety over a field K, that is, a reduced
K-scheme of finite type. We equip V with its Zariski topology. Every subset Z ⊂ V is
equipped with the induced topology and we denote by Z(K) the subset of K-points of
V lying in Z. Subvarieties of V mean closed subsets with the reduced induced scheme
structure.
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Remark 2.1. Every subvariety of a complete (that is, proper) algebraic variety is also
complete. Images of morphisms of complete algebraic varieties are complete subvarieties
(cf. [31, §3.3.2]). Likewise, kernels and images of homomorphisms of algebraic groups are
also algebraic subgroups and are thus Zariski closed (cf. [33, Proposition 1.41, Theorems
5.80, 5.81]).

Suppose now that the base field K is algebraically closed. Then we can identify the
set of K-points A = V (K) of a K-algebraic variety V with the set of closed points of V
(cf. [21, Proposition 6.4.2]). By a common abuse, we regard A as an algebraic variety.
Similarly, induced maps on closed points by morphisms of K-algebraic varieties are also
called algebraic morphisms.

2.3. Chain-recurrent points

PROPOSITION 2.2. Let X be a uniform space and let f : X→ X be a continuous map.
Then NW(f ) ⊂ CR(f ).

Proof. (Cf. [55, Proposition 1.7] in the metrizable case) Let x ∈ NW(f ) and let E be
an entourage of X. Choose a symmetric entourage S of X such that S ◦ S ⊂ E. By the
continuity of f at x, there exists a symmetric entourage T of X with T ⊂ S such that
(f (x), f (z)) ∈ S whenever (x, z) ∈ T . The set U ⊂ X, consisting of all z ∈ X such that
(x, z) ∈ T , is a neighborhood of x. Since x is non-wandering, there exist an integer n ≥ 1
and a point y ∈ U such that f n(y) ∈ U . Let us show that there is a sequence of points
x0, x1, . . . , xn ∈ X such that x = x0 = xn and (f (xi), xi+1) ∈ E for all 0 ≤ i ≤ n− 1.
First observe that since y ∈ U , we have (x, y) ∈ T and therefore (f (x), f (y)) ∈ S.
If n = 1, we can take x0 = x1 = x. Indeed, we then have f (y) = f n(y) ∈ U and
hence (f (y), x)∈ T ⊂ S. Therefore, (f (x0), x1) = (f (x), x)∈ S ◦ S ⊂ E. If n ≥ 2, we
can take the points x0, x1, . . . , xn defined by x = x0 = xn and xi = f i(y) for all
1 ≤ i ≤ n− 1. Indeed, we then have (f (x0), x1) = (f (x), f (y)) ∈ S ⊂ S ◦ S ⊂ E. How-
ever, we have (f (xi), xi+1) = (f i+1(y), f i+1(y)) ∈ E for all 1 ≤ i ≤ n− 2. Finally, as
f n(y) ∈ U , we have (f (xn−1), xn) = (f n(y), x) ∈ T ⊂ S ⊂ S ◦ S ⊂ E. This shows that
x ∈ CR(f ).

PROPOSITION 2.3. Let X be a Hausdorff uniform space and let f : X→ X be a uniformly
continuous map. Suppose that f n(X) is closed in X for all n ∈ N. Then CR(f ) ⊂ �(f ).
Proof. Denote by E the set of entourages of X. Let x ∈ CR(f ). Given E ∈ E , we
define ν(E) ∈ N \ {0} to be the least n ∈ N such that there exists a sequence of points
x0, x1, . . . , xn ∈ X satisfying that x = x0 = xn and (f (xi), xi+1) ∈ E for all 0 ≤ i ≤
n− 1. Note that the map ν : E → N \ {0} is decreasing in the sense that if E, E′ ∈ E and
E ⊂ E′, then ν(E′) ≤ ν(E). We distinguish two cases according to whether the map ν is
bounded or not.

In the first case, let k := max ν. Take E0 ∈ E such that ν(E0) = k. Let E ∈ E . Choose
a symmetric entourage S ∈ E such that

S ◦ S ◦ · · · ◦ S︸ ︷︷ ︸
k times

⊂ E.
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Since f is uniformly continuous, so are f 2, . . . , f k . Thus, we can find a symmetric
entourage T ⊂ E0 such that (f p(y), f p(z)) ∈ S whenever (y, z) ∈ T and 0 ≤ p ≤ k.
By the maximality of k and the fact that T ⊂ E0, we have ν(T ) = k. Therefore,
we can find a sequence of points x0, x1, . . . , xk ∈ X such that x = x0 = xk and
(f (xi), xi+1) ∈ T for all 0 ≤ i ≤ k − 1. Looking at the sequence of points f k(x) =
f k(x0), f k−1(x1), f k−2(x2), . . . , f 1(xk−1), xk = x and using the fact that, for all
0 ≤ i ≤ k − 1,

(f k−i (xi), f k−i−1(xi+1)) = (f k−i−1(f (xi)), f k−i−1(xi+1))) ∈ S
since (f (xi), xi+1) ∈ T , we see that

(f k(x), x) ∈ S ◦ S ◦ · · · ◦ S︸ ︷︷ ︸
k times

⊂ E.

As the entourage E ∈ E was arbitrary and X is Hausdorff, it follows that x = f k(x).
Hence, the point x is periodic and therefore belongs to �(f ).

Consider now the second case, where ν is unbounded. Letm ≥ 1 be an integer. We will
show that x ∈ f m(X). Take E0 ∈ E so that ν(E0) ≥ m. Let E ∈ E . Choose a symmetric
entourage S ∈ E such that

S ◦ S ◦ · · · ◦ S︸ ︷︷ ︸
m times

⊂ E.

As in the first case, we can find a symmetric entourage T ∈ E such that T ⊂ E0 and
(f p(y), f p(z)) ∈ S whenever (y, z) ∈ T and 0 ≤ p ≤ m. Observe that n := ν(T ) ≥
ν(E0) ≥ m since T ⊂ E0. By definition of ν, we can find a sequence of points
x0, x1, . . . , xn ∈ X such that x = x0 = xn and (f (xi), xi+1) ∈ T for all 0 ≤ i ≤ n− 1.
Looking now at the sequence of points f m(xn−m), f m−1(xn−m+1), . . . , f (xn−1), xn = x,
and using the fact that, for all 0 ≤ i ≤ m− 1, we have

(f m−i (xn−m+i ), f m−i−1(xn−m+i+1))

= (f m−i−1(f (xn−m+i )), f m−i−1(xn−m+i+1)) ∈ S
since (f (xn−m+i )), xn−m+i+1) ∈ T , we see that

(f m(xn−m), x) ∈ S ◦ S ◦ · · · ◦ S︸ ︷︷ ︸
m times

⊂ E.

As the entourage E ∈ E was arbitrary, it follows that x belongs to the closure of f m(X).
Since f m(X) is closed in X by our hypothesis, we conclude that x ∈ f m(X) for every
m ≥ 1. This shows that x ∈ �(f ).

Using the fact that the topology of any compact Hausdorff space is induced by a
unique uniform structure, an immediate consequence of Proposition 2.3 is the following
well-known result (see e.g. [37, Ch. 6]).

COROLLARY 2.4. Let X be a compact Hausdorff space and let f : X→ X be a
continuous map. Then CR(f ) ⊂ �(f ).
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2.4. Subshifts of sub-finite-type. Let G be a group and let A be a set. A subshift� ⊂ AG
is called a subshift of sub-finite-type if it is a factor of a subshift of finite type (cf. (1.1)),
namely, there exist a set B, a cellular automaton τ ′ : BG→ AG, and a subshift of finite
type �′ ⊂ BG such that � = τ ′(�′). Note that we do not require � to be closed in AG. In
the following, every finite subset D of G containing a defining memory set of �′ as well
as a memory set of τ ′ will be called a memory set of the subshift of sub-finite-type �. The
existence of such a memory set will be necessary for the restriction technique (cf. §§2.5
and 2.6) when the group G is not finitely generated.

Example 2.5. If G is a group, V is an algebraic variety over a field K, and A := V (K),
then it immediately follows from Definition 1.2 in §1 that every algebraic sofic subshift
� ⊂ AG is a subshift of sub-finite-type of AG.

In the rest of the paper, a memory set of an algebraic sofic subshift � will mean any
memory set of � regarded as a subshift of sub-finite-type.

Example 2.6. Let A be a set and let � be an A-labeled directed graph. This means that �
is a quintuple � = (V , E, α, ω, λ), where V , E are sets, and α, ω : E→ V , λ : E→ A

are maps. The elements of V are called the vertices of �, those of E are called its
edges, and, for every edge e ∈ E, the vertex α(e) (respectively ω(e)) is called the initial
(respectively terminal) vertex of e while λ(e) is called its label. The label of a configuration
x ∈ EZ is the configuration 
(x) ∈ AZ defined by 
(x)(n) = λ(x(n)) for all n ∈ Z.
Observe that 
 : EZ→ AZ is a cellular automaton admitting M := {0} ⊂ Z as a memory
set and λ : EM = E→ A as the associated local defining map. An element x ∈ EZ is
called a path of � if it satisfies ω(x(n)) = α(x(n+ 1)) for all n ∈ Z. Clearly, the subset
�′ ⊂ EZ consisting of all paths of � is the subshift of finite type �(D, P) of EZ,
where D := {0, 1} ⊂ Z and P := {p ∈ ED : ω(p(0)) = α(p(1))}. One says that �′ is the
Markov shift associated with the unlabeled graph (V , E, α, ω) (cf. [28, Ch. 7]). We deduce
that � := 
(�′) is a subshift of sub-finite-type of AZ. Conversely, it can be shown that
every subshift of sub-finite-type of AZ can be obtained, up to topological conjugacy, as
the set of labels of the paths of a suitably chosen A-labeled graph. The proof of this last
result is, mutatis mutandis, the one used in the classical setting for showing that every
sofic finite alphabet subshift over Z can be presented by a finite labeled graph (see e.g. [30,
Theorem 3.2.1]).

The following result says that the notion of subshifts of sub-finite-type is only interesting
when G is not finitely generated.

PROPOSITION 2.7. Let G be a finitely generated group and let A be a set. Then every
subshift � ⊂ AG is a subshift of sub-finite-type.

Proof. Let D be a finite generating subset of G such that 1G ∈ D and D =
D−1. Let � ⊂ AG be a subshift. Let B := � and define P := {y ∈ BD : y(g) =
g−1(y(1G)) for all g ∈ D}. Consider the subshift of finite type �′ := �(D, P) of BG.
Since D = D−1 generates G and contains 1G, the map X 	→ X(1G) is a bijection from
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�′ onto �. Indeed, for every g ∈ G and X ∈ �′, by writing g = s1 · · · sn for some
s1, . . . , sn ∈ D, we find that

X(g) = X(s1 · · · sn) = s−1
1 X(s2 · · · sn) = · · · = s−1

n · · · s−1
1 (X(1G)) = g−1X(1G).

Let τ : BG→ AG be the cellular automaton with memory set {1G} and associated local
defining map μ : B → A given by x 	→ x(1G). In other words, τ(X)(g) = (X(g))(1G) for
every X ∈ BG and g ∈ G. Hence, for every X ∈ �′, we have τ(X) = X(1G) since for all
g ∈ G,

τ(X)(g) = (X(g))(1G) = (g−1(X(1G)))(1G) = (X(1G))(g).
As X(1G) ∈ B = � is arbitrary, we conclude that � = τ(�′) is a subshift of sub-
finite-type.

2.5. Restriction of cellular automata and of subshifts of sub-finite-type. Let G be a
group and let A be a set. Let � ⊂ AG be a subshift of sub-finite-type. Hence, there exist
a set B, a cellular automaton τ ′ : BG→ AG, and a subshift of finite type �′ ⊂ BG such
that � = τ ′(�′). Let D ⊂ G be a finite subset such that D is a defining memory set of �′
as well as a memory set of τ ′. Let H ⊂ G be a subgroup of G containing D. Denote by
G/H := {gH : g ∈ G} the set of all right cosets of H in G. As the right cosets of H in G
form a partition of G, we have natural factorizations

AG =
∏

c∈G/H
Ac, BG =

∏
c∈G/H

Bc

in which each x ∈ AG (respectively x ∈ BG) is identified with (x|c)c∈G/H ∈∏
c∈G/H Ac

(respectively (x|c)c∈G/H ∈∏
c∈G/H Bc). Since gD ⊂ gH for every g ∈ G, the above

factorization of BG induces a factorization

�′ =
∏

c∈G/H
�′c,

where �′c = {x|c : x ∈ �′} for all c ∈ G/H . Likewise, for each c ∈ G/H , let
�c = {x|c : x ∈ �}.

LEMMA 2.8. The factorization AG =∏
c∈G/H Ac induces a factorization

� =
∏

c∈G/H
�c.

Proof. Since H contains a memory set of τ ′, we have τ ′ =∏
c∈G/H τ ′c, where

τ ′c : Bc → Ac is given by τ ′c(y) := τ ′(x)|c for all y ∈ Bc, where x ∈ BG is any
configuration extending y. We deduce that �c = (τ ′(�′))c = τ ′c(�′c) for every c ∈ G/H .
Hence,

� = τ ′(�′) = τ ′
( ∏
c∈G/H

�′c
)
=

∏
c∈G/H

τ ′c(�′c) =
∏

c∈G/H
�c.

https://doi.org/10.1017/etds.2023.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.120


12 T. Ceccherini-Silberstein et al

Let T ⊂ G be a complete set of representatives for the right cosets of H in G such that
1G ∈ T . Then, for each c ∈ G/H , we have a uniform homeomorphism φc : �c → �H

given by φc(y)(h) = y(gh) for all y ∈ �c, where g ∈ T represents c. In particular,� �= ∅
if and only if �H �= ∅.

Now suppose in addition that τ : �→ � is a cellular automaton which admits a
memory set contained in H. Then we have τ =∏

c∈G/H τc, where τc : �c → �c is defined
by setting τc(y) := τ(x)|c for all y ∈ �c, where x ∈ � is any configuration extending y.
Note that for each c ∈ G/H , the maps τc and τH are conjugate by φc, that is, we have
τc = φ−1

c ◦ τH ◦ φc. This allows us to identify the action of τc on �c with that of the
restriction cellular automaton τH on �H . See 9 and [10, Section 1.7].

LEMMA 2.9. The following hold:
(i) �(τ) = �(τH )G/H ;

(ii) τ is nilpotent if and only if τH is nilpotent.

Proof. Observe that the map x 	→ (φc(x|c))c∈G/H yields a bijection �(τ)→∏
c∈G/H �(τH ) = �(τH )G/H , and this proves point (i). Point (ii) is clear by the above

discussion.

2.6. Restriction and the closed image property. Let G be a group and let A, B be sets.
Let � ⊂ AG be a subshift of sub-finite-type and let now τ : AG→ BG be a cellular
automaton whose source and domain are the full shifts AG and BG, respectively. Let
H ⊂ G be a subgroup of G containing a memory set of � and a memory set of τ . As in
§2.5, we have the factorizations � =∏

c∈G/H �c (cf. Lemma 2.8) and τ =∏
c∈G/H τc,

with τc : Ac → Bc defined by τc(y) := τ(x)|c for all y ∈ Ac, where x ∈ AG is any
configuration extending y.

LEMMA 2.10. The set τ(�) is closed in BG if and only if τH (�H ) is closed in BH .

Proof. We have τ(�) =∏
c∈G/H τc(�c). It is immediate that τH (�H ) is closed in BH

if τ(�) is closed in BG. For the converse implication, we have for every c ∈ G/H
a uniform homeomorphism ψc : Bc → BH by fixing a complete set containing 1G of
representatives for the right cosets of H in G (cf. §2.5). Thus, if τH (�H ) is closed, then
so is τc(�c) = ψ−1

c (τH (�H )). Consequently, τ(�) is closed in BG whenever τH (�H ) is
closed in BH since the product of closed subspaces is closed in the product topology.

3. Inverse limits of countably pro-constructible sets
Let I be a directed set, that is, a partially ordered set in which every pair of elements admits
an upper bound. An inverse system of sets indexed by I consists of the following data: (1)
a set Zi for each i ∈ I ; (2) a transition map ϕij : Zj → Zi for all i, j ∈ I such that i ≺ j .
Furthermore, the transition maps must satisfy the following conditions:

ϕii = IdZi (the identity map on Zi) for all i ∈ I ,

ϕij ◦ ϕjk = ϕik for all i, j , k ∈ I such that i ≺ j ≺ k.
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One then speaks of the inverse system (Zi , ϕij ), or simply (Zi) if the index set and the
transition maps are clear from the context.

The inverse limit of an inverse system (Zi , ϕij ) is the subset

lim←−
i∈I
(Zi , ϕij ) = lim←−

i∈I
Zi ⊂

∏
i∈I

Zi

consisting of all (zi)i∈I such that ϕij (zj ) = zi for all i ≺ j .
A subset of a topological space X is said to be locally closed if it is the intersection of

a closed subset and an open subset of X. It is said to be constructible if it is a finite union
of locally closed subsets of X. It is said to be proconstructible if it is the intersection of
a family of constructible subsets [22, Définition I.9.4]. We shall say that a subset of X is
countably proconstructible if it is the intersection of a countable family of constructible
subsets. It is clear that every countably proconstructible subset can be written as the
intersection of a decreasing sequence of constructible subsets.

The following lemma is analogous to [39, Lemma 4.1].

LEMMA 3.1. Let K be an uncountable algebraically closed field and let f : X→ Y be an
algebraic morphism of algebraic varieties over K. If (Ck)k∈N is a decreasing sequence of
constructible subsets of X, then

f

( ⋂
k∈N

Ck(K)

)
=

⋂
k∈N

f (Ck(K)) =
⋂
k∈N

f (Ck)(K).

Proof. Since for each k ∈ N we have f (Ck(K)) = f (Ck)(K) (cf. for example [14,
Lemma A.22(v)]), the second equality is verified. For the first equality, we have trivially
f (

⋂
k∈N Ck(K)) ⊂

⋂
k∈N f (Ck(K)). Conversely, assume that y ∈⋂

k∈N f (Ck(K)). For
each k ∈ N, set

Fk := f−1(y) ∩ Ck(K) ⊂ X(K).

Note that Fk is the set of closed points of a constructible subset of X. Remark also that, for
every k ∈ N, we have Fk+1 ⊂ Fk and Fk �= ∅. Hence, by [14, Lemma B.3], there exists
x ∈⋂

k∈N Fk . Clearly, f (x) = y and x ∈⋂
k∈N Ck(K). Therefore,

⋂
k∈N f (Ck(K)) ⊂

f (
⋂
k∈N Ck(K)) and the proof is completed.

In case (H1), we shall make use of the following generalization of [14, Lemma B.2] to
countable inverse systems of countably proconstructible subsets.

LEMMA 3.2. Let K be an uncountable algebraically closed field. Let (Xi , fij ) be an
inverse system indexed by a countable directed set I, where each Xi is a K-algebraic
variety and each transition map fij : Xj → Xi is an algebraic morphism. Suppose given,
for each i ∈ I , a non-empty countably proconstructible subset Ci ⊂ Xi . Let Zi = Ci(K)
and assume that fij (Zj ) ⊂ Zi for all i ≺ j in I. Then the inverse system (Zi , ϕij )I , where
ϕij : Zj → Zi is the restriction of fij to Zj , verifies lim←−i∈I Zi �= ∅.

https://doi.org/10.1017/etds.2023.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.120


14 T. Ceccherini-Silberstein et al

Proof. Since I is a countable directed set, we can find a totally ordered cofinal subset
{in : n ∈ N} ⊂ I . As lim←−n∈N Zin = lim←−i∈I Zi , we can suppose, without any loss of
generality, that I = N.

For each i ∈ N, we can find a decreasing sequence of constructible subsets (Cik)k∈N of
Xi such that Ci =⋂

k∈N Cik . For k ∈ N, let Zik = Cik(K). By Lemma 3.1, we have for
every i ≤ j :

Zi =
∞⋂
k=0

Zik �= ∅, fij (Zj ) =
∞⋂
k=0

fij (Zjk). (3.1)

Consider the universal inverse system (Z′i , ϕ′ij )i,j∈N of the system (Zi , ϕij )i,j∈N, that is,
for every i ∈ N, let

Z′i :=
∞⋂
j=i

fij (Zj ) =
∞⋂
j=i

ϕij (Zj )

and let the maps ϕ′ij : Z′j → Z′i be the restrictions of ϕij : Zj → Zi .
Remark that lim←−i∈N Z

′
i = lim←−i∈N Zi . Hence, it suffices to check that the sets Z′i are

non-empty and the transition maps ϕ′ij are surjective for all i ≤ j . By equation (3.1),
Chevalley’s theorem (see for example [57, Theorem 7.4.2], [22, Théorème I.8.4]) implies
that each Z′i is a countable intersection of constructible sets:

Z′i =
∞⋂
j=i

fij (Zj ) =
∞⋂
j=i

∞⋂
k=0

fij (Zjk).

For each n ≥ i, consider the diagonal set

Yn :=
n⋂
j=i

n⋂
k=0

fij (Zjk) ⊂ Xi(K).

By Chevalley’s theorem, Yn is a constructible subset of Xi(K). For every n ≥ i, we have
Yn+1 ⊂ Yn and since Zn �= ∅,

Yn ⊃
n⋂
j=i

∞⋂
k=0

fij (Zjk) =
n⋂
j=i

fij (Zj ) ⊃ fin(Zn) = ϕin(Zn) �= ∅. (3.2)

As Z′i =
⋂∞
n=i Yn, [14, Lemma B.2] implies that Z′i �= ∅ for i ∈ N. Now let k, i ∈ N with

k ≤ i and let z ∈ Z′k . For each n ≥ i, by definition of Z′k , there exists y ∈ Zn such that
ϕkn(y) = z and thus

ϕin(y) ∈ ϕ−1
ki (z) ∩ ϕin(Zn) �= ∅. (3.3)

By equations (3.2), (3.3), and for n ≥ i, the constructible subset

Tn := ϕ−1
ki (z) ∩ Yn ⊃ ϕ−1

ki (z) ∩ ϕin(Zn) (3.4)
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is non-empty and Tn+1 ⊂ Tn as Yn+1 ⊂ Yn. Finally, we find that

(ϕ′ki)−1(z) = ϕ−1
ki (z) ∩ Z′i =

∞⋂
n=i

ϕ−1
ki (z) ∩ Yn =

∞⋂
n=i

Tn

is non-empty by [14, Lemma B.2]. The proof is thus completed.

We shall apply repeatedly the following result in cases (H2)–(H3).

LEMMA 3.3. Let K be an algebraically closed field. Let (Xi , fij ) be an inverse system
indexed by a countable index set I, where each Xi is a non-empty K-algebraic variety and
each transition map fij : Xj → Xi is an algebraic morphism such that fij (Xj ) ⊂ Xi is a
closed subset for all i ≺ j . Then lim←−i∈I Xi(K) �= ∅.

Proof. The statement is proved in [39, Proposition 4.2].

4. Space-time inverse systems
Let G be a finitely generated group and let A be a set. Let� ⊂ AG be a closed subshift and
assume that τ : �→ � is a cellular automaton. Let τ̃ : AG→ AG be a cellular automaton
extending τ .

Let M ⊂ G be a memory set of τ̃ . Since every finite subset of G containing a memory
set of τ̃ is itself a memory set of τ̃ , we can choose M such that 1G ∈ M , M = M−1,
and M generates G. Note that this implies in particular that the sequence (Mn)n∈N is an
exhaustion of G, that is:
(Mem1) Mn+1 ⊃ Mn for all n ∈ N; and
(Mem2)

⋃
n∈N Mn = G.

Equip N2 with the product ordering≺. Thus, given i, j , k, l ∈ N, we have (i, j) ≺ (k, l)
if and only if i ≤ k and j ≤ l.

We construct an inverse system (�ij )i,j∈N indexed by the directed set (N2, ≺) in the
following way.

First, given i, j ∈ N, we define �ij as being the set consisting of the restrictions to
Mi+j of all the configurations that belong to �, that is,

�ij := �Mi+j = {x|Mi+j : x ∈ �} ⊂ AMi+j
.

To define the transition maps �kl → �ij ((i, j) ≺ (k, l)) of the inverse system (�ij )i,j∈N,
it is clearly enough to define, for all i, j ∈ N, the unit-horizontal transition map
pij : �i+1,j → �ij , the unit-vertical transition map qij : �i,j+1 → �ij , and verify that
the diagram

�i,j+1 �i+1,j+1

�ij �i+1,j

qij

pi,j+1

qi+1,j

pij

is commutative, that is,

qij ◦ pi,j+1 = pij ◦ qi+1,j for all i, j ∈ N. (4.1)
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We define pij as being the map obtained by restriction to Mi+j ⊂ Mi+j+1. Thus for all
σ ∈ �i+1,j , we have

pij (σ ) = σ |Mi+j . (4.2)

To define qij , we first observe that, given x ∈ � and g ∈ G, it follows from equation (1.2)
applied to τ̃ that τ(x)(g) only depends on the restriction of x to gM . As gM ⊂ Mi+j+1

for all g ∈ Mi+j , we deduce from this observation that, given σ ∈ �i,j+1 and x ∈ �
extending σ , the formula

qij (σ ) := (τ (x))|Mi+j (4.3)

yields a well-defined element qij (σ ) ∈ �ij and hence a map qij : �i,j+1 → �ij .
To check that equation (4.1) is satisfied, let σ ∈ �i+1,j+1 and choose a configuration

x ∈ � extending σ . By applying equation (4.2), we see that pi,j+1(σ ) = x|Mi+j+1 .
Therefore, using equation (4.3), we get

qij ◦ pi,j+1(σ ) = qij (pi,j+1(σ )) = qij (x|Mi+j+1) = (τ (x))|Mi+j . (4.4)

However, by applying again equation (4.3), we see that qi+1,j (σ ) = (τ (x))|Mi+j+1 .
Therefore, using equation (4.2), we get

pij ◦ qi+1,j (σ ) = pij (qi+1,j (σ )) = pij ((τ (x))|Mi+j+1) = (τ (x))|Mi+j . (4.5)

We deduce from equations (4.4) and (4.5) that qij ◦ pi,j+1(σ ) = pij ◦ qi+1,j (σ ) for all
σ ∈ �i+1,j+1. This shows equation (4.1).

Definition 4.1. The inverse system (�ij )i,j∈N is called the space-time inverse system
associated with the triple (�, τ , M).

It might be useful to consider the inverse system (�ij )i,j∈N as a refined diagram of the
space-time evolution of the cellular automaton τ that in addition keeps track of the local
dynamics. Comparing to the usual space-time diagram of a classical cellular automaton
introduced in [61], in [34], or recently in [19], the main difference of our construction
is the following. First, the horizontal direction indexed by i ∈ N in our space-time inverse
system represents the extension of the ambient spaces of 1G instead of the exact position in
the universe G as in the classical diagram. Second, the vertical direction indexed by j ∈ N
represents the past instead of the future. More precisely, let us fix i ∈ N and consider the
induced inverse subsystem (�ij )j∈N lying above �i0 = �Mi . Then each (�ij )j∈N should
be regarded as an approximation of the past light cone of the events happening in Mi , that
is, of configurations σ ∈ �Mi .

Remark 4.2. Observe that the inverse system (�ij )i,j∈N is a subsystem of the full
inverse system (AM

i+j
)i,j∈N associated with the triple (AG, τ̃ , M). In the following,

we shall denote by p̃ij : AM
i+j+1 → AM

i+j
(respectively q̃ij : AM

i+j+1 → AM
i+j

)
the unit horizontal (respectively vertical) transition maps of the full inverse system
(AM

i+j
)i,j∈N.
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Remark 4.3. For the hypotheses (H1), (H2), and (H3) in §1, we have the following easy but
useful remark. IfA = V (K) for some algebraic variety V over an algebraically closed field
K and if τ̃ : AG→ AG is an algebraic (respectively algebraic group) cellular automaton,
then the transition maps of the full inverse system (AM

i+j
)i,j∈N are algebraic morphisms

(respectively homomorphisms of algebraic groups).

If we fix j ∈ N in our space-time inverse system, we get a horizontal inverse system
(�ij )i∈N indexed by N whose transition maps are the restriction maps pij : �i+1,j → �ij ,
i ∈ N. It immediately follows from the closedness of � in AG and properties
(Mem1)–(Mem2) that the limit

�j := lim←−
i∈N

�ij (4.6)

can be identified with � in a canonical way. Moreover, the maps qij : �i,j+1 → �ij

define an inverse system morphism from the inverse system (�i,j+1)i∈N to the inverse
system (�ij )i∈N. This yields a limit map τj : �j+1 → �j . Using the identifications
�j+1 = �j = �, we have τj = τ for all j ∈ N. We deduce that the limit

lim←−
i,j∈N

�ij = lim←−
j∈N

�j (4.7)

is the set of backward orbits (or complete histories [34]) of τ , that is, the set consisting of
all sequences (xj )j∈N such that xj ∈ � and xj = τ(xj+1) for all j ∈ N. Such a sequence
satisfies x0 = τn(xn) for all n ∈ N and hence x0 ∈ �(τ). Thus, we obtain the following
result.

LEMMA 4.4. We have a canonical map � : lim←−i,j∈N �ij → �(τ). In particular, we have
that

lim←−
i,j∈N

�ij �= ∅ �⇒ �(τ) �= ∅.

We will see that the map� : lim←−i,j∈N �ij → �(τ) is surjective in the algebraic setting
(cf. Theorem 9.1). Therefore, in this case, every limit configuration x ∈ �(τ) admits a
backward orbit and τ(�(τ)) = �(τ).

5. Approximation of subshifts of finite type
In this section, keeping all the notation and hypotheses introduced in the previous section,
we assume in addition that � is a subshift of finite type. We fix a finite subset D ⊂ G
and a subset P ⊂ AD such that � = �(D, P) (cf. equation (1.1)). We begin with a useful
observation.

LEMMA 5.1. For every finite subset E ⊂ G such that D ⊂ E, we have � = �(D, P) =
�(E, �E).

Proof. Let x ∈ � and g ∈ G, then clearly (g−1x)|E ∈ �E . Thus, � ⊂ �(E, �E). Con-
versely, let x ∈ �(E, �E) and g ∈ G, then (g−1x)|D = ((g−1x)|E)|D ∈ (�E)D ⊂ P
since D ⊂ E. Therefore, x ∈ �(D, P) = � and the conclusion follows.
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For all i, j ∈ N, we define Dij := {g ∈ G : gD ⊂ Mi+j } and

Aij := {x ∈ AMi+j
: (g−1x)|D ∈ P for all g ∈ Dij }.

Remark that �ij ⊂ Aij . Indeed, we have

�ij = {x ∈ AMi+j
: there exists y ∈ AG, x = y|Mi+j , (g−1y)|D ∈ P for all g ∈ G}

⊂ {x ∈ AMi+j
: there exists y ∈ AG, x = y|Mi+j , (g−1y)|D ∈ P for all g ∈ Dij }

= {x ∈ AMi+j
: (g−1x)|D ∈ P for all g ∈ Dij }

= Aij .

Remark also that for all (i, j) ≺ (k, l) in N2, we have Dij ⊂ Dkl because Mi+j ⊂ Mk+l
by property (Mem1).

For i, j , k ∈ N such that i ≤ k, consider the canonical projection

p̃ijk : AM
k+j → AM

i+j
, x 	→ x|Mi+j . (5.1)

Clearly, p̃ijk(Akj ) ⊂ Aij sinceDij ⊂ Dk+j . We thus obtain well-defined projection maps

pijk : Akj → Aij , (5.2)

which extend the horizontal transition maps �kj → �ij of the space-time inverse system
(�ij )i,j∈N associated with τ : �→ � and the memory set M.

Remark 5.2. In general, (Aij )i,j∈N is not a subsystem of the space-time inverse system
(AM

i+j
)i,j∈N associated with (AG, τ̃ , M) (cf. Remark 4.2). There is no trivial reason for

q̃ij (Ai,j+1) ⊂ Aij unless � is the full shift.

The following lemma says that each row of the system (Aij , pijk)i,j ,k∈N gives us an
approximation of �.

LEMMA 5.3. For every j ∈ N, there is a canonical bijection

�j : �→ lim←−
i∈N
(Aij , pijk).

Proof. Since �ij ⊂ Aij for all i, j ∈ N, each x ∈ � defines naturally an element
�j(x) = (x|Mi+j )i∈N ∈ lim←−i∈N(Aij , pijk). Conversely, let (xi)i∈N ∈ lim←−i∈N(Aij , pijk).
Define x ∈ AG by setting, for each g ∈ G, x(g) := xi(g) for any i ∈ N large enough
such that g ∈ Mi+j . The fact that the configuration x ∈ AG is well defined follows from
properties (Mem1) and (Mem2). Let g ∈ G. Take i large enough so that gD ⊂ Mi+j . Then
g ∈ Dij and (g−1x)|D = (g−1xi)|D ∈ P since xi ∈ Aij . This shows that x ∈ �.

LEMMA 5.4. For all i, j ∈ N, we have

�ij ⊂
⋂
k≥i

pijk(Akj ).
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Proof. Let y ∈ � and let x = y|Mi+j ∈ �ij . Let k ≥ i. Since y|Mk+j ∈ �Mk+j ⊂ Akj , it
follows that

x = y|Mi+j = pijk(y|Mk+j ) ⊂ pijk(Akj ).
As y is arbitrary, the proof is finished.

6. Algebraic subshifts of finite type
Keeping the notation and hypotheses of §5, we assume in this section that A = V (K)
and P = W(K), where V is an algebraic variety over an algebraically closed field K and
W ⊂ VD is an algebraic subvariety. Thus,� = �(D, P) ⊂ AG is an algebraic subshift of
finite type.

For all i, j ∈ N, it is clear that Aij is a closed algebraic subset of AM
i+j

since it is a
finite intersection of sets of closed points of closed subvarieties of VM

i+j
:

Aij =
⋂
g∈Dij

π−1
ij ,g(gW)(K). (6.1)

Here, πij ,g : VM
i+j → V gD is the projection induced by the inclusion gD ⊂ Mi+j for

g ∈ Dij . The subset gW ⊂ V gD is defined as the image of W under the isomorphism
VD � V gD induced by the bijection D � gD given by h 	→ gh for every h ∈ D.

Observe that the maps πij ,g above and the transition maps of the inverse system
(�ij )i,j∈N are induced by morphisms of algebraic varieties.

In this section, we consider the following conditions:
(C2) V is a complete K-algebraic variety;
(C3) V is a K-algebraic group and W ⊂ V is an algebraic subgroup.

Remark 6.1. In case (C3), note that the projections pijk : Akj → Aij (cf. equation (5.2))
are homomorphisms of algebraic groups.

PROPOSITION 6.2. With the above notation and hypotheses, suppose in addition that one
of the conditions (H1), (C2), (C3) is satisfied. Then, for each i, j ∈ N, we have

�ij =
⋂
k≥i

pijk(Akj ) (6.2)

and �ij is a countably proconstructible subset of AM
i+j

. Moreover, in case (C2)
(respectively (C3)), �ij is a complete subvariety (respectively an algebraic subgroup)
of AM

i+j
.

Proof. The inclusion �ij ⊂⋂
k≥i pijk(Akj ) follows from Lemma 5.4.

Let x ∈⋂
k≥i pijk(Akj ) ⊂ AMi+j

. We must show that x can be extended to an element
of �. Consider the following inverse system lying above x. Let Bi = {x} and for each
k ≥ i, we set

Bk := (pijk)−1(x) ⊂ Akj , (6.3)
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which is a closed algebraic subset of AM
k+j

. Since x ∈ pijk(Akj ), each set Bk is
non-empty. From equation (6.3), it is clear that for every k ≥ i, we have

p̃kj (Bk+1) ⊂ Bk .

By restricting the map p̃kj to Bk+1, we have for each k ≥ i a well-defined algebraic map
πk : Bk+1 → Bk . Thus, we obtain an inverse subsystem (Bk)k≥i with transition maps
πnm : Bm→ Bn, where m ≥ n ≥ i, as compositions of the maps πk .

We claim that lim←−k≥i Bk �= ∅. Indeed, this follows from Lemma 3.2 if case (H1) is
satisfied and from Lemma 3.3 and Remark 2.1 in case (C2). Suppose now that case (C3) is
satisfied. Since x ∈⋂

k≥i pijk(Akj ), there exists for each k ≥ i a point zk ∈ Bk such

that pijk(zk) = x. Let Vk = ker pijk be an algebraic subgroup of AM
k+j

, then clearly
Bk = zkVk where the group law is written multiplicatively. For all integers m ≥ n ≥ i,
the map πmn is the restriction of a homomorphism of algebraic groups (cf. Remark
4.3). Therefore, πnm(Bm) is a translate of an algebraic subgroup of AM

n+j
and thus is

Zariski closed in Bn (cf. Remark 2.1). Hence, the claim follows, also in case (C3), from
Lemma 3.3.

Therefore, we can find (yk)k≥i ∈ lim←−k≥i Bk . Let y ∈ AG be defined as follows. Given

g ∈ G, set y(g) = yk(g) for any k ≥ i such that g ∈ Mk+j . Then y is well defined by
property (Mem2). For each g ∈ G, choose k ≥ i so that gD ⊂ Mk+j . Then (g−1y)|D =
yk|gD ∈ W(K)which follows from the definition ofAkj and since yk ∈ Bkj ⊂ Akj . Hence,
y ∈ �. By construction, x = y|Mi+j and we deduce that

⋂
k≥i qijk(Akj ) ⊂ �Mi+j . The

proof of equation (6.2) is completed. Thus, by Chevalley’s theorem, �ij is a countably
proconstructible subset of AM

i+j
.

Finally, the last statement follows from equation (6.2) and Remark 2.1 and Noetherianity
of the Zariski topology of AM

i+j
. Note that the sequence (qijk(Akj ))k≥i is trivially a

descending sequence.

COROLLARY 6.3. With the above notation and hypotheses, suppose that condition (H1)
(respectively (C2), respectively (C3)) is satisfied for �. Then, for each finite subset
E ⊂ G, the restriction �E is a countably proconstructible subset (respectively a complete
subvariety, respectively an algebraic subgroup) of AE .

Proof. Let i, j ∈ N be large enough so that E ⊂ Mi+j . Let π : AM
i+j → AE be the

induced projection. It follows that �E = π(�ij ). In cases (C2) and (C3), Proposition
6.2 and Remark 2.1 imply that �E is respectively a complete subvariety and an algebraic
subgroup of AE . In case (H1), we find by Lemma 3.1 that

�E = π(�ij ) = π
( ⋂
k≥i

pijk(Akj )

)
=

⋂
n∈N

π(pijk(Akj )). (6.4)

Hence, �E is countably proconstructible by Chevalley’s theorem. The proof is
completed.
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7. Algebraic sofic subshifts
Consider the following hypothesis without condition on cellular automata:
(Ĥ3) K is algebraically closed, V is a K-algebraic group, and � ⊂ AG is an algebraic

group sofic subshift.
We can now state the main local result for algebraic sofic subshifts.

THEOREM 7.1. Let V be an algebraic variety over a field K and let A = V (K). Let G be
a finitely generated group and let � ⊂ AG be an algebraic sofic subshift. Let E be a finite
subset of G. Suppose that condition (H1) (respectively (H2), respectively (Ĥ3)) is satisfied.
Then the restriction �E ⊂ AE is a countably proconstructible subset (respectively a
complete subvariety, respectively an algebraic subgroup) of AE .

Proof. By hypothesis, there exist in cases (H1) and (H2) an algebraic variety (respectively
in case (Ĥ3) an algebraic group) U over K, an algebraic (respectively algebraic group)
cellular automaton τ ′ : BG→ AG where B = U(K), and an algebraic (respectively
algebraic group) subshift of finite type �′ ⊂ BG such that � = τ ′(�′). Note that U , V
are complete varieties in case (H2). Let M be a memory set of τ ′. By Corollary 6.3, the
set �′ME is countably proconstructible. Hence, �′ME =

⋂
n∈N Cn where (Cn)n∈N is some

decreasing sequence of constructible subsets of AME . Let ϕ : BME → AE be given by
ϕ(x)(g) = τ ′(y)(g) for every x ∈ BME , g ∈ E and every y ∈ BG extending x. Then ϕ is
algebraic (cf. [14, Lemma 3.2]) and in case (Ĥ3), it is a homomorphism of algebraic groups
(cf. [39, Lemma 3.4]). In case (H1), we can conclude by Chevalley’s theorem since

�E = (τ ′(�′))E = ϕ(�′ME) = ϕ
( ⋂
n∈N

Cn

)
=

⋂
n∈N

ϕ(Cn), (7.1)

where the last equality follows from Lemma 3.1. Finally, in cases (H2) and (Ĥ3),
Corollary 6.3 implies that �E = ϕ(�′ME) is respectively a complete subvariety and an
algebraic subgroup of AE .

8. A closed mapping property and chain recurrent sets
Using the space-time inverse system, we give a short proof of the following result saying
that the image of an algebraic sofic subshift under an algebraic cellular automaton is closed.
It extends the linear case in [16, Theorem 4.1].

Let G be a group. Let V0, V1 be algebraic varieties over an algebraically field K. Let
A0 = V0(K) and let A1 = V1(K). Let τ : AG0 → AG1 be an algebraic cellular automaton
and let � ⊂ AG0 be an algebraic sofic subshift.

Then � is the image of some algebraic subshift of finite type �′ ⊂ BG under
an algebraic cellular automaton τ ′ : BG→ AG0 , where B is the set of K-points of a
K-algebraic variety U.

To avoid notational confusion, we introduce in this section the following hypotheses
similar to hypotheses (H1), (H2), and (H3), (Ĥ3):
(H̃1) K is uncountable;
(H̃2) U , V0 are complete K-algebraic varieties;
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(H̃3) U , V0, and V1 are K-algebraic groups, �′ ⊂ BG is an algebraic group subshift
of finite type, and τ ′ : BG→ AG0 and τ : AG0 → AG1 are algebraic group cellular
automata.

THEOREM 8.1. With the above notation, if one of the conditions (H̃1), (H̃2), (H̃3) is
satisfied, then τ(�) is closed in AG1 .

Proof. It is clear that, up to replacing τ by the composition τ ◦ τ ′ and � by �′, we
can suppose without loss of generality that � is an algebraic subshift of finite type. The
hypotheses (H̃2), (H̃3) now become respectively:
(P2) V0 is a complete K-algebraic variety;
(P3) V0 and V1 are K-algebraic groups, � ⊂ AG0 is an algebraic group subshift of finite

type, and τ : AG0 → AG1 is an algebraic group cellular automaton.
Let D ⊂ G be a defining memory set of �. Let d ∈ AG1 be in the closure of τ(�). We

must show that d ∈ τ(�).
Suppose first that G is finitely generated. Let M ⊂ G be a finite memory subset of

τ containing {1G} ∪D which generates G and satisfies M = M−1. Consider the inverse
system (AM

i

0 )i∈N whose transition maps pij : AM
j

0 → AM
i

0 , where 0 ≤ i ≤ j , are defined
as the canonical projections induced by the inclusions Mi ⊂ Mj . For every i ≥ 1, the
induced map qi : AM

i

0 → AM
i−1

1 is given as follows. For every σ ∈ AMi

0 , we set qi(σ ) :=
(τ (x))|Mi−1 , where x ∈ AG0 is any configuration that extends σ . For every i ≥ 1, we define

Zi := q−1
i (d|Mi−1) ∩�Mi .

Since d belongs to the closure of τ(�) in AG1 , it follows that Zi �= ∅ for every i ≥ 1.
By restricting the projections pij : AM

j → AM
i

to Zj , we obtain well-defined transition
maps πij : Zj → Zi , where j ≥ i ≥ 1, of the inverse system (Zi)i≥1.

It suffices to show that lim←−i≥1
Zi �= ∅ since, by construction of Zi and �ij (see also

[14, Lemma 2.1]), we have τ(c) = d for every c ∈ lim←−i≥1
Zi ⊂ lim←−i≥1

�Mi+1 = � (by
equation (4.6) since � is closed as it is a subshift of finite type).

Thanks to Theorem 7.1, the conclusion follows by a direct application of Lemma 3.2,
respectively Lemma 3.3, to the inverse system (Zi)i∈N if case (H̃1), respectively case (P2),
is satisfied. Assume now that case (P3) is satisfied. For each i ≥ 1, choose zi ∈ Zi and
let Vi := ker qi ∩�Mi be an algebraic subgroup of �Mi (by Theorem 7.1). We have Zi =
ziVi . Hence (by Remark 4.3), for j ≥ i ≥ 1, πij (Zj ) is a translate of an algebraic subgroup
of �Mi and thus is Zariski closed in Zi . Therefore, case (P3) follows from Lemma 3.3.

For a general group G, consider a finite memory set M of τ containing {1G} ∪D and
such that M = M−1. Let H ⊂ G be the subgroup generated by M. As �H is clearly an
algebraic (respectively in case (H̃3) an algebraic group) subshift of finite type, the above
discussion shows that τH (�H ) is closed in AG1 and so is τ(�) by Lemma 2.10.

COROLLARY 8.2. Let G be a group. Let V be an algebraic variety over a field K and let
A := V (K). Let � ⊂ AG be an algebraic sofic subshift. If one of the conditions (H1),
(H2), (Ĥ3) is satisfied, then � is closed in AG.
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Proof. It suffices to apply Theorem 8.1 in the case V0 = V1 to the identity map τ = IdAG ,
where A = V0(K) = V1(K).

COROLLARY 8.3. With the notation and hypotheses as in Theorem 1.3, we have
CR(τ ) ⊂ �(τ).
Proof. By Proposition 2.3, we only need to check that τn(�) is closed in AG for every
n ≥ 1 and that τ is uniformly continuous. The first property follows from Theorem 8.1.
The second is a general property of cellular automata already mentioned in §1.

9. Applications to backward orbits and limit sets
Thanks to the closedness property of algebraic sofic subshifts, we can establish the
following key relation among inverse space-time systems, backward orbits, and limit sets.

THEOREM 9.1. Let V be an algebraic variety over a field K and let A = V (K). Let
G be a finitely generated group and let � ⊂ AG be an algebraic sofic subshift. Let
τ : �→ � be an algebraic cellular automaton. Assume that one of the conditions (H1),
(H2), (H3) is satisfied. Then, with the notation as in §4, we have a surjective map
� : lim←−i,j∈N �ij → �(τ).

Proof. By Corollary 8.2, the subshift � is closed in AG. Hence, lim←−i,j∈N �ij is the set
of backward orbits of τ and we have a canonical map � : lim←−i,j∈N �ij → �(τ) given in
Lemma 4.4. Now let y0 ∈ �(τ) ⊂ �. We must show that there exists x ∈ lim←−i,j∈N �ij
such that �(x) = y0. For every i, j ∈ N, define a closed subset

Bij := (qi0 ◦ · · · ◦ qi,j−1)
−1(y0|Mi ) ⊂ �ij .

By definition of �(τ), there exists for every j ∈ N an element yj ∈ � such that
τ j (yj ) = y0. Hence, it follows from the definition of the transition maps qik and of �ij
that yj |Mi+j ∈ Bij . In particular, Bij �= ∅ for every i, j ∈ N. By restricting the transition
maps of the space-time inverse system (�ij )i,j∈N to the sets Bij , we obtain a well-defined
inverse subsystem (Bij )i,j∈N.

We claim that lim←−i,j∈N Bij �= ∅. Indeed, by Theorem 7.1, case (H1) is implied by
Lemma 3.2. In case (H2), Theorem 7.1 implies that Bij is a complete algebraic subvariety
of �ij and thus of AM

i+j
. Hence, case (H2) follows from Lemma 3.3 and Remark 2.1. In

case (H3), a similar argument as in the proof of Proposition 6.2 shows that the transition
maps of the system (Bij )i,j∈N have Zariski closed images. Therefore, case (H3) follows
immediately from Lemma 3.3. Thus, we can find

x ∈ lim←−
i,j∈N

Bij ⊂ lim←−
i,j∈N

�ij .

It is clear from the constructions of the inverse system (Bij )i,j∈N and of the map � (see
the proof of Lemma 4.4) that �(x) = y0. The proof of the lemma is completed.

COROLLARY 9.2. With the notation and hypotheses as in Theorem 1.3, we have
τ(�(τ)) = �(τ).
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Proof. Let M ⊂ G be a finite subset containing 1G, a memory set of τ , and a memory
set of � and such that M = M−1. Let H ⊂ G be the subgroup generated by M.
Since τ =∏

c∈G/H τc and �(τ) =∏
c∈G/H �(τc) (cf. Lemma 2.9), we can suppose

without loss of generality that G = H . Let x ∈�(τ), then x ∈ τn(X) for every n≥ 0.
Thus, τ(x) ∈ τn+1(X) for every n ≥ 0 and it follows that τ(x) ∈ �(τ). Therefore,
τ(�(τ)) ⊂ �(τ). For the converse inclusion, let y ∈ �(τ). By Theorem 9.1, there
exists x = (xij ) ∈ lim←−i,j∈N �ij such that �(x) = y. However, equation (4.7) tells us that

�−1(y) ⊂ lim←−i,j∈N �ij is the set of backward orbits of y under τ . Hence, we can find
z ∈ �(τ) such that τ(z) = y. Thus, �(τ) ⊂ τ(�(τ)) and the conclusion follows.

10. Noetherianity of algebraic subshifts of finite type
The goal of this section is to establish the following characterization of algebraic subshifts
of finite type by the descending chain property. It extends the linear version in [16,
Theorem 1.1 and Corollary 1.2]. The proof is an application of Theorem 7.1 combined
with the construction of an inverse system analogous to the space-time inverse system.
More precisely, we obtain the following theorem.

THEOREM 10.1. Let G be a finitely generated group and let V be an algebraic variety
(respectively an algebraic group) over an algebraically closed field K. Let A = V (K) and
let � ⊂ AG be a subshift. Consider the following properties:
(a) � is a subshift of finite type;
(b) � is an algebraic (respectively algebraic group) subshift of finite type;
(c) every descending sequence of algebraic (respectively algebraic group) sofic subshifts

of AG

�0 ⊃ �1 ⊃ · · · ⊃ �n ⊃ �n+1 ⊃ · · ·
such that

⋂
n≥0 �n = � eventually stabilizes.

Then we have (b) �⇒ (a) �⇒ (c). Moreover, if � ⊂ AG is an algebraic (respectively
algebraic group) sofic subshift, then (a) ⇐⇒ (b) ⇐⇒ (c).

Proof. It is trivial that (b) �⇒ (a). Assume that � is a subshift of finite type. Hence,
� = �(D, W), where D ⊂ G is finite and W ⊂ AD is some subset. Let �0 ⊃ �1 ⊃ · · ·
be a descending sequence of algebraic (respectively algebraic group) sofic subshifts
of AG whose intersection is �. Let M ⊂ G be a finite generating subset containing
{1G} ∪D and such that M = M−1. Consider the inverse system (Xij )i,j∈N defined by
Xij := (�j )Mi ⊂ AMi

. Remark that Xi,j+1 ⊂ Xij since �j+1 ⊂ �j for all i, j ∈ N. We
define the unit transition maps pij : Xi+1,j → Xij by pij (x) = x|Mi for every x ∈ Xi+1,j

and qij : Xi,j+1 → Xij simply as the inclusion maps.
For all i, j ∈ N, Theorem 7.1 implies that every Xij is a complete variety (respectively

an algebraic group) over K. By Noetherianity of the Zariski topology, the decreas-
ing sequence (X0j )j∈ N of algebraic closed subsets of AM eventually stabilizes, say,
X0j = X0m for all j ∈ N for some m ∈ N. Let W ′ := X0m, then �′ := �(Mm, W ′) is
an algebraic (respectively algebraic group) subshift of finite type. It is clear that �m ⊂ �′
and hence � ⊂ �′. We shall prove the converse inclusion.
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Let w ∈ W ′. We construct an inverse subsystem (Zij )i≥m,j≥0 of (Xij )i≥m,j≥0 as
follows. For i ≥ m, let Zi0 := {x ∈ Xi0 : x|Mm = w} which is clearly an algebraic closed
subvariety (respectively a translate of an algebraic subgroup) ofXi0. For i ≥ m, j ≥ 0, we
define an algebraic closed subvariety (respectively a translate of an algebraic subgroup (by
Theorem 7.1)) of Xij as follows:

Zij := (qi0 ◦ · · · ◦ qi,j−1)
−1(Zi0) ⊂ Xij .

The transition maps of (Zij )i≥m,j≥0 are well defined as the restrictions of the transition
maps of the system (Xij )i≥m,j≥0. These transition maps have Zariski closed images (by
Remark 2.1).

By our construction, each Zij is clearly non-empty. Hence, Lemma 3.3 implies that
there exists x = (xij )i≥m,j≥0 ∈ lim←− Zij . Let y ∈ AG be defined by y(g) = xi0(g) for every
g ∈ G and any large enough i ≥ m such that g ∈ Mi . Observe that xij = xik for every
i ≥ m and 0 ≤ j ≤ k since the vertical transition maps Xik → Xij are simply inclusions.
Consequently, for every n ∈ N, we have y ∈ �n by equation (4.6) since �n is closed in
AG (cf. Corollary 8.2). Hence, y ∈ �. By construction, y|Mm = w. Since w was arbitrary,
this shows that W ′ ⊂ �Mm . Hence, �′ = �(Mm, W ′) ⊂ �(Mm, �Mm) = �. The last
equality follows from Lemma 5.1 as D ⊂ Mm. Therefore, �′ = � and �n = � for all
n ≥ m. This proves that (a) �⇒ (c).

Suppose now that � ⊂ AG is an algebraic (respectively algebraic group) sofic sub-
shift which is not a subshift of finite type. Let M ⊂ G be a finite generating subset
containing {1G} such that M = M−1. For every n ∈ N, consider Wn := �Mn (as in §4).
Theorem 7.1 tells us that Wn is a complete algebraic subvariety (respectively an algebraic
subgroup) of AM

n
. Set �n := �(Mn, Wn) for every n ∈ N, then �n is an algebraic

(respectively algebraic group) subshift of finite type. As (�Mn+1)Mn = �Mn , it is clear
that � ⊂ �n+1 ⊂ �n for every n ∈ N. We claim that � =⋂

n∈N �n. Indeed, we only
need to prove that

⋂
n∈N �n ⊂ �. Let x ∈⋂

n∈N �n. Then by definition of �n, we
find that x|Mn ∈ Wn = �Mn for every n ∈ N. Thus, since � is closed (cf. Corollary
8.2), x ∈ lim←−n∈N �Mn = � (cf. equation (4.6)) and hence

⋂
n∈N �n ⊂ �. However, the

descending sequence (�n)n∈N cannot stabilize since otherwise the subshift � would be of
finite type. This shows that (c) �⇒ (a) if � is an algebraic (respectively algebraic group)
sofic subshift. The proof is complete.

Examples 10.2. (Markov properties) The examples below provide the original sources and
motivations for our main result in this section (Theorem 10.1).

(a) Let G be a group and let A be a finite group. Equip the configuration space AG

with the product group structure (thus, given two configurations x, y ∈ AG, their product
is defined as the configuration xy ∈ AG given by (xy)(g) := x(g)y(g) for all g ∈ G).
A closed subshift X ⊂ AG which is also a subgroup of AG is called a group subshift.
Group subshifts X ⊂ AZ are called Markov subgroups in [28, §6.3], and were studied and
classified up to topological conjugacy by Kitchens in [27] (see also [28, Theorem 6.3.3]).

One says that a group G is of finite Markov type if for any finite group A, every group
subshift � ⊂ AG is of finite type. The finite Markov type property is a weakening of the
Markov type property introduced by Schmidt in [54, Definition 4.1].
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The following hold:
(i) every finite group is of finite Markov type;

(ii) the additive group Z is of finite Markov type. This result was established by Kitchens
in [27, Proposition 4] (see also [28, Lemma 6.3.5], [30, Exercise 2.1.11], and [13,
Exercise 1.114]);

(iii) every subgroup of a group of finite Markov type is finitely generated (this is
also expressed by saying that groups of finite Markov type are Noetherian). As
a consequence, every group of finite Markov type is countable and contains no
non-abelian free subgroups;

(iv) every quotient of a group of finite Markov type is of finite Markov type;
(v) every group containing a finite index subgroup of finite Markov type is itself of finite

Markov type;
(vi) a group G is of finite Markov type if and only if G is countable and, for any finite

group A, every descending sequence of group subshifts of AG

X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xn ⊃ Xn+1 ⊃ · · ·
eventually stabilizes, that is, there exists n0 ∈ N such that Xn = Xn0 for all n ≥ n0

(cf. [13, Exercise 1.112]).
In other words, the class of groups of finite Markov type is closed under the operations of
taking subgroups, quotients, and extensions by finite or cyclic groups. As a consequence,
all finitely generated abelian groups are of finite Markov type (a result observed by
Kitchens and Schmidt [26, Remark 3.10(2)]). In fact, more generally, the class of groups
of finite Markov type contains all polycyclic-by-finite groups (cf. [13, Exercise 4.37]), a
particular case of [54, Theorem I.4.2]. The question whether or not every group of finite
Markov type is polycyclic-by-finite remains, at our present knowledge, open.

(b) Let G be a group, let K be a field, and let A be a finite-dimensional vector
space over K. Equip the configuration space AG with the product vector space structure
(thus, given a scalar λ ∈ K and two configurations x, y ∈ AG, one defines the config-
uration λx ∈ AG (respectively x + y ∈ AG) by setting (λx)(g) := λx(g) (respectively
(x + y)(g) := x(g)+ y(g)) for all g ∈ G. A closed subshift � ⊂ AG which is also a
vector subspace of AG is called a linear subshift. One says that a group G is of K-linear
Markov type if for any finite-dimensional vector space A over K, every linear subshift
� ⊂ AG is of finite type. Analogous properties to items (i)–(vi) in point (a), for groups of
K-linear Markov type, are shown in [16, §6] (see also [42] for some more general results).
In other words, the class of K-linear Markov groups is closed under the operations of
taking subgroups, quotients, and extensions by finite or cyclic groups, and contains all
polycyclic-by-finite groups (cf. [16, Corollary 1.4]). In addition, one has the following
characterization: a group G is of K-linear Markov type if and only if its group ring K[G]
is one-sided Noetherian [16, Theorem 1.3].

11. Proof of Theorem 1.3
For item (i), we know that �(τ) is G-invariant by the G-equivariance of τ . However, as
the set of algebraic cellular automata over � is closed under the composition of maps (cf.
[14, Proposition 3.3] for the case of full shifts, the general case is proved similarly), the
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map τn : �→ � is an algebraic cellular automaton for every n ≥ 1. It then follows from
Theorem 8.1 that τn(�) is closed in AG for every n ≥ 1 and thus �(τ) =⋂

n≥1 τ
n(�) is

also closed in AG. This shows that �(τ) is a closed subshift of AG and item (i) is proved.
For item (v), let z ∈ � ∩ Fix(H) for some subgroup H ⊂ G. Let F ⊂ G be the

subgroup generated by a finite subset M containing {1G} and memory sets of τ , �, and
such that M = M−1. Note that z|F is fixed by the subgroup R := F ∩H of F. Consider
the space-time inverse system (�ij )i,j∈N associated with the restriction τF and M as in
Definition 4.1. Keep the notation in §4. For all i, j ∈ N, let

�ij := {p ∈ AMi+j
: p(u) = p(v) for all u, v ∈ Mi+j with uv−1 ∈ R}

be the restriction to Mi+j of R-fixed points in AH . Clearly, �ij is respectively a closed
subvariety, a complete algebraic subvariety, and an algebraic subgroup of AM

i+j
in cases

(H1), (H2), and (H3). Define also Zij := �ij ∩�ij ⊂ AMi+j
.

Note that τF sends R-fixed points to R-fixed points. Hence, by restricting the transition
maps to the sets Zij , we obtain a well-defined inverse subsystem of (�ij )i,j∈N. Theorem
7.1 implies that respectively in each case (H1), (H2), and (H3), the set Zij ⊂ AMi+j

is
a countably proconstructible subset, a complete algebraic subvariety, and an algebraic
subgroup. Each Zij is non-empty since it contains z|Mi+j . Hence, Lemmas 3.2 and
3.3 imply that there exists x ∈ lim←−i,j∈N Zij ⊂ lim←−i,j∈N �ij . By Lemma 4.4, we obtain

y = �(x) ∈ �(τF ) ⊂ AH . By our construction, y is fixed by R. By Lemma 2.9(i),
�(τ) = �(τF )G/F . Thus, y induces a configuration of �(τ) fixed by H. This proves
item (v).

To finish the proof of Theorem 1.3, note that item (ii) follows from Corollary 9.2 and
item (iii) follows from the general property Per(τ ) ⊂ R(τ ) ⊂ NW(τ ) ⊂ CR(τ ) and from
the inclusion CR(τ ) ⊂ �(τ) proved in Corollary 8.3. Finally, in case (H2) (respectively in
case (H3)), item (iv) is a direct consequence of the implication (a) �⇒ (c) in Theorem
10.1 applied to �(τ) and the decreasing sequence of algebraic (respectively algebraic
group) sofic subshifts τ(�) ⊃ τ 2(�) ⊃ · · · ⊃ τn(�) ⊃ τn+1(�) ⊃ · · · which satisfies⋂
n≥1 τ

n(�) =: �(τ) by definition.

12. Proof of Theorem 1.4
It is clear that (a) �⇒ (b). For the converse implication, suppose that �(τ) = {x0} for
some x0 ∈ �. As �(τ) is G-invariant, there exists an element denoted by 0 ∈ A such that
x0(g) = 0 for every g ∈ G, that is, x0 = 0G. Let M ⊂ G be a finite subset containing a
memory set of τ and a memory set of � such that 1G ∈ M and M = M−1. Let H be the
subgroup generated by M and consider the restriction τH . By Lemma 2.9, we deduce that
�(τH ) must be a singleton as well and τ is nilpotent if τH is. Thus, up to replacing G by
H, we can suppose that G is generated by M.

We construct an inverse subsystem (�∗ij )i,j∈N of the space-time inverse system
(�ij )i,j∈N associated with τ and the memory set M (cf. Definition 4.1) as follows. Let
�∗i0 := �i0 \ {x ∈ �i0 : x(1G) = 0} for every i ≥ 0. For all i ≥ 0 and j ≥ 1, we define

�∗ij = (qi0 ◦ · · · ◦ qi,j−1)
−1(�∗i0).
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The unit transition maps q∗ij : �∗i,j+1 → �∗ij and p∗ij : �∗i+1,j → �∗ij of the inverse
subsystem (�∗ij )i,j∈N are defined respectively by the restrictions of the transition maps
qij and pij of (�ij )i,j∈N.

Assume in contrast that τ is not nilpotent. We claim that �∗ij �= ∅ for all i, j ∈ N.
Otherwise, �∗ij = ∅ for some i, j ∈ N. If j = 0, then �∗i0 = ∅, that is, x(1G) = 0 for all
x ∈ �i0, and since � is G-invariant and 1G ∈ Mi+j , we deduce that � = {0G}. Hence, τ
is trivially nilpotent and we arrive at a contradiction. Thus, j ≥ 1 and by definition of �ij ,
we have for every x ∈ �ij that

(qi0 ◦ · · · ◦ qi,j−1)(x)(1G) = 0.

Since τ i+j is G-equivariant, it follows that τ i+j (x) = 0G for every x ∈ �, which
contradicts the assumption that τ is not nilpotent. This proves the claim, that is, �∗ij �= ∅
for all i, j ∈ N. We are going to show that

lim←−
i,j∈N

�∗ij �= ∅. (12.1)

Indeed, equation (12.1) is a direct application of Theorem 7.1 and Lemma 3.2 to the inverse
system (�∗ij )i,j∈N in case (H1). For cases (H2) and (H3), observe that for every (i, j) ≺
(k, l) in N2, we have

Z := F(i,j),(k,l)(�
∗
kl) = F(i,j),(k,l)(�kl) ∩�∗ij , (12.2)

where F(i,j),(k,l) : �kl → �ij is the transition map of the inverse system (�ij )i,j∈N. Indeed,
by definition of �∗kl and �∗ij , and using the equality F(i,0),(k,l) = F(i,0),(i,j) ◦ F(i,j),(k,l), we
see that

F(i,j),(k,l)(�
∗
k,l) = F(i,j),(k,l)(�k,l \ F−1

(i,0),(k,l)(�i,0 \�∗i,0))
⊃ F(i,j),(k,l)(�kl) \ F(i,j),(k,l)(F

−1
(i,0),(k,l)(�i0 \ A∗i0))

⊃ F(i,j),(k,l)(�kl) \ F−1
(i,0),(i,j)(�i0 \�∗i0)

= F(i,j),(k,l)(�kl) \ (�ij \�∗ij )
= F(i,j),(k,l)(�kl) ∩�∗ij .

However, clearly F(i,j),(k,l)(�
∗
kl) ⊂ F(i,j),(k,l)(�kl) ∩�∗ij , and equation (12.2) is proved.

In cases (H2) and (H3), the set F(i,j),(k,l)(�kl) is closed in �ij by Remarks 2.1, 4.3, and
Theorem 7.1. We infer from equation (12.2) that F(i,j),(k,l)(�

∗
kl) is a Zariski closed subset

of�∗ij . Therefore, lim←−i,j∈N �
∗
ij �= ∅ results from Lemma 3.3 and equation (12.1) is proved

in all cases.
We can thus choose x = (xij )i,j∈N ∈ lim←−i,j∈N �

∗
ij . Let � : lim←−i,j∈N �ij → �(τ)

be the map given in Theorem 9.1. As lim←−i,j∈N �
∗
ij ⊂ lim←−i,j∈N �ij , we obtain

y0 = �(x) ∈ �(τ). As y0(1G) = x00(1G) by definition of � and as x00(1G) �= 0 since
x00 ∈ �∗00, we deduce that �(τ) �= {0G}. This contradiction shows that (b) �⇒ (a).
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13. Nilpotency over finite alphabets
The following theorem strengthens and extends to any infinite group some results
established for full shifts over G = Z by Culik, Pachl, and Yu [18, Theorem 3.5] and by
Guillon and Richard [24, Corollary 4].

Suppose that X is a topological space equipped with a continuous action of a group
G. One says that the dynamical system (X, G) is topologically mixing if for each pair of
non-empty open subsets U and V of X, there exists a finite subset F ⊂ G such that U ∩
gV �= ∅ for all g ∈ G \ F . Given a group G and a finite set A, a closed subshift � ⊂ AG
is said to be topologically mixing provided (�, G) is topologically mixing. If (X, G) is
a topologically mixing dynamical system and f : X→ X is a continuous G-equivariant
map, then the factor system (f (X), G) is also topologically mixing.

THEOREM 13.1. Let G be an infinite group, let A be a finite set, and let � ⊂ AG be a
non-empty topologically mixing subshift of sub-finite-type (e.g. � = AG, or, if G is finitely
generated, � is of finite type). Let τ : �→ � be a cellular automaton. Then the following
conditions are equivalent:
(a) τ is nilpotent;
(b) the limit set �(τ) is reduced to a single configuration;
(c) the limit set �(τ) is finite.
If G is finitely generated, then the above conditions are equivalent to
(d) the limit set �(τ) consists only of periodic configurations.

Before starting the proof of the above theorem, we present a preliminary lemma. The
result is probably well known, but since we could not find any reference, we include a proof
for the sake of completeness.

LEMMA 13.2. Let G be a finitely generated group, let A be a set, and let � ⊂ AG be a
finite subshift. Then � is of finite type.

Roughly, the idea is simple. Every configuration x ∈ � has a finite orbit, equivalently,
its stabilizer Hx = StabG(x) is of finite index in G. Since the intersection of finitely many
finite-index subgroups is of finite index, the group H :=⋂

x∈� Hx is of finite index in
G. Moreover, by the Poincaré lemma, there exists a finite index normal subgroup K⊂ H .
This way, we can embed � into AG/K (cf. [10, Proposition 1.3.7]). As G/K is finite, it
follows that � is of finite type. The proof below is a detailed and self-contained version
of the above idea. See [16, Proposition 2.4] for a linear version (where ‘finite’ becomes
‘finite-dimensional’).

Proof of Lemma 13.2. Let S ⊂ G be a finite generating subset of G. After replacing S
by S ∪ S−1 ∪ {1G}, we can assume that S = S−1 and 1G ∈ S. Then, given any element
g ∈ G, there exist n ∈ N and s1, s2, . . . , sn ∈ S such that g = s1s2 · · · sn. The minimal
n ∈ N in such an expression of g is the S-length of g, denoted by �S(g).

For all distinct x, y ∈ �, we can find g = gx,y ∈ G such that x(g) �= y(g). Then the
finite set D0 := {gx,y : x, y ∈ � such that x �= y} ⊂ G satisfies

x|D0 = y|D0 implies x = y for all x ∈ �. (13.1)
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Let us show that � = �(D, P) for D = SD0 and P := {x|D : x ∈ �} ⊂ AD . By
definition, we have

�(D, P) = {x ∈ AG : for all g ∈ G there exists xg ∈ � such that

(g−1x)(d) = xg(d) for all d ∈ D}. (13.2)

Note that the element xg ∈ � in equation (13.2) is uniquely defined by x ∈ �(D, P)
and g ∈ G, since D ⊃ D0 so that xg|D = x′g|D infers xg = x′g by equation (13.1).

We clearly have � ⊂ �(D, P), since � is G-invariant.
For the converse inclusion, suppose that x ∈ �(D, P) and let us show that

x = x1G ∈ �. We prove by induction on the S-length of g that

xg = g−1x1G (13.3)

for all g ∈ G. If �S(g) = 0, then g = 1G and equation (13.3) holds trivially. Suppose
now that �S(g) = n and let s ∈ S. Given d0 ∈ D0 we have, on the one hand,
x(gsd0) = (g−1x)(sd0) = xg(sd0) = s−1xg(d0), and, on the other hand, x(gsd0) =
((gs)−1x)(d0) = xgs(d0). This shows that (s−1xg)|D0 = xgs |D0 . Since s−1xg and xgs

both belong to �, we deduce from equation (13.1) that s−1xg = xgs . By induction, we
have xg = g−1x1G so that xgs = (gs)−1x1G . This proves equation (13.3). From equation
(13.3) we obtain, for every g ∈ G,

x(g) = (g−1x)(1G) = xg(1G) = g−1x1G(1G) = x1G(g).

This shows that x = x1G ∈ �.

Proof of Theorem 13.1. The equivalence (a)⇐⇒ (b) follows from Theorem 1.4. The
implication (b) �⇒ (c) is obvious.

Suppose now that�(τ) is finite. LetM ⊂ G be a finite subset which serves as a memory
set for both τ and�, and denote byH ⊂ G the subgroup it generates. Let τH : �H → �H

denote the corresponding restriction cellular automaton. It follows from Lemma 2.9 that
�(τ) = �(τH )G/H . If G is not finitely generated, then G/H is infinite and necessarily
�(τH ) and therefore �(τ) must consist of a single element, as �(τ) is non-empty (cf.
Theorem 1.3). This proves the implication (c) �⇒ (b) for G not finitely generated.

If G is finitely generated, it follows from Lemma 13.2 that �(τ) is a subshift of finite
type. Since A is finite, the characterization of subshifts of finite type in Theorem 10.1 can
be applied to the sequence

� ⊃ τ(�) ⊃ τ 2(�) ⊃ · · · ⊃ �(τ) =
⋂
n∈N

τn(�),

and implies that there exists n0 ∈ N such that �(τ) = τn0(�). Therefore, �(τ) is a factor
of �. Since � is topologically mixing, so is �(τ). Now let x, y ∈ �(τ). As �(τ) is finite
and Hausdorff, {x} and {y} are open in �(τ). Thus, by topological mixing of �(τ), there
exists a finite subset F ⊂ G such that x = gy for all g ∈ G \ F . Since �(τ) is finite, the
stabilizer H of y in G is an infinite subgroup of G. It follows thatH ∩ (G \ F) �= ∅. Taking
g ∈ H ∩ (G \ F) yields x = gy = y. Hence, �(τ) is a singleton and this concludes the
proof of the implication (c) �⇒ (b).
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Finally, suppose that G is finitely generated. As any finite G-invariant subset of AG

necessarily consists only of periodic configurations, we have (c) �⇒ (d). The reverse
implication follows from the finiteness of closed subshifts containing only periodic
configurations proved in [4, Theorem 5.8] and in [32, Theorem 1.4] (see also [5, Theorem
3.8] for the case G = Z2). Note that since AG is compact and τ is continuous, �(τ) is
closed in AG.

14. Proof of Theorem 1.5
By Corollary 8.2, we know that � is closed in AG. The equivalence (a)⇐⇒ (b) thus
results from Proposition A.5. It is trivial that (a) �⇒ (c) �⇒ (d). For the implications
(d) �⇒ (a) and (c) �⇒ (a), let M ⊂ G be a finite subset containing the memory sets of
both τ and � such that 1G ∈ M and M = M−1. Let H be the subgroup of G generated
by M. Let τH : �H → �H denote the restriction cellular automaton. By Lemma 2.9(i),
we have �(τ) = �(τH )G/H . Thus, if �(τ) is finite, then so is τ(τH ). Likewise, if
item (d) holds for τ , then {x(1G) : x ∈ �(τH )} is finite and �(τH ) consists of periodic
configurations as well. However, τ is nilpotent if τH is nilpotent by Lemma 2.9(ii).
Therefore, up to replacing G by H, we can assume that G is finitely generated by M. It
then suffices to show that (d) �⇒ (a) as we already know that (c) �⇒ (d).

Assume that item (d) holds. Then T := {x(1G) : x ∈ �(τ)} is finite. As �(τ) is
G-invariant, x(g) ∈ T for every x ∈ �(τ) and g ∈ G.

Let (�ij )i,j∈N be the space-time inverse system associated with τ and the memory set
M. We set �∗i0 := �i0 \ {x ∈ �i0 : x(1G) ∈ T } for every i ≥ 0, and define for every i ≥ 0
and j ≥ 1:

�∗ij = (qi0 ◦ · · · ◦ qi,j−1)
−1(�∗i0) ⊂ �ij .

The unit transition maps p∗ij : �∗i+1,j → �∗ij and q∗ij : �∗i,j+1 → �∗ij are respectively the
restrictions of the transition maps pij and qij of the system (�ij )i,j∈N.

Suppose first that �∗ij �= ∅ for all i, j ∈ N. Then exactly as in the proof of Theorem
1.4, there exists x = (xij )i,j∈N ∈ lim←−i,j∈N �

∗
ij and we obtain y0 = �(x) ∈ �(τ) with

y0(1G) = x00(1G). However, x00(1G) /∈ T because x00 ∈ �∗00, we find that �(τ) �⊂ T G,
which is a contradiction.

Therefore, we must have �∗ij = ∅ for some i, j ∈ N. If j = 0, then �∗i0 = ∅ and
x(1G) ∈ T for all x ∈ �i0. We deduce that AG ⊂ T G and thus A ⊂ T is finite. As G
is infinite and �(τ) contains only periodic configurations, Theorem 13.1 implies that τ is
nilpotent. If j ≥ 1, then by definition of �ij , we have for every x ∈ �ij that

(qi0 ◦ · · · ◦ qi,j−1)(x)(1G) ∈ T .

Hence, as τ j is G-equivariant, we deduce that τ j (x) ∈ T G for every x ∈ AG. Thus, the
restriction σ := τ j |T G : T G→ T G is a well-defined cellular automaton. As a subset of
�(τ), the set�(σ) also consists of periodic configurations. We deduce from Theorem 13.1
that σ is nilpotent, say, σm(x) = x0 for all x ∈ T G for somem ∈ N and x0 ∈ AG. It follows
that τ (m+1)j (x) = σm(τ j (x)) = x0 for all x ∈ AG. We conclude that τ is nilpotent. The
proof of the theorem is completed.
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15. Counter-examples
The following example (cf. [11, Example 5.1] and [14, Example 8.1]) shows that Theorem
8.1 and assertions (i) and (iii) of Theorem 1.3 become false if we remove the hypothesis
that the ground field K is algebraically closed.

Example 15.1. LetG := Z be the additive group of integers and let V := Spec(R[t]) = A1
R

denote the affine line over R. Then A := V (R) = R. Consider the cellular automaton
τ : RZ→ RZ with memory set M := {0, 1} ⊂ G and associated local defining map
μ : RM → R defined by μ(p) = p(1)− p(0)2 for all p ∈ RM . Clearly, τ is an algebraic
cellular automaton over (G, V , R). Indeed, μ is induced by the algebraic morphism
f : V 2 → V associated with the morphism of R-algebras

R[t]→ R[t0, t1]

t 	→ t1 − t20 .

Note that τ : RZ→ RZ is given by

τ(c)(n) = c(n+ 1)− c(n)2 for all c ∈ RZ and n ∈ Z.

CLAIM 15.2. The limit set �(τ) is a dense non-closed subset of RZ. In particular, �(τ)
is not a closed subshift of RZ.

Proof. Let c ∈ RZ and let F ⊂ Z be a finite subset. Choose an integer m ∈ Z such that
F ⊂ [m,∞) and consider the configuration d ∈ RZ defined by d(n) := 0 if n < m and
d(n) := c(n) if n ≥ m. For each k ∈ N, define by induction on k a configuration dk ∈ RZ

in the following way. We first take d0 = d . Then, assuming that the configuration dk has
been defined, we define the configuration dk+1, using induction on n, by dk+1(n) := 0
if n ≤ m and dk+1(n+ 1) := dk(n)+ dk+1(n)

2 if n ≥ m. Clearly, τ(dk+1) = dk so that
d = d0 = τ k(dk) for all k ∈ N. Therefore, d ∈ �(τ). Since c and d coincide on [m,∞)
and hence on F, this shows that c is in the closure of �(τ). Thus, �(τ) is dense in RZ.

In [11, Example 5.1] and [14, Example 8.1], it is shown that Im(τ ) is not closed of RZ

and the constant configuration e ∈ RZ, defined by e(n) := 1 for all n ∈ Z, does not belong
to Im(τ ). This implies that e /∈ �(τ). As �(τ) is dense in RZ, we deduce that �(τ) is not
closed in RZ.

Remark that Im(τ ) is an algebraic sofic subshift of RZ since it is the image of the full
shift RZ under the algebraic cellular automaton τ . Thus, an algebraic sofic subshift may
fail to be closed in the ambient full shift.

For every integer n ≥ 1, the set Mn := {0, . . . , n} is a memory set for τn. Let
μn : RMn → R denote the associated local defining map. We shall use the fact that for
each n ≥ 1, there exists a polynomial νn ∈ R[t0, . . . , tn−1] such that for every p ∈ RMn ,

μn(p) = p(n)+ νn(p(0), . . . , p(n− 1)). (15.1)

This fact can be proved by an easy induction. For n = 1, we have μ1(p) = μ(p) = p(1)−
p(0)2 for every p ∈ RM1 so that we can take ν1(t0) = −t20 . Suppose now that the assertion
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holds for some n ≥ 1. Let c ∈ RZ and let d = τn(c). By the induction hypothesis, we have
that d(0) = μn(c(0), . . . , c(n)) and

d(1) = μn(c(1), . . . , c(n+ 1)) = c(n+ 1)+ νn(c(1), . . . , c(n)).

Therefore, we get

τn+1(c)(0) = τ(τn(c))(0) = τ(d)(0) = d(1)− d(0)2
= c(n+ 1)+ νk(c(1), . . . , c(n))− μn(c(0), . . . , c(k))2

= c(n+ 1)+ νn+1(c(0), . . . , c(n)),

where νn+1 ∈ R[t0, . . . , tn] is given by the formula

νn+1(t0, . . . , tn) := νn(t1, . . . , tn)− μn(t0, . . . , tn)2.

Thus, for every p ∈ RMn+1 ,

μn+1(p) = p(n+ 1)+ νn+1(p(0), . . . , p(n)),

and the assertion follows by induction.

CLAIM 15.3. For every configuration c ∈ RZ and any integer n ≥ 1, there exists d ∈ RZ

such that d(k) = c(k) for all k ≤ 0 and τn(d)(k) = c(k) for all k ≥ −n+ 1.

Proof. Let c ∈ RZ. We define d ∈ RZ by

d(k) = c(k) if k ≤ 0,

and inductively for k ≥ 1 by

d(k) := c(k − n)− νn(d(k − n), . . . , d(k − 1)). (15.2)

By applying equations (15.1) and (15.2), we obtain, for every k ≥ −n+ 1,

τn(d)(k) = μn(d(k), . . . , d(n+ k))
= d(n+ k)+ νn(d(k), . . . , d(k + n− 1))

= c(k),
and the claim is proved.

CLAIM 15.4. The set R(τ ) is a dense non-closed subset of RZ. In particular, R(τ ) is not
a closed subshift of RZ.

Proof. Let c ∈ RZ. For each n0 ≥ 1, define by induction on n ≥ n0 a configuration
dn ∈ RZ in the following way. Let dn0 = c. Then, assuming that the configuration
dn has been defined, we can choose by Claim 15.3 and the Z-equivariance of τ a
configuration dn+1 satisfying dn+1(k) = dn(k) for k ≤ 2 · 3n and τ 3n+1

(dn+1)(k) = dn(k)
for k ≥ −3n + 1.

Hence, we can define d ∈ RZ by setting d(k) = dn(k) for any n ≥ n0 such that
k ≤ 2 · 3n. Let n ≥ n0. Remark that M3n+1 is a memory set of τ 3n+1

and d(k) = dn+1(k)
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for k ≤ 2 · 3n+1. Hence, for −3n + 1 ≤ k ≤ 3n so that in particular 3n+1 + k ≤ 2 · 3n+1,
we have

τ 3n+1
(d)(k) = τ 3n+1

(dn+1)(k) = dn(k) = d(k). (15.3)

Since this holds for all n ≥ n0 and as every finite subset is contained in {−3n + 1, . . . , 3n}
for any large enough n, we deduce that d ∈ R(τ ).

It is clear from the construction that dn(k) = c(k) for every n ≥ n0 and k ≤ 2 · 3n0 .
Thus, d(k) = c(k) for every k ≤ 2 · 3n0 . As n0 ≥ 1 is arbitrary, it follows that every c ∈ RZ

belongs to the closure of R(τ ). In other words, R(τ ) is dense in RZ.
The set R(τ ) is not closed in RZ. Indeed, the configuration e ∈ RZ, given by e(k) = 1

for all k ∈ Z, does not belong to R(τ ) since τn(e)(0) = 0 �= c(0) for all n ≥ 1.

CLAIM 15.5. One has NW(τ ) = CR(τ ) = RZ.

Proof. By Claim 15.4, the set R(τ ) is dense in RZ. Since NW(τ ) and CR(τ ) are closed in
RZ and contain R(τ ), we deduce that NW(τ ) = CR(τ ) = RZ.

CLAIM 15.6. One has R(τ ) �⊂ �(τ) and �(τ) �⊂ R(τ ).

Proof. By the proof of Claim 15.2, we know that the configuration c ∈ RZ, given by
c(k) = 0 if k ≤ −1 and c(k) = 1 if k ≥ 0, belongs to �(τ). However, as τn(c)(0) = 0 �=
c(0) for every n ≥ 1, it follows that c /∈ R(τ ).

However, reconsider the configuration e ∈ RZ given by e(k) = 1 for every k ∈ Z. The
proof of Claim 15.4 actually shows that there exists d ∈ R(τ ) such that d(k) = e(k) = 1
for all k ≤ 0. Suppose that there exists b ∈ RZ such that τ(b) = d . Then b(k + 1) =
1+ b(k)2 for all k ≤ 0. Thus, 1 ≤ b(k) ≤ b(k + 1) for all k ≤ 0, so that the limit
t := limk→−∞ b(k) exists and is finite. By passing to the limit in the relation b(k + 1) =
1+ b(k)2, we find that t = 1+ t2, which is a contradiction as t must be real. This shows
that d /∈ τ(RZ) and thus d /∈ �(τ). The proof is completed.

Remark 15.7. Consider the complex version of Example 15.1, that is, let τC : CZ→ CZ

be the algebraic cellular automaton over (Z, A1
C

, C) with memory setM = {0, 1} ⊂ Z and
associated local defining map μC : CM → C defined by μC(p) = p(1)− p(0)2 for all
p ∈ CM .

Then the same proofs as in Claims 15.4 and 15.5 show that R(τC) is a dense non-closed
subset of CZ and that NW(τC) = CR(τC) = CZ. By applying Theorem 1.3(ii), we deduce
that �(τC) = CZ, that is, τC is surjective, which can also be easily checked by a direct
verification.

The following example shows that assertion (v) of Theorem 1.3 becomes false if we
remove the hypothesis that the ground field K is algebraically closed.

Example 15.8. Let G be a group and let V := Spec(R[t]) = A1
R

denote the affine line over
R. Consider the algebraic morphism f : V → V given by t 	→ t2 + 1. Take A := V (R) =
R and let τ : AG→ AG denote the cellular automaton with memory set M := {1G}
and associated local defining map μ : AM = A→ A given by a 	→ a2 + 1. The cellular
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automaton τ is algebraic since μ is induced by f but its limit set �(τ) is clearly empty.
Remark also that τ is not stable since otherwise, �(τ) would be non-empty.

The following example shows that Theorem 1.4 becomes false if we remove the
hypothesis that the ground field K is algebraically closed.

Example 15.9. Let G be a group and let V := P1
R

denote the projective line over R.
Consider the algebraic morphism f : V → V given by (x : y) 	→ (x2 + y2 : y2). Take
A := V (R) = P1(R) = R ∪ {∞} and let τ : AG→ AG denote the cellular automaton with
memory set M := {1G} and associated local defining map μ : AM = A→ A given by
a 	→ a2 + 1. The cellular automaton τ is algebraic since μ is induced by f. Clearly, the
limit set �(τ) is reduced to the constant configuration g 	→ ∞ but τ is not nilpotent.

16. Generalizations
Using basic properties of proper morphisms, it is not hard to see that all the results for case
(H2) (respectively for case (H̃2) in Theorem 8.1) remain valid if V (respectively V0) is
assumed to be separated (and not necessarily complete). For this, it suffices to remark that
images of morphisms from a complete algebraic variety to a separated algebraic variety
(cf. [31, §3.3.1]) are Zariski closed complete subvarieties (cf. [31, §3.3.2]). This leads us
to the following definition.

Definition 16.1. Let G be a group and let V be a separated algebraic variety over a field
K. Let A := V (K). A subset � ⊂ AG is called a complete algebraic sofic subshift if it is
the image of an algebraic subshift of finite type �′ ⊂ BG, where B = U(K) and U is a
complete K-algebraic variety, under an algebraic cellular automaton τ ′ : BG→ AG.

With the above definition, Theorem 10.1 can also be extended as follows without any
changes in the proof.

THEOREM 16.2. Let G be a finitely generated group. Let V be a separated algebraic
variety over an algebraically closed field K. Let A = V (K) and let� ⊂ AG be a complete
algebraic sofic subshift. Then following are equivalent:
(a) � is a subshift of finite type;
(b) � is an algebraic subshift of finite type;
(c) every descending sequence of algebraic sofic subshifts of AG

�0 ⊃ �1 ⊃ · · · ⊃ �n ⊃ �n+1 ⊃ · · ·
such that

⋂
n≥0 �n = � eventually stabilizes.

Now, let G be a group and let V be an algebraic variety over a field K. Let A = V (K)
and let � ⊂ AG be a subset.

Definition 16.3. � ⊂ AG is called a countably proconstructible subshift of finite type
(CPSFT) if there exist a finite subset D ⊂ G and a subset W ⊂ VD which is the
complement in VD of a countable number of constructible subsets (cf. §3), such that
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� = �(D, W(K)). Similarly,� ⊂ AG is a countably proconstructible sofic subshift (CPS
subshift) if it is the image of a CPSFT under an algebraic cellular automaton with
range AG.

Our proofs actually show that Theorem 1.3 (except point (iv)), Theorem 1.4 (respec-
tively Theorem 1.5) still hold if we replace hypotheses (H1), (H2), and (H3) and the
assumption � ⊂ AG being an algebraic sofic subshift (respectively a topologically mixing
algebraic sofic subshift) by a more general hypothesis:
(H) K is an uncountable algebraically closed field and � ⊂ AG is a CPS subshift

(respectively topologically mixing CPS subshift) and τ : �→ � is an algebraic
cellular automaton.

In fact, it can be directly checked from our proofs that results for case (H1) in §6
(respectively §§7 and 8) remain valid if we assume that K is an uncountable algebraically
closed field and � is a CPSFT (respectively a CPS subshift).

We now introduce a non-trivial class of non-empty CPSFT (cf. Theorem 16.6).

Definition 16.4. Let G be a group. Let V be an algebraic variety over a field K and
let A = V (K). A subshift � ⊂ AG is called a full CPSFT if there exist a finite subset
D ⊂ G and a subsetW = VD \ (⋃n∈N Un)where eachUn ⊂ VD is a constructible subset
satisfying dim Un < dim VD , such that� = �(D, W(K)). Here, dim Z denotes the Krull
dimension of a constructible subset Z (see for example [15]).

Remark that if V is finite, that is, dim V = 0, the conditions dim Un < dim VD imply
that Un = ∅ for every n ∈ N, thus W = VD . Hence, when the alphabet is finite, the only
full CPSFT is the full shift.

Example 16.5. If G = Z, A = C, D = {0, 1} ⊂ Z, W = CD \ E, where E ⊂ CD � C2

is any countable union of complex algebraic curves and points, then�′ = �(D, W) ⊂ CZ

is a non-empty full CPSFT (by Theorem 16.6). Let τ ′ : CZ→ CZ be given by τ ′(x)(n) =
x(n)2 − x(n+ 1)+ 1 for every x ∈ CZ, n ∈ Z, then � := τ ′(�′) is a non-empty closed
CPS subshift of CZ (by Theorem 8.1 which is true under the condition (H)). Note that
τ := τ ′|� : �→ � is an algebraic cellular automaton.

THEOREM 16.6. Let G be a group. Let V be a non-empty algebraic variety over an
uncountable algebraically closed field K and let A = V (K). Then every full CPSFT � ⊂
AG is non-empty.

Proof. We write � = �(D, W(K)) for some finite subset D ⊂ G and W = VD \
(
⋃
n∈N Un), where Un ⊂ VD , n ∈ N, is a constructible subset such that dim Un <

dim VD . In particular, W is a countably proconstructible subset of VD . Suppose first
that G is finitely generated and let the notation be as in §5. Then the same proof for
case (H1) of Proposition 6.2 actually implies that �ij =⋂

k≥i pijk(Akj ) for i, j ∈ N,

where Aij =⋂
g∈Dij π

−1
ij ,g(gW)(K) ⊂ AM

i+j
(cf. equation (6.1)). Note that Dij is finite
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and gW � W for all g ∈ G. It follows immediately that Aij is also a complement of a
countable number of constructible subsets Zn such that dim Zn < dim AM

i+j
for every

n ∈ N. Hence, for every finite subset I ⊂ N, the constructible set
⋂
n∈I (AM

i+j \ Zn) �= ∅
by the dimensional reason. By Lemma 3.2, we deduce thatAij =⋂

n∈N(AM
i+j \ Zn) �= ∅

for every i, j ∈ N. Always by Lemma 3.2,�ij =⋂
k≥i pijk(Akj ) �= ∅ for all i, j ∈ N and

thus lim←−i∈N �ij �= ∅. Finally, the bijection � � lim←−i∈N �ij (cf. equation (4.6)) implies
that � �= ∅.

For an arbitrary group G, let H be the subgroup generated by D. Then by Lemma 2.8,
we have a factorization � =∏

c∈G/H �c where the sets �c are pairwise homeomorphic.
By the above paragraph, we know that �H �= ∅ and therefore � �= ∅.

Theorem 16.6 serves as a motivation for the notion of full CPSFT as we see in the
following comparison with the finite alphabet case. It is well known that for G = Zd ,
d ≥ 2, and for a finite set A of cardinality at least 2, it is algorithmically undecidable
whether the subshift of finite type �(D, P) ⊂ AG is non-empty for a given finite subset
D ∈ G and a given subset P ⊂ AD . This is known as the domino problem (cf. [2, 7, 49];
see also the recent [6], where a notion of ‘simulation’ for labeled graphs is introduced and
applied to the domino problem for the Cayley graph of the lamplighter group and, more
generally, to Diestel–Leader graphs).

A. Appendix
A.1. Limit sets and nilpotency of general maps. Given a set X, recall that a map
f : X→ X is pointwise nilpotent if there exists x0 ∈ X such that for every x ∈ X, there
exists an integer n0 ≥ 1 such that f n(x) = x0 for all n ≥ n0. Such an x0 is then the unique
fixed point of f and is called the terminal point of the pointwise nilpotent map f. Clearly, if
f is nilpotent, then it is pointwise nilpotent and the terminal point of f as a nilpotent map
coincides with its terminal point as a pointwise nilpotent map. Moreover, if f is pointwise
nilpotent, then its limit set is reduced to its terminal point. When the set X is finite, the
three conditions: (i) f is nilpotent; (ii) f is pointwise nilpotent; and (iii) the limit set of f is
a singleton, are all equivalent. This becomes false when X is infinite. Actually, we have the
following lemma.

LEMMA A.1. Let X be an infinite set. Then the following hold:
(i) there exists a map f : X→ X such that �(f ) = ∅;

(ii) there exists a map f : X→ X which is not pointwise nilpotent (and hence not
nilpotent) such that �(f ) is a singleton;

(iii) there exists a map f : X→ X such that f (�(f )) � �(f );
(iv) there exists a surjective (and hence non-nilpotent) pointwise nilpotent map

f : X→ X.

Proof. (i) Since X is infinite, there exists a bijective map ψ : N×X→ X. Then the
map f : X→ X defined by f := ψ ◦ g ◦ ψ−1, where g : N×X→ N×X is given by
g(n, x) = (n+ 1, x) for all (n, x) ∈ N×X, satisfies �(f ) = �(g) = ∅. This shows
item (i).
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(ii) Let N̂ := N ∪ {∞}. Since X is infinite, there exists an injective map ϕ : N̂→ X

that is not surjective. Then the map f : X→ X defined by f (ϕ(n)) = ϕ(n+ 1) for all
n ∈ N and f (x) = ϕ(∞) for all x ∈ X \ ϕ(N) satisfies �(f ) = {ϕ(∞)} but is clearly not
pointwise nilpotent.

(iii) Consider, for each n ≥ 1, the set In := {0, 1, . . . , n} and the map gn : In→ In

given by gn(k) := k − 1 if k ≥ 1 and gn(0) = 0. Let Y be the set obtained by taking disjoint
copies of the sets In, n ≥ 1, and identifying all copies of 0 in a single point y0 and all
copies of 1 in a single point y1 �= y0. Then the maps gn induce a well-defined quotient
map g : Y → Y . Clearly, �(g) = {y0, y1} while g(�(g)) = {y0}. As X is infinite, the set
Y can be regarded as a subset of X. Then the map f : X→ X, defined by f (x) = g(x)
if x ∈ Y and f (x) = x otherwise, satisfies �(f ) = {y0, y1} ∪ (X \ Y ) while f (�(f )) =
{y0} ∪ (X \ Y ) � �(f ).

(iv) Choose a point x0 ∈ X and a bijective map ξ : N×X→ X \ {x0}. Then the map
f : X→ X, defined by f (ξ(n, x)) = ξ(n− 1, x) if n ≥ 1 and f (x0) = f (ξ(0, x)) = x0

for all x ∈ X, is clearly surjective and pointwise nilpotent (with terminal point x0).

A.2. Limit sets and nilpotency of general cellular automata

PROPOSITION A.2. Let A be an infinite set and let G be a group. Then the following
hold:

(i) there exists a cellular automaton τ : AG→ AG with �(τ) = ∅;
(ii) there exists a non-nilpotent cellular automaton τ : AG→ AG such that �(τ) is

reduced to a single configuration;
(iii) there exists a cellular automaton τ : AG→ AG which satisfies τ(�(τ)) � �(τ);
(iv) if the group G is finite, then there exists a pointwise nilpotent cellular automaton

τ : AG→ AG which is not nilpotent.

Proof. Given a map f : A→ A, we consider the cellular automaton τ : AG→ AG with
memory setM := {1G} and associated local defining map μ := f : A = AM → A, that is,
τ =∏

g∈G f .
By Lemma A.1(i), there exists f : A→ A whose limit set is empty. Clearly,

the associated cellular automaton τ : AG→ AG has also empty limit set, showing
item (i).

By Lemma A.1(ii), there exists a non-nilpotent map f : A→ A such that �(f ) = {a0}
for some a0 ∈ A. Then, for such a choice of f, the cellular automaton τ : AG→ AG is
not nilpotent and �(τ) = {x0}, where x0 ∈ AG is the constant configuration defined by
x0(g) := a0 for all g ∈ G. This shows item (ii).

By Lemma A.1(iii), we can find a map f : A→ A which satisfies f (�(f )) � �(f ).
Then, for such a choice of f, the cellular automaton τ : AG→ AG clearly satisfies
τ(�(τ)) � �(τ). This shows item (iii).

Finally, by Lemma A.1(iv), there exists a surjective map f : A→ A which is pointwise
nilpotent. The associated cellular automaton τ : AG→ AG is surjective and hence not
nilpotent. For G finite, τ is clearly pointwise nilpotent. This shows item (iv).
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A.3. Nilpotency and pointwise nilpotency of general cellular automata

LEMMA A.3. Let A be a set and let G be a group. Let� ⊂ AG be a topologically transitive
closed subshift. Suppose that X ⊂ � is a closed subshift of AG with non-empty interior in
�. Then one has X = �.

Proof. Let U ⊂ � be a non-empty open subset of �. Let V denote the interior of X in
�. Note that V is G-invariant. By topological transitivity, there exists g ∈ G such that
U ∩ gV �= ∅. As U ∩ gV = U ∩ V ⊂ U ∩X, we deduce that U ∩X �= ∅. Hence, X is
dense in �. Since X is also closed in �, we conclude that X = �.

LEMMA A.4. Let A be a set and let G be an infinite group. Let� ⊂ AG be a topologically
mixing closed subshift of sub-finite-type. Suppose that τ : �→ � is a cellular automaton
satisfying the following property: there exists a constant configuration x0 ∈ � such that,
for every x ∈ �, there is an integer n ≥ 1 such that τn(x) = x0. Then τ is nilpotent with
terminal point x0.

Proof. Suppose first that G is countable. As AG is a countable product of discrete spaces,
it admits a complete metric compatible with its topology. Since � is closed in AG, it
follows that the topology induced on � is completely metrizable and hence that � is a
Baire space. For each integer n ≥ 1, the set

Xn := (τn)−1(x0) = {x ∈ � : τn(x) = x0}
is a closed subshift of AG. We have � =⋃

n≥1 Xn by our hypothesis on τ . By the Baire
category theorem, there is an integer n0 ≥ 1 such that Xn0 has a non-empty interior. The
subshift� is topologically mixing and therefore topologically transitive since G is infinite.
It follows that Xn0 = � by Lemma A.3. Thus, τn0(x) = x0 for all x ∈ �. This shows that
τ is nilpotent with terminal point x0. Note that we have not used the hypothesis that � is
of sub-finite-type in this part of the proof.

Let us treat now the general case. Suppose that G is an infinite (possibly uncountable)
group. Let M ⊂ G be a finite memory set for both τ and �. As G is infinite, there exists
an infinite countable subgroup H ⊂ G containing M. Let τH : �H → �H denote the
restriction cellular automaton (cf. §2.5). Thanks to the decompositions τ =∏

c∈G/H τc
and � =∏

c∈G/H �c where τc : �c → �c (cf. §2.5), it is not hard to see that �H and τH
satisfy similar hypotheses as � and τ with the constant terminal point x0|H . Remark that
�H is topologically mixing since H is infinite and � is topologically mixing. Hence, τH
is nilpotent by the above paragraph. Therefore, τ is itself nilpotent by Lemma 2.9(ii).

The following result is well known, at least in the case of full shifts with finite alphabets
(cf. [24, Proposition 2], [50, Proposition 1], [32]).

PROPOSITION A.5. Let A be a set and let G be an infinite group. Let � ⊂ AG be
a topologically mixing closed subshift of sub-finite-type. Suppose that τ : �→ � is a
cellular automaton. Then the following conditions are equivalent:

(i) τ is nilpotent;
(ii) τ is pointwise nilpotent;
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(iii) there exists a constant configuration x0 ∈ � such that, for every x ∈ �, there is an
integer n ≥ 1 such that τn(x) = x0.

Proof. The implication (i) �⇒ (ii) is obvious and (ii) �⇒ (iii) immediately follows from
G-equivariance of τ . The implication (iii) �⇒ (i) follows from Lemma A.4.

Remark A.6. The equivalences (i)⇐⇒ (ii)⇐⇒ (iii) hold trivially true when A and G
are both finite. The implication (i) �⇒ (ii) and the equivalence (ii)⇐⇒ (iii) remain valid
for G finite. However, it follows from Proposition A.2(iv) that the implication (ii) �⇒ (i)
becomes false for A infinite and G finite.
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