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A nonoscillation theorem

for a second order sublinear

retarded differential equation

Takasi Kusano and Hiroshi Onose

Sufficient conditions are obtained for all solutions of a class

of second order nonlinear functional differential equations to be

nonoscillatory.

This paper is concerned with the second order functional differential

equation

(1) [p{t)y'{t))' + q{t)f{y{g{t))) = At) ,

where p, q, r, g : [a, <*>) -*• R and f : R •*• R are continuous functions.

In addition, it will be assumed throughout that p(t) > 0 , q(t) > 0 ,

g{t) -*• °° as t -*•<*>, f(y) is nondecreasing, and yf(y) > 0 for y f 0 .

Equation (l) is said to be sublinear if lim sup f{y)/y < °° and retarded

if g{t) S t for all large t .

We shall restrict our attention to solutions y(t) of (l) which are

defined on some ray [T , °°) and nontrivial in the sense that

sup{\y(t)\ : t > T} > 0 for every T > T .

Such a solution is called nonoscillatory if it is eventually positive or

negative. Otherwise the solution is called oscillatory.

The objective of this paper is to obtain sufficient conditions for all

solutions of the sublinear retarded equation (l) to be nonoscillatory.
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Since the pioneering work of Atkinson [/] numerous nonoscillation results

for nonlinear differential equations have appeared in the literature; see,

for example, a survey paper of Wong [5] and the references cited therein.

However, most of them pertain to equations without forcing term, and very-

little is known about the nonoscillation of equations with forcing term

even in the case of ordinary differential equations. To our knowledge, the

papers of Graef and Spikes [2], [3], [4] are the only references in which

nonoscillation criteria for forced nonlinear differential equations can be

found.

LEMMA, (i) No oscillatory solutions of (l) are bounded above if

ft
(2) lim inf [r(.s)-kq(s) ]ds > 0 for any k > 0 and T > a .

frw if

(ii) No oscillatory solutions of (l) are bounded below if

f*
(3) lim sup [r(s)+kq(s)]ds < 0 for any k > 0 and T > a .

ir**> 'T

Proof. It suffices to prove the statement (i). Let y{t) be an

oscillatory solution of (l) such that y(t) £ M for t i t , where M is

a positive constant. Take t^ 2 tQ so that g(t) > t^ for t > t. and

let T > t be a point at which J/'(J) = 0 . An integration of (l) yields

tt
P(t)y'(t) = [r(s)-q(s)f{y{g(s)))]ds

h
f*

> [r(s)-f(M)q(s)]ds .

h
Lett ing t •*• °° and using (2 ) , we see that p(t)y'(t) > 0 for a l l large

t . But th i s i s impossible for an osc i l la tory function y(t) , and the

proof i s complete.

REMARK I. The condition (2) [or (3)] i s sa t i s f ied , for example, i f

I q{t)dt < °° and j r(t)dt - °° [or -°° ] ,
'a 'a
I j
'a 'a

or if
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lim —7 .•{ = °° for -<*> ].

REMARK 2. Suppose that ^7+T = °° and replace (2) by a stronger
'a

condition

dt
pit)

f*(1*) lim [ris)-kqis)]ds = °° for any k > 0 .

Then, we have a stronger conclusion that no solutions of (l) are bounded

above. A similar remark applies to the case where (3) is replaced by

f*
lim

f(5) lim [r{s)+kq(s)]ds = -°° for any k > 0 .

**» 'a

We now state and prove the main result of this paper.

THEOREM. Let (l) be a sublinear retarded equation. Assume that

(II

qit)dt < » if \ -TXT- < <=° .
>a P(t)

Assume, moreover, that either rit) 5 0 and (2) holds or r{t) S O

(3) holds. Then all solutions of (l) are nonosdilatory.

Proof. Consider the case where r(t) > 0 and (2) holds. Suppose to

the contrary that there exists an oscillatory solution yit) of (l). From

(i) of the lemma it follows that yit) is not bounded above. Therefore,

it is possible to select two sequences {a }, {T } of zeros of yit) with

the following properties: a < T , lim a = lim T = °° , yit) > 0 on

M = max y(t) = max y{t) , n = 1, 2, ... ,

and {Af } tends increasingly to infinity as n •* <*> . Let {t } be a
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sequence such that * n € (o^, x j and M̂  = y (i^) , n = 1, 2, . . . .

Integrat ing ( l ) from t € [a , t ~\ to b , we obtain, since y' [t ) = 0

and r{t) > 0 ,

•J;
4:

where n i s taken so large that git) > a, for t > a . Dividing the

above inequality by pit) and integrating from a to t , we have

t t
(8) y{tn) ±\n ^ ) \ n qis)f{y{gis)))dsdt .

Since git) 5 t , we have #G?(i)) - M for t 5 t . Hence it is true

that

M 5 f[M

n

from which, observ ing t h a t (6) or (7) impl ies

(9) [ -77T [ qis)dsdt < ==> ,
}a P(t) i±

we obtain

In view of (9) and the fact that {f{M ) /M } is bounded above, the right-

hand side of (10) tends to zero as n -»• <» . But this is a contradiction.

A similar argument leads us to a contradiction if we suppose that rit) - 0

and (3) holds. This completes the proof.

REMARK 3. From the theorem and Remark 2 we have the following
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proposition.

Let ( l ) be sublinear and retarded. Suppose (6) holds. If r(t) 2: 0

and (k) is satisfied, then all solutions of (1) are nonoscillatory and

unbounded above. If r{t) £ 0 and (5) is satisfied, then all solutions of

(I) are nonoscillatory and unbounded below.

EXAMPLE 1. Consider the equation

(II) y"(t) + t~ay(t) = t~X[X + c o s ( l o g t)] , t > 1 .

I f a > 2 , then (2) and (6) are s a t i s f i e d , so t ha t a l l so lu t ions of (11)

are nonosc i l l a to ry . (These nonosc i l l a to ry so lu t ions are unbounded above

since {k) i s a lso s a t i s f i e d . ) I f a = 2 , then (6) i s v io l a t ed , and ( l l )

has an o s c i l l a t o r y so lu t ion y{t) = t[l + s in ( log t)] .

EXAMPLE 2. Consider the equation

(12) (*3/VU))' +t-3 /2 | ,(t3)|Ysgny(t6)

( ) ^ V( B Y + 3 ) / 2 ogY t , t > 1 ,

where 0 < g £ 1 and 0 < y - 1 • Since (2) and (7) are satisfied, all

solutions of (12) are nonoscillatory. In fact, (12) possesses a non-

-1/2
oscillatory solution y(t) = -t log t .
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