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DIRECTIONAL WAVE FRONTS OF

REACTION-DIFFUSION SYSTEMS

J, SABINA

In this work, we study types of undulatory solutions, that we

term Directional Wave Fronts (DWF), of non scalar reaction

diffusion systems. The DWFs are a natural extension of the

well known Plane Wave Fronts (PWFs) solutions. However, the

DWFs admit a certain type of boundary conditions. In the

present work we show, under suitable conditions on the

reaction term, that DWFs also exhibit typical behaviour of

PWFs: we just prove the existence of heteroclinic, homoclinic

and periodic families of DWFs. Essentially, we require the

reaction term to be linearly uncoupled. These results are the

generalization of a previous work, concerning the scalar case.

0. Introduction

In this article we study a particular type of solution, with

propagatory character, of reaction-diffusion systems:
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2 J. Sabina

(0) ll = V-Au + flu) u £ if , m > 1 .

An important aspect in the theory of R-D systems such as (0) , is the

study of those particular solutions which generate either stable asymptotic

states or transitory states of equation (0) (see [7]). The well-known

Plane Wave Fronts (PWFs) solutions belong to this group of particular

solutions (see [7], [73], [74]). The PWFs are solutions with propagatory

properties and exhibiting - in the most significant cases - a typical

behaviour; they connect solutions which are stationary and homogeneous

states of (.0). Moreover, in unidimensional media, those connections are

stable asymptotic states of certain initial value problems (see [2], [7],

LSI)- In other cases, the relevant property of PWFs in applications is

the periodicity in space and time (see [70], [73]).

The type of solutions analyzed in this work are the Directional Wave

Fronts (DWFs), which are, to some extend, a generalization of PWFs.

However, the DWFs have the interesting property of admitting a certain

type of boundary condition (see Section 1) .

The objective of this paper is to extend, to the non-scalar case

(m>l), the analysis of the existence and asymptotic behaviour of small

amplitude DWFs, developed in previous works for the scalar case (see [9],

[76]).

In Section 1, we define the homogeneous Dirichlet and Neumann

problems for DWFs. Section 4 contains the main results. There we

establish the existence of homoclinic, heteroclinic and periodic DWFs -

with small amplitude - for the homogeneous Neumann problem. However, it

requires certain structure conditions on the reaction term f .

Essentially, we ask that the linearization of equation (0) be uncoupled

(see Section 2).

In Section 3 we describe the method - a centre manifold theorem -

used in the analysis of Section 4. This method provides a reduction in

the dimension of the problem. It is important to point out that the

presence in (0) of drift terms (see [7]), gives an interesting

asymptotic behaviour. In this case, such asymptotic behaviour is

governed by an ODE which is reversible in the time variable (see Section

3).
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Reaction diffusion systems

Specifically, in this work we deal with the equation:

(1) |f = V-Lu + f(u) ,

where

1 • " &*; "<" •

n 32
and where A = \ — — , b = (b ,b ,...,b ) e tf - {0} . In the equation

Xi

(1) w : ft x J? -> JR JT 3m > 1 , fi being a C bounded domain in IT .
(x,t) + u(x,t)

The diffusivities matrix V is symmetric and positive definite. L acts

coordinate to coordinate: Lu = (Lw.),,. and the reaction term f is a

smooth nonlinear function of u (see Section 2).

Some relevant information has been obtained when b = 0 in (1), and

this equation is scalar (see Section 5c), but we do not discuss this case

here.

1. Directional wave fronts. Boundary conditions

A Directional Wave Front (DWF) is a solution u - u(x,t) of (1) with

the form:

(1.1) u(x,t) = v(Kx-at) x e U ,

where the matrix K = diag Lk.,...,k ] and c = (e ,...,o ) e it . Thus,

y = Kx - ct e IT if x e fi and t e Jf .

It is easy to see that DWFs represent perturbations, which

propagate with constant velocity in the direction X c . If n = 1 ,

PWFs and DWFs are the same type of solution of (1).

In the sequel we assume, for simplicity, that V = 1 . So every DWF

V = v(y) of (1) satisfies the equation:

(i.2) \kV\+ I < W V w:-
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4 J. Sabina

where the variable y ranges over the unbounded domain:

W= U (Xfl-ct) ,
teB

if x e Q and t e JR .

We are interested just in bounded solutions of (1.2) defined on W .

However, establishing the existence of those solutions and determining

their asymptotic behaviour in W , may be very hard.

In this work, the approach to the problem consists in transforming it

into an abstract evolution problem. In fact, there exists a non singular

linear transformation S : if1 -*• JR71 (see [9], [76]), which puts (1.2) into
y '-*y=Sy'

the form:

—%• + A v + f(V) = 0 s e JR , 2 e D .
ds2 Z

In that equation we write y' = (s,3) with z e TR . We are

supposing also that the identity Kb + c = 0 holds, hence, the condition

b ? 0 is essential. If y e W then 3 e D , a domain in M . The

regularity of D does not depend only on the intrinsic regularity of U ,

but also on a and K (see [9], [76]). Here, we suppose that Q , K and

a have been chosen in order to obtain a regular domain D C M

As a consequence of the above discussion, it is possible to impose

boundary conditions on DWFs. In fact, by using the transformations S

and K , the following fact holds (see [9], [76]):

ar C 6!) such that x e T *=* z e 30 .

We define the homogeneous Dirichlet problem for DWFs as the finding of

solutions u = u(x,t) of (1), with the form (1.1), satisfying:

(1.3) u(x,t) = 0 on x e r , t e JR.

On the other hand, a suitable field v = vte) can be defined on r (see

[9], [76]) such that, for a DWF u = u(x,t) -.

du
-T— (x,t) = 0 on x e F and t e JR *=*
o v
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Reaction diffusion systems

-r— (s,s) = 0 on 2 e 3D and s e J? .

Above n = rt(s) denotes the outer unitary normal at z e 3D . Thus,

the homogeneous Neumann problem for DWFs is to find u = u(x,t) , of type

(1.1), such that:

(1.4) Y~ (x,t) = 0 on x e T , t e JR .

Accordingly, the Dirichlet and Neumann problems for DWFs are, respectively,

equivalent to the evolution problems:

— ~ + A v + f(V) = 0 z e D
8s 3

V = 0 2 e 3D

2
— \ + A V + f(V) = 0 2 e D

In this work we shall analyze the Neumann problem. The corresponding

conclusions for (P_) follow in a similar way (see Section 5b).

Finally, observe that the only PWFs solutions of (1) satisfying the

condition (.1.3) are the trivial ones: u E 0 . Analogously, if a PWF

satisfies (1.4) it must be constant in space and time.

2. The reaction term structure. Consequences.

We are going to consider the analysis of bounded DWFs as a bifurcation

problem, with respect to the solution u = 0 and a real parameter X .

Thus, we shall suppose that f : JR x IT -*• IT is a (T function, which

satisfies:

(i) f(X,O) = 0 , X e J? .

Hence, / = f(\,u) can be written in the form: /(X,w) = A(\)u + <y(X,u) ,

A(\) being an m x m matrix and g(\,u) = 0(|u| ) when |w| -»• 0 ,

uniformly in X , |x| small. We suppose also that:
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6 J . S a b i n a

( i i ) a a > 0 s u c h t h a t A{\) = d i a g id^ ( X ) , . . . , d (X) ] , d (X) >d-(\)
•i- III JL J

f o r j e { 2 , . . . , m } and | x | < a , w i t h d (0) = 0 and d ' ( 0 ) > 0 .

( i i i ) g (\,u) = 7 <2,(X)w + r(\,u) , k < r + 1 , w h e r e
X I T -j K.

\a\=k

r(\,u) = 0(\u\ ) , when |w|-»-0 , uniformly in X . If

a = (Zc,O,...,O) e i/" then ^°(A) ^ 0 for |x| < a .

REMARKS. Amongst (i), (ii), (iii) the essential hypothesis is

(ii) . There, we impose the condition that (1) is linearly uncoupled. This
condition holds, for example if f(\,U) = -^- (X,u) , with <j> = <j>(X,w) a

scalar smooth function. In general, (i) always implies (iii) with k = 2 .

In (i), (ii), (iii) we endow the first equation of (1) with a structure

which is analogous to the structure that generates small amplitude DWFs in

the scalar case (see [9], [76])-

On the other hand, the presence of small amplitude stationary-

homogeneous solutions of (1) , suggests the existence of DWFs whose a and

oj-limit sets consist of those solutions. The following result ensures the

existence of that type of solution.

PROPOSITION 1. Let us consider the kinetic equation associated with

(1) :

(2.1) || = fa.u) ,

where f satisfies (i), (ii), (iii). Then:

(1) (A,w) = (.0,0) is a bifurcation point of stationary solutions of (2.1)

with respect to u = 0 . The bifurcated branch has the form

(X,w) = CXtz^)i,"KM^I ) / w-j. smaVi, § and X being u functions.,

4>1(w1) = u^, fyAu^) = 0(w1) for 2 < 3 < m , and

ak (0) k-i ,kX ( M > " + O ( l " l >

(2) at (X,u) = (0,0) a stability interchange happens between the

bifurcated branches.

Proof. The proof of (1) is an immediate consequence of Theorem 1 in
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Reaction diffusion systems 7

[5]. However, because of considerations in Section 4, we give a proof

using the Lyapunov-Schmidt method. Let us put ft = (u_,...,u ) and

AU) = diag [<i2(X) , . . . . ^ U ) ] , then equation f = 0 can be written in the

form

d1i\)u1 + g^X.u^u) = 0 ,

(2.2)

A{X)u + g(.X,w1,w) = 0 .

The implicit function theorem, applied to the second equation, implies that

u = i>(X,u.) , where vp i s a C function satisfying: ty(X,u^) = 0( jw^| ) ,

when |M | •*• 0 and |x | small.

Hence, (2.2) i s equivalent to :

(2.3) dliX)u1 + g^X^^.tyLX.u^) = 0 ,

and nontrivial solutions of (2.2) are just (X ,u) = U U ^ ) , (u^iKX,!^)) )

where X (•) is the <J function defined by the equation:

(2.4) dxa) + ak°(X)u*~
l + rLX.u^) = 0 ,

where rlX.u.) = 0(.|w,| ) , when |w.,| -»• 0 , |x| small.

(2) is a well known fact from bifurcation theory (see [77]).

The abstract approach to the evolution problem (P«) in a Hilbert

space frame, requires an additional condition, on f namely:

(iv) f together with its derivatives up to the order r + 1 , are

polynomially bounded. Also we assume that « < 3 .

From (iv) the function f is smooth, considered as a Nemitskii

operator in (ff1(0))m with values in (L2(JD))m:

PROPOSITION 2. Assume that f e (f*2 (J? x / , / ) and suppose

that (iv) holds, that is, n < 3 and:

m s
| 3 Y /CX,u) | < b (X) + a (X) I \u.\ y'3 ,

Y Y J
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w i t h y e lf+1 , 0 < | y | < r + l , s . > 1 , b ( • ) and a ( - )

continuous. Then -.

f e (f+1(S x (HlW))m , (L2(D))m) .

Proof. If Q C J? then Z? C J? . Thus, Sobolev Immersions implies

that (HX(D))m C (lP{D))m , vp > 1 , with compact embedding. Then, it

suffices to prove that f. e (f (J? x (H (D) ) , Ip (D)) , for some p > 2 .

Let us take w = {u ,. . . ,u ) and ?! = (?z ,. .. ,h^ e (ff (0) )m . At every

z e £> we can write:

f^X+X.u^z) +h(z)) = £ j r ^ ( ^ ) ( 3 * " J ? " 7"

where

r+2 ,

T J o ( fe )8x

and where 0 < 6(3) < 1 , a.e. in D .

Because of the polynomial growth of 3 f(\,u) , |y| = k < V i 1 , then

3,/.(•,•) e C(J? x (LP(D))m , Lk((lPw))m , L2(£>))) , for p > max {2s .}

(see C3]). For X = (LP(D))m and 7 = £2(D) , Lk(X,Y) denotes the space

of the continuous k-linear maps from X to 1 .

On the other hand:

p(X,?J) = 0((|x| + |7z| ) r + ) ,
P

where \h\ = \h \ + ... + \h \ . Thus, the conclusion follows

from the Converse Taylor's Theorem (see [/]).

If

3. A reduction in the dimension of the problem

In the study of small amplitude solutions of (?»,) , a reduction in

the dimension can be introduced. Here, the information about those

solutions, is furnished by a two-dimensional O.D.E. Let us describe how
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Reaction diffusion systems ,* 9

such a reduction can be performed.

Firstly, the problem (P«) can be rewritten in the form:

(3.1) v" - T{X)v + g(\,v) = 0 ' = Jf '

where T{\) = - A - A{\) is defined in (L2(D))m , with domain:

D(T) = {ve(H2{D))m/~ = 0 on 3D}

The operator T(\) has compact resolvent, so its spectrum

m
E(T(A)) = u {a,-d.(X)L „ , {o,}^ „ being the eigenvalue sequence of -A

i=l

2
defined on L (D) , with domain

D = {veH2(D)/?£- = 0 on 3D} .

Thus, for | x | smal l enough, y = 0 i s t h e f i r s t e igenva lue of T(X),

with cor responding e igenfunc t ion iji = 1_ e . , e. = ( l , 0 , . . . 0 ) e J? , l « ( z ) = l ,

Vz e D . I f ff = span {iji} , ff = (ffn) then £2(D) = Hn © ff .

° 1 ° (£2(D))m ° X

Denoting by P- the project ion onto H. , and wri t ing

T.(\) = P. ° T{\) \a , i = 0,1, we can put (3.1) in the form:
If

| £ d1(X)w0 + gQ{\,vQ.Vx) = 0 (3 .2 .1 )

(3.2) I
\ x - 21

1(X)U1 + ^ ( . X , ^ ^ ^ = 0 (3 .2 .2 )

Above, for V e. (L (D)) , v = v e + v. = P u + P v and, for example,

vx) = g'0(X,u(),u1) e1 , where:

with U e (El(D))m and |D| being the Lebesgue measure of D C J?2 .

Equation (3.2) exhibits a coupling between a bidimensional equation

((3.2.1)) and a infinite dimensional one ((3.2.2)). We shall show how
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1 0 J . Sabina

(3.2.1) i t is just the result of the behaviour of small amplitude

solutions of (3.1).

Intuitively, observe that, for A small:

3 d > 0 : (T (A) v , v ) > a \ v \ 2 , v e 0(2",) '
(L2(D))m l

where (•,•) denotes the usual (£ (D)) inner product. Therefore, the

linear part of (3.2.2) has its spectrum bounded away from Rez = 0 .

However, the corresponding spectrum of (3.2.1) is {i/cf.(A)} which

collapses to {0} when A ->• 0 . This fact suggests the existence of a

Centre Manifold (see [4]). In fact, a theorem of existence of Center

Manifolds, due to Kirchgassner (see [12]), for abstract evolution equations

of type (3.1) is applicable. This result implies the existence of eQ ,

e. , e_ , positive numbers and a smooth function:

h £ Cr((-e0,e0) x B
2 (0) , B^ (0)) ,

where B (0) is the open ball in J? , centred at 0 with radius
el

e > 0 , and B' (0) the corresponding ball in the space (H (D))m n H. .
1 £2 l

The function h - known in the literature as a Centre Manifold (see [4]) -

has the following invariance property: If V = V{s) is a solution of

(3.1), |A| < eQ , with the regularity v e C"2 (J? , (L2 (D) )m) n C1 (JR , LH1 (D))m)

n C(JR AH2(D))m) - see [6 Chap. 6, §5] and [72] - and satisfies

(3.3) sup (vhs)+v'2{s)) < z2 sup \vAs)\ < e ,
seJ? ° -1 seJ? X (ff1(D))m

then, such a solution satisfies:

(3.4) v^S) = h(X,VQ{S) , V^ls)) Vs £ J? .

As a consequence, every small amplitude solution of (3.1), regular enough,

will has the form: v{s) = u (s)e1 + h(\,vQ(s), V'(s)) , where

VQ =
 y
n(

s) is a solution of the equation:
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(3.5) u£ + dx{X)v0 + go{X,voe1+h{X,Vo,V^)) = 0 .

Hence, (3.5) governs the small amplitude solutions of (̂"ly) •

Furthermore, function h exhibits the properties (see [4], [72]) :

(3.6) 2

(3.7) h(\,vQ,-V'o) = h(\,vQ,v'Q) .

Hence, some information about the nonlinearity in (3.5) can be deduced.

In fact, some calculations show that (3.5) can be put in the form:

C3.8) u£ + a(X) Q + b(\)v
k
Q + r^X.VQ.v^) = 0

where a{.\\ = d^W , b(.\) =afc°(X) and r1(\,vQ,-v'Q) =
 r
1^'

v
O'

v'o^
 w i t h

REMARKS.

1. The regularity required on g for obtaining <T class in h is just

g e (f*1 LH x (ff1(O))m , (L2(D))m) (see [12]). Thus, if / = f(\,h)

satisfies (i),..., (iv), that condition holds.

2. Every small solution VQ = VQ(s) of (3.8) generates a DWF u = u(x,t)

of equation (3.4), which is solution of the Neumann problem. The regularity

of Vis) = VQts)e1 + h{X,VQ{8) , V'o(8)) implies that u{-,t) e H2 (U) Vt e IR,

and u e H2 (flxj?) . Hence, u(-,t) e C°(n) Vt e IR (fiCP3) .
loc

4. Existence of small amplitude DWFs for the Neumann problem

Let us begin studying the small amplitude solutions of (3.8). If we

consider the truncated equation:

(4.1) V"+a{\)vn + bWvt = 0 ,

v2 vk+1

via the first integral V{vQ.VQ) = i u^
2 + a(.\) -— + b^)^f • is easily

seen that:
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(a) If k is even and A < 0 ; then (u0'
y
0>

 = (0,0) is a saddle point

of (4.1) connected with itself by a homoclinic orbit, which encloses to the

X/k—1
nonlinear center (-(a(A)/b(A)) , 0) . Thus, a one parameter family

of periodic solutions of (4.1) arises.

1 /It—I
If X > 0 , points (0,0) and (-(a{.\)/b(\)) ' , 0) interchange

their behaviour (see Figure 1).

Figure 1.

(b) If k is odd, A&(A) < 0 and A < 0 , (0,0) is a saddle point

connected with itself by two homoclinic orbits, enclosing the nonlinear

centres C± C-atX]\/b{A))1/k~X, 0) . If A > 0 , (±(-a(\)/b{A))1/k~1r 0)

are saddle points which are connected by two heteroclinic orbits, bounding

a domain containing the nonlinear centre (0,0) (see Figure 2).

Let us observe that orbits in a) and b), A > 0 , are all symmetric

with respect to the reflection R. , with i?.(u_,u') = (VQ,-vL) •

Property (3.7) of h implies that (3.8) inherits that symmetry. The

results of Renardy in [7 5] are then applicable and (.3.8) inherits also the

phase plane configuration of (4.1), with respect to small solutions.
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(O.CX)/*>(*))< 0

Figure 2.

In the case b) , X > 0 , the orbits in (.4.1) are i?_-invariants, with

R2(VQlV'Q) = (-VQ,V'Q) • Suppose that f = f(.\,u) is odd in u , in

equation (1). Then h inherits this property: h(X,vQ,-v') = -h{.X,VQ,V')

(see [72]). Hence, (3.8) has this symmetry and Renardy's results (.[75])

are again applicable. So, (3.8) has the same plane configuration as (4.1),

with respect to small solutions.

The above considerations allow us to ensure, for |\| small enough,

the existence of several types of DWFs for the Neumann problem. We

summarize their properties in the next theorem:

THEOREM 3. Assume that conditions (i) ..., (iv) holds and

X e (-e,e) , X j 0 , small enough. Then the Neumann problem for DWFS admits

solutions u = u(x,t) 3 with the following properties:

(i) If k is even (respectively odd, Xb(\) < 0 and X < 0) } there

exists u = u(X) , a solution of (2.1) and a DWF u = u(X,x,t) such that:

(4.2) \u(X,-,t) - u{X) t e JR ,
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where C > 0 , 3 > 0 and w(X) = 0 in X < 0 .

( i i ) If k is odd, f = f(X,u) is odd in u and Xfc(X) < 0 then,

for X e (0,e) there exist u (A) and u (X) solutions of (2 .1) , and a

DWF u = u(X,x,t) such that-.

-3 t

\u(X,-,t) - u (A) | _ <<7e t -• - ,
(CU(n))m

,t) - u (X) I <C e " * - - ,
' Vcn>>ra -

where C , C_ , 6 and & are positive constants.

(iii) Furthermore, in the cases Ci) and (ii) there exists a small

amplitude one parameter family of t-periodic DWFs.

Proof. First of all, observe that (3.8) admits a branch of

stationary solutions (X,yQ) = (X(u ),u ) , |y | small, X(-) being a CT

function of the form:

* a 1 CO) "0

and satisfies:

k r (X,v ,0)
(4.4) a a) + £(.X)UQ L + v = 0 .

Thus, ae > 0 such that: a) If k is even, VX e (-e,e) , 3U (X) ̂  0

stationary solution of (.3.8). b) If k is odd, YX e (-e,e) such that

Xi>(X) > 0 , 3UQ(X) and UO(A) which are non zero stationary solutions of

(3.8). Furthermore, the stability and connection~'properties of (0,0) ,

(UQ(X),0) , (U (X),0) are those of the equation (4.1). On the other hand

each of the solutions w = w(.X) generates a stationary DWF y = y (s) :
X X

Let us prove the point (iii). If p = p{\i,X,S) denotes the family of

periodic solutions, with period u(u,X) , associated to a nonlinear centre,

then we get the family of DWFs:
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v ( s ) = p ( s ) e 1 + h ( \ , p (s) , p ' ( s ) )

On the other hand: an > 0 , K ,...,K e .« such that, every DWF of (1)

is written as: u = u(x,t) = u(s,s) , with s = KJE - nt , 2.- = K,-E <
J- 3 3

j e {2,.-..,m} ,- n defined by the equality: Sc = r\e. . Thus,

u (\,x,t) = v (S,z) is a t-periodic CWF, with period - " .

For proving (i), let |X| small and let p = pis) be a homoclinic

of (3.8) satisfying:

lim p{s) = W{\) ,

w h e r e W(X) = 0 i f X < 0 , w{\) = V (X) i f X > 0 . T h e n , aC > 0 and

BQ > 0 such that:

-60|s|
| p ( s ) - w ( X ) | + \p' (s) | + \p" is) | < C e s e n .

If pAs) = h(\,p(s) ,p' is)) , boundedness of T — , -r-7- on S (0)

implies

where, for <)> e (H (D)) , i <1>U = I d>| . if v{s) = p{s)e, + pAs)
m \H±{D)]™ f- 1 ^1

then:

max {II u(s)-u. II , iy'Cs)ll } s C.e s e J? ,

A Til Til £

where C? > 0 .

Let us put M.(x) = V.iK~x,...,KX) , we are going to estimate:
A A z 7t

\u(- ,t) - u. (•) I

By using the transformation S (see §1) : (/='-' V with

(/, = S(Kn-ct) . To estimate the above norm, we must estimate
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16 J. Sabina

or, equivalently, the norm:

where J(t) = [a_-r|t,a.-rit] and:

a (respectively a ) = inf(sup) {s e B/(s,z) e SXfi C J?n}

Thus, we have that:

f 7 ? ? f "26nls|

hit) Xm m 2 ha)
And the last term is bounded by:

c \ .. 2eoai 2eoao, , 2 V o
—T— max{ (e -e ) , (e -e

Thus, there exis ts C > 0 such that:

e o n l * l
X (H1(f/))m 3

If w = wCar,*) is the EWF associated to V = U(s) then we can put
~ —1 —1

u(x,t) = v{y) , where v{y) = v(S y) with y = Kx - at . If y' = S y

I | u C j / ) - y , | 2 d z / = | d e t 5 | f \ v i y ' ) - v \ 2 d y > ,
"0

lK.n-ct y

Taking C = C-|det 5 | h max {1, II5"1!! } :
4 "31

\vl-)-v | < c.e ° vt e J? ,

hence
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-Bon|*|
(4.5) \ui- ,t)-u.{-)\ , m ^ Ce v£ e J? ,

where C^ = Cjdet x| h (min {l.A})*5 , 4 = min {i-} .

l<i<m £

On the other hand, boundedness of — — > and — in B (0)
3 ^ 3U3V" 3W-

implies t h a t :
-2go]s|

£ C\e s e JR ,

with Ĉ  > 0 . So, aC^ > 0 such that:

e o l |
| u " t s ) | < Huts) J < Ce s e

On the other hand:

then, for 1 £ £ < m :

vX,i = -

A,(w,.ts)-w, ,0 = - d . U ) ( u - C s ) - u . .) - (f lr.CX.uJ-g'.U.t;.)) - V'.Ls) ,

2 U A i U Is I* K fly lr U A U

where s e J? . Thus:

|A (v . -u , .) | < | u H s ) | + sup |d . (X) | \vAs)-v A
Z X Xl% a2W))m % L2W) \\\<E ^ ^ X'^ H1(D)

Considering that g^ e (?(.<£' W) )m , L2(.D\) holds, then:

-min{l,n}R |s|

A (u.Cs)-u .) < Ce s £ J? ,
3 1 A , z L2{D] 3

2
with Cl > 0 . Because (U-(s)-y, .) e H (D) and the e l l ip t ic i ty of (4.5)

we get the estimate:
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13 J. Sabina

^ \,V.B2(D) % \,% L2(D) Z 1 K.%. L2{]})

thus (.4.2) follows from the above inequality and the continuous inclusion

H2(D) C C°(D) .

Finally, let us show that u. = U,(x) is homogeneous, that is is a
A A

stationary solution of (2.1). In fact, if u(.X) is a small solution of

(2.1) given by Proposition 1, then u(..X) must lie on the centre manifold

(see [4]). Therefore, 3U(X) e J? a stationary solution of (3.8) such

that: w(.X) = w(A)e + 7z(X,w(A) ,0) , where 7z(X,w(X) ,0) is homogeneous.

Because of the local uniqueness of bifurcated branches of stationary

solutions of (.3.8) at (A'y0'
 = (°'°) (.compare the equations (4.4) and

(2.4)), it follows that W(X) = w(.X) .

Let us observe that periodic DWFs obtained above are also small in

the (_C (.fi) ) norm. The proof in the case (ii) is analogous. „

5. Final remarks

(A) Theorem 3 settles the existence of homo- and heteroclinic EWFs of (1) ,

in (i) and (ii) respectively. Moreover, such DWFs connect stable solutions

of (2.1). On the other hand, such EWFs approximate - in the (H^itt)!

norm - to PWFs. Specifically, in the case (i) for example, it is easy to

show that:

\u(-,t) -z{-,t)\ < C'e"8'*' t e JR ,

where

z(x,t) = vQ(K1x-r]t)e1 + h(.X,w(.X) ,0) = 0 (K x-t) .

Observe that z = z(x,t) is a PWF which also exhibits a homoclinic

character: it connects the same solution of (.2.1) as u = u(X,t) .

However z = z(x,t\ is not a solution of the equation (1).

(B) The Dirichlet problem can be analyzed with the techniques employed in

the Neumann problem. Essentially, (H'(D))m must replace to (H'LD))m in

§3, and in hypothesis Ci), (ii), (iii) must the positiveness be considered
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of the first eigenvalue aQ of -A in H^LDl • In this way, the

conclusions of Theorem 3 still hold for the Dirichlet problem. Observe

that, the DWFs of points (i) and (ii) now converge to stationary, but not

necessarily homogeneous, solutions of (1) (see [76]).

(C) Condition b jt 0 in (1) is essential for the reversibility in S of

(?„) and (P..) : no terms in v' appear in those problems. If b = 0

the identity Kb +e= 0 is not possible with K and c non-zero.

However, when b = 0 and m = 1 (that is, the scalar case) we have

obtained the existence of heteroclinic DWFs for (P«) and (P_) . The

reaction term structure is:

f{X,u) = a(\)u + k

where a(0) = 0 , ~ (0) ^ 0 and a, (.0) = 0 . This structure in f is

precisely the right one for obtaining, in the scalar case, the results of

Theorem 3 (see [S] and [76]). However, to eliminate the restriction

b jt 0 in the case of non scalar equations, is an open problem.
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