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1. INTRODUCTION

The calculation of mean claim sizes, in the presence of a deductible, is usually
achieved through numerical integration. In case of a Lognormal or Gamma
distribution, the quantities of interest can easily be expressed as functions of the
cumulative distribution function, with modified parameters. This also applies to the
/-"-distribution, where the incomplete Beta function enters the scene; see for instance
the appendix in HOGG and KLUGMAN (1984).

The purpose of this paper is to derive an explicit formula for the first two
moments of the Inverse Gaussian distribution, in the presence of censoring. For
reasons of completeness we also consider truncation of the Inverse Gaussian
distribution by an upper limit.

The tractability of the derivation depends in a crucial way on two properties of
the Inverse Gaussian distribution. Firstly, the cumulative distribution function of the
Inverse Gaussian can be written as a simple function using the Normal probability
integral. Secondly, the moment generating function of a censorized Inverse
Gaussian distribution boils down to an expression containing the cumulative Inverse
Gaussian distribution. This manifests itself most clearly in case of life insurance
where the quantity of interest is the expectation of a present value. In case of
non-life insurance, where the dimension of the Inverse Gaussian random variable is
money instead of time, a further step is required: differentiation of the moment
generating function.

So, a natural order of this paper is to address ourselves first to the derivation for
the life case and afterwards tackling the more laborious derivation for the non-life
case.

2. MATHEMATICAL PRELIMINARIES

We denote the Inverse Gaussian density with mean (i and variance pi2/(p by:

(2.1) h(x\fi,(p) = \n<t>l2nxitexp { -<p(x-fi
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and its cumulative distribution function as:

(2.2) H(x\^,(p) = N[(x-/x)^/fIx] + e2'p

where N denotes the Normal probability integral:

which can be evaluated by means of expansions such as given in ABRAMOWITZ and
STEGUN (1970). Whenever the parameters do not enter explicitely in h or H we will
assume these are [i and (p.

Observe that etxh(x \fi, <p) is proportional with an Inverse Gaussian density:

(2.3) exp (tx)h(x\pi, 0) = exp (cp - / ) h(x\m,f)

where the auxiliary parameters m and / depend on t:

(2.4) m =

f =

Alternatively, we may say that the Esscher transform of (2.1) is h(x\m,f).
Integration of (2.3) over part of the positive axis is tractable using (2.2). Integrating
(2.3) over the whole positive axis gives the moment generating function of (2.1)
as:

E[e'x\ = exp «/>-/)

from which we easily see that the «-fold convolution of (2.1) is again an Inverse
Gaussian density:

hn*(x\[x, (j>) = h(x\n/i, n<p)

a property which it has in common with the Gamma density and which formed the
reason for HADWIGER (1942) to put (2.1) forward as a modelling tool in insurance
and demography.

In case of deductibles or limits, this property is lost, however.

3. PRESENT VALUES IN LIFE INSURANCE

Consider a, not necessarily human, life duration X, with density (2.1). A lump sum
B will be paid at moment X. With a discount factor exp ( — 6) the present value V of
B at moment D < X is:

(3.1) V=Bexp[6(D-X)]

In case there is an upper limit L for the moment of payment, (3.1) is valid as long
as D< X < L and for X > L, (3.1) is replaced by:

(3.2) V=Bc\p[d(D-L)]
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The expected value of V\ where r = 1 or 2 is of special economic interest, is then
easy to derive. We have:

(3.3) VT = Br exp [dr (D - X)] D<X<L

= BTexp\dr(D-L)\ L<X

Using (2.1-2-3-4) with t = - dr results i n :

(3.4) E\VZ\ = BT\ 1-//(£>)]-' {Q[H(L \m,f)-H(D \m,f)]+R[l-

where the auxiliary variables Q and R are given by:

Q = exp[<p-f-tD]

R =exp[f(L-D)]

Whenever L —»=o, (3.4) simplifies to:

[1-//(£> I m,/)]
(3.5) E\VT\ = BTQ

\l-H(D\/i,4>)]

4. EXPECTED VALUES IN NON-LIFE INSURANCE

Now X represents the size of a monetary loss, which is modified to a claim size Y
by a deductible D and a limit L:

Y=0

= X-

= L-

D

D

X <
D<X<

L<X

D

L

So, the probability of a nilclaim is given by H(D).
The moment generating function of Y can be written as:

M(t) = H(D) + R\\-H(L)] + Q{H(L \m,f)-H(D \mj)}

In order to derive E\Y\ and E[Y2\, we have to differentiate M(t) with respect to
t, substituting t = 0 afterwards.

The following auxiliary results are helpful in this task:

dmldt = m2/f

dfldt = -m

dQ/dt= Q(m-D)

dH(z\m,f)/dt = 2m{N[(z-m){f/mz]-H(z\m,f)}

dN\(m - z){flmz]/dt = z2f'1h(z\ m,f)

where z is a dummy variable, which does not depend on t.
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After some rewriting, we arrive then at:

M' (t) = R(L-D)[l -H(L)] +

+ Q(m + D){H(D\m,f)-H(L\m,f)) +

+ 2Qm{N[(m- D){f/mD]-N[(m- L){fimL]}

M"(t) = R(L-D)2[l-H(L)] +

+ Q[m2f-l-(m + Df}{H{D\m,f)-H{L\m,f)}

+ 2Qmf-\m-2fD) {N[(m- D) ^flmD ]

+ 2Qmf " ' [D2 h(D\m,f) - L2 h(L\m,f)]

ImL ]}

Now the main goal of this paper follows easily by substituting t = 0:

(4.1) E[Y]=M'(0)

= (L-D)[\-H(L)] +

+ (ji + D)[H(D)-H(L)] +

+ 2n{N[{pL-D)

(4.2) 2

+ [n2(p-{ -Qi + D)2][H(D)-H(L)]

+ 2fi(p ~' (a - 2<pD) {N[(ji - D) ̂

+ 2/u(p~][D2h(D) -L2h(L)]

If we let L -¥ oo, (4.1) simplifies to:

(4.3) E[Y] = fr

e1(t' N[ -

which agrees with formula (15) in CHHIKARA and FOLKS (1977)'.

The second moment (4.2) simplifies to:

(4.4) 2 2 2 ]

2pi(p ~ ' {D2h(D) + in -2<pD)N[(fi - D)

Whenever interest focusses on moments, conditionally on X > D, the formu-
lae (4.1-2-3-4) must be divided by the probability [1 -H(D)].

1 I came across this reference after completion of this paper. It does not contain an explicit derivation of
this result, however.
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It is wellknown that deductibles have a loss eliminating effect. At the same time
however, the coefficient of variation of the aggregate claim size distribution
increases. A clear exposition of these matters can be found in chapter 5 of STERK
(1979).

The availability of (4.3) and (4.4) enables a routine illustration of these findings
with the Inverse Gaussian distribution.
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