
17 Concurrent Programming with
Async

The logic of building programs that interact with the outside world is often dominated

by waiting; waiting for the click of a mouse, or for data to be fetched from disk, or

for space to be available on an outgoing network bu�er. Even mildly sophisticated

interactive applications are typically concurrent, needing to wait for multiple di�erent

events at the same time, responding immediately to whatever happens �rst.

One approach to concurrency is to use preemptive system threads, which is the

dominant approach in languages like Java or C#. In this model, each task that may

require simultaneous waiting is given an operating system thread of its own so it can

block without stopping the entire program.

Another approach is to have a single-threaded program, where that single thread

runs an event loop whose job is to react to external events like timeouts or mouse

clicks by invoking a callback function that has been registered for that purpose. This

approach shows up in languages like JavaScript that have single-threaded runtimes, as

well as in many GUI toolkits.

Each of these mechanisms has its own trade-o�s. System threads require signi�cant

memory and other resources per thread. Also, the operating system can arbitrarily

interleave the execution of system threads, requiring the programmer to carefully

protect shared resources with locks and condition variables, which is exceedingly

error-prone.

Single-threaded event-driven systems, on the other hand, execute a single task at

a time and do not require the same kind of complex synchronization that preemptive

threads do. However, the inverted control structure of an event-driven program often

means that your own control �ow has to be threaded awkwardly through the system's

event loop, leading to a maze of event callbacks.

This chapter covers the Async library, which o�ers a hybrid model that aims to

provide the best of both worlds, avoiding the performance compromises and synchro-

nization woes of preemptive threads without the confusing inversion of control that

usually comes with event-driven systems.

17.1 Async Basics

Recall how I/O is typically done in Core. Here's a simple example.

open Core;;

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

298 Concurrent Programming with Async

#show In_channel.read_all;;
val read_all : string -> string

Out_channel.write_all "test.txt" ~data:"This is only a test.";;
- : unit = ()

In_channel.read_all "test.txt";;
- : string = "This is only a test."

From the type of In_channel.read_all, you can see that it must be a blocking

operation. In particular, the fact that it returns a concrete string means it can't return

until the read has completed. The blocking nature of the call means that no progress

can be made on anything else until the call is complete.

In Async, well-behaved functions never block. Instead, they return a value of type

Deferred.t that acts as a placeholder that will eventually be �lled in with the result. As

an example, consider the signature of the Async equivalent of In_channel.read_all.

#require "async";;
open Async;;
#show Reader.file_contents;;
val file_contents : string -> string Deferred.t

We �rst load the Async package in the toplevel using #require, and then open the

module. Async, like Core, is designed to be an extension to your basic programming

environment, and is intended to be opened.

A deferred is essentially a handle to a value that may be computed in the future. As

such, if we call Reader.file_contents, the resulting deferred will initially be empty,

as you can see by calling Deferred.peek.

let contents = Reader.file_contents "test.txt";;
val contents : string Deferred.t = <abstr>

Deferred.peek contents;;
- : string option = None

The value in contents isn't yet determined partly because nothing running could do

the necessary I/O. When using Async, processing of I/O and other events is handled

by the Async scheduler. When writing a standalone program, you need to start the

scheduler explicitly, but utop knows about Async and can start the scheduler automat-

ically. More than that, utop knows about deferred values, and when you type in an

expression of type Deferred.t, it will make sure the scheduler is running and block

until the deferred is determined. Thus, we can write:

contents;;
- : string = "This is only a test."

Slightly confusingly, the type shown here is not the type of contents, which is

string Deferred.t, but rather string, the type of the value contained within that

deferred.

If we peek again, we'll see that the value of contents has been �lled in.

Deferred.peek contents;;
- : string option = Some "This is only a test."

In order to do real work with deferreds, we need a way of waiting for a deferred

computation to �nish, which we do using Deferred.bind. Here's the type-signature of

bind.

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

17.1 Async Basics 299

#show Deferred.bind;;
val bind : 'a Deferred.t -> f:('a -> 'b Deferred.t) -> 'b Deferred.t

bind is e�ectively a way of sequencing concurrent computations. In particular,

Deferred.bind d ~f causes f to be called after the value of d has been determined.

Here's a simple use of bind for a function that replaces a �le with an uppercase

version of its contents.

let uppercase_file filename =
Deferred.bind (Reader.file_contents filename)
~f:(fun text ->
Writer.save filename ~contents:(String.uppercase text));;

val uppercase_file : string -> unit Deferred.t = <fun>

uppercase_file "test.txt";;
- : unit = ()

Reader.file_contents "test.txt";;
- : string = "THIS IS ONLY A TEST."

Again, bind is acting as a sequencing operator, causing the �le to be saved

via the call to Writer.save only after the contents of the �le were �rst read via

Reader.file_contents.

Writing out Deferred.bind explicitly can be rather verbose, and so Async includes

an in�x operator for it: >>=. Using this operator, we can rewrite uppercase_file as

follows:

let uppercase_file filename =
Reader.file_contents filename
>>= fun text ->
Writer.save filename ~contents:(String.uppercase text);;

val uppercase_file : string -> unit Deferred.t = <fun>

Here, we've dropped the parentheses around the function on the right-hand side of

the bind, and we didn't add a level of indentation for the contents of that function. This

is standard practice for using the in�x bind operator.

Now let's look at another potential use of bind. In this case, we'll write a function

that counts the number of lines in a �le:

let count_lines filename =
Reader.file_contents filename
>>= fun text ->
List.length (String.split text ~on:'\n');;

Line 4, characters 5-45:

Error: This expression has type int but an expression was expected of

type

'a Deferred.t

This looks reasonable enough, but as you can see, the compiler is unhappy. The

issue here is that bind expects a function that returns a Deferred.t, but we've provided

it with a function that returns the result directly. What we need is return, a function

provided by Async that takes an ordinary value and wraps it up in a deferred.

#show_val return;;
val return : 'a -> 'a Deferred.t

let three = return 3;;

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

300 Concurrent Programming with Async

val three : int Deferred.t = <abstr>

three;;
- : int = 3

Using return, we can make count_lines compile:

let count_lines filename =
Reader.file_contents filename
>>= fun text ->
return (List.length (String.split text ~on:'\n'));;

val count_lines : string -> int Deferred.t = <fun>

Together, bind and return form a design pattern in functional programming known

as a monad. You'll run across this signature in many applications beyond just threads.

Indeed, we already ran across monads inChapter 8.1.3 (bind andOther Error Handling

Idioms).

Calling bind and return together is a fairly common pattern, and as such there is a

standard shortcut for it called Deferred.map, which has the following signature:

#show Deferred.map;;
val map : 'a Deferred.t -> f:('a -> 'b) -> 'b Deferred.t

and comes with its own in�x equivalent, >>|. Using it, we can rewrite count_lines

again a bit more succinctly:

let count_lines filename =
Reader.file_contents filename
>>| fun text ->
List.length (String.split text ~on:'\n');;

val count_lines : string -> int Deferred.t = <fun>

count_lines "/etc/hosts";;
- : int = 10

Note that count_lines returns a deferred, but utopwaits for that deferred to become

determined, and shows us the contents of the deferred instead.

17.1.1 Using Let Syntax

As was discussed in Chapter 8.1.3 (bind and Other Error Handling Idioms), there is a

special syntax, which we call let syntax, designed for working with monads, which we

can enable by enabling ppx_let.

#require "ppx_let";;

Here's what the bind-using version of count_lines looks like using that syntax.

let count_lines filename =
let%bind text = Reader.file_contents filename in
return (List.length (String.split text ~on:'\n'));;

val count_lines : string -> int Deferred.t = <fun>

And here's the map-based version of count_lines.

let count_lines filename =
let%map text = Reader.file_contents filename in
List.length (String.split text ~on:'\n');;

val count_lines : string -> int Deferred.t = <fun>

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

17.1 Ivars and Upon 301

The di�erence here is just syntactic, with these examples compiling down to the

same thing as the corresponding examples written using in�x operators. What's nice

about let syntax is that it highlights the analogy between monadic bind and OCaml's

built-in let-binding, thereby making your code more uniform and more readable.

Let syntax works for any monad, and you decide which monad is in use by

opening the appropriate Let_syntax module. Opening Async also implicitly opens

Deferred.Let_syntax, but in some contexts you may want to do that explicitly.

For the most part, let syntax is easier to read and work with, and you should default

to it when using Async, which is what we'll do for the remainder of the chapter.

17.1.2 Ivars and Upon

Deferreds are usually built using combinations of bind, map and return, but sometimes

you want to construct a deferred where you can programmatically decide when it gets

�lled in. This can be done using an ivar. (The term ivar dates back to a language called

Concurrent ML that was developed by John Reppy in the early '90s. The �i� in ivar

stands for incremental.)

There are three fundamental operations for working with an ivar: you can create

one, using Ivar.create; you can read o� the deferred that corresponds to the ivar in

question, using Ivar.read; and you can �ll an ivar, thus causing the corresponding

deferred to become determined, using Ivar.fill. These operations are illustrated

below:

let ivar = Ivar.create ();;
val ivar : '_weak1 Ivar.t =

{Async_kernel__.Types.Ivar.cell = Async_kernel__Types.Cell.Empty}

let def = Ivar.read ivar;;
val def : '_weak2 Deferred.t = <abstr>

Deferred.peek def;;
- : '_weak3 option = None

Ivar.fill ivar "Hello";;
- : unit = ()

Deferred.peek def;;
- : string option = Some "Hello"

Ivars are something of a low-level feature; operators like map, bind and return are

typically easier to use and think about. But ivars can be useful when you want to build

a synchronization pattern that isn't already well supported.

As an example, imagine we wanted a way of scheduling a sequence of actions that

would run after a �xed delay. In addition, we'd like to guarantee that these delayed

actions are executed in the same order they were scheduled in. Here's a signature that

captures this idea:

module type Delayer_intf = sig
type t
val create : Time.Span.t -> t
val schedule : t -> (unit -> 'a Deferred.t) -> 'a Deferred.t

end;;
module type Delayer_intf =

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

302 Concurrent Programming with Async

sig

type t

val create : Time.Span.t -> t

val schedule : t -> (unit -> 'a Deferred.t) -> 'a Deferred.t

end

An action is handed to schedule in the form of a deferred-returning thunk (a thunk

is a function whose argument is of type unit). A deferred is handed back to the caller of

schedule that will eventually be �lled with the contents of the deferred value returned

by the thunk. To implement this, we'll use an operator called upon, which has the

following signature:

#show upon;;
val upon : 'a Deferred.t -> ('a -> unit) -> unit

Like bind and return, upon schedules a callback to be executed when the deferred

it is passed is determined; but unlike those calls, it doesn't create a new deferred for

this callback to �ll.

Our delayer implementation is organized around a queue of thunks, where every

call to schedule adds a thunk to the queue and also schedules a job in the future to grab

a thunk o� the queue and run it. The waiting will be done using the function after,

which takes a time span and returns a deferred which becomes determined after that

time span elapses:

module Delayer : Delayer_intf = struct
type t = { delay: Time.Span.t;

jobs: (unit -> unit) Queue.t;
}

let create delay =
{ delay; jobs = Queue.create () }

let schedule t thunk =
let ivar = Ivar.create () in
Queue.enqueue t.jobs (fun () ->
upon (thunk ()) (fun x -> Ivar.fill ivar x));

upon (after t.delay) (fun () ->
let job = Queue.dequeue_exn t.jobs in
job ());

Ivar.read ivar
end;;

module Delayer : Delayer_intf

This code isn't particularly long, but it is subtle. In particular, note how the queue

of thunks is used to ensure that the enqueued actions are run in the order they were

scheduled, even if the thunks scheduled by upon are run out of order. This kind of

subtlety is typical of code that involves ivars and upon, and because of this, you should

stick to the simpler map/bind/return style of working with deferreds when you can.

Understanding bind in Terms of Ivars and upon
Here's roughly what happens when you write let d' = Deferred.bind d ~f.

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

17.2 Example: An Echo Server 303

• A new ivar i is created to hold the �nal result of the computation. The corresponding

deferred is returned

• A function is registered to be called when the deferred d becomes determined.

• That function, once run, calls f with the value that was determined for d.

• Another function is registered to be called when the deferred returned by f becomes

determined.

• When that function is called, it uses it to �ll i, causing the corresponding deferred

it to become determined.

That sounds like a lot, but we can implement this relatively concisely.

let my_bind d ~f =
let i = Ivar.create () in
upon d (fun x -> upon (f x) (fun y -> Ivar.fill i y));
Ivar.read i;;

val my_bind : 'a Deferred.t -> f:('a -> 'b Deferred.t) -> 'b Deferred.t

=

<fun>

Async's real implementation has more optimizations and is therefore more compli-

cated. But the above implementation is still a useful �rst-order mental model for how

bind works under the covers. And it's another good example of how upon and ivars can

be useful for building concurrency primitives.

17.2 Example: An Echo Server

Now that we have the basics of Async under our belt, let's look at a small standalone

Async program. In particular, we'll write an echo server, i.e., a program that accepts

connections from clients and spits back whatever is sent to it.

The �rst step is to create a function that can copy data from an input to an output.

Here, we'll use Async's Reader and Writer modules, which provide a convenient

abstraction for working with input and output channels:

open Core
open Async

(* Copy data from the reader to the writer, using the provided buffer
as scratch space *)

let rec copy_blocks buffer r w =
match%bind Reader.read r buffer with
| `Eof -> return ()
| `Ok bytes_read ->
Writer.write w (Bytes.to_string buffer) ~len:bytes_read;
let%bind () = Writer.flushed w in
copy_blocks buffer r w

Bind is used in the code to sequence the operations, with a bindmarking each place

we wait.

• First, we call Reader.read to get a block of input.

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

304 Concurrent Programming with Async

• When that's complete and if a new block was returned, we write that block to the

writer.

• Finally, we wait until the writer's bu�ers are �ushed, at which point we recurse.

If we hit an end-of-�le condition, the loop is ended. The deferred returned by a call

to copy_blocks becomes determined only once the end-of-�le condition is hit.

One important aspect of how copy_blocks is written is that it provides pushback,

which is to say that if the process can't make progress writing, it will stop reading. If

you don't implement pushback in your servers, then anything that prevents you from

writing (e.g., a client that is unable to keep up) will cause your program to allocate

unbounded amounts of memory, as it keeps track of all the data it intends to write but

hasn't been able to yet.

Tail-Calls and Chains of Deferreds

There's anothermemory problemyoumight be concerned about, which is the allocation

of deferreds. If you think about the execution of copy_blocks, you'll see it's creating a

chain of deferreds, two per time through the loop. The length of this chain is unbounded,

and so, naively, you'd think this would take up an unbounded amount of memory as

the echo process continues.

Happily, this is a case that Async knows how to optimize. In particular, the whole

chain of deferreds should become determined precisely when the �nal deferred in the

chain is determined, in this case, when the Eof condition is hit. Because of this, we

could safely replace all of these deferreds with a single deferred. Async does just this,

and so there's no memory leak after all.

This is essentially a form of tail-call optimization, lifted to the Deferred monad.

Indeed, you can tell that the bind in question doesn't lead to a memory leak in more or

less the same way you can tell that the tail recursion optimization should apply, which

is that the bind that creates the deferred is in tail-position. In other words, nothing is

done to that deferred once it's created; it's simply returned as is.

copy_blocks provides the logic for handling a client connection, but we still need to

set up a server to receive such connections and dispatch to copy_blocks. For this, we'll

use Async's Tcp module, which has a collection of utilities for creating TCP clients

and servers:

(** Starts a TCP server, which listens on the specified port, invoking
copy_blocks every time a client connects. *)

let run () =
let host_and_port =
Tcp.Server.create
~on_handler_error:`Raise
(Tcp.Where_to_listen.of_port 8765)
(fun _addr r w ->
let buffer = Bytes.create (16 * 1024) in
copy_blocks buffer r w)

in
ignore
(host_and_port

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

17.2 Example: An Echo Server 305

: (Socket.Address.Inet.t, int) Tcp.Server.t Deferred.t)

The result of calling Tcp.Server.create is a Tcp.Server.t, which is a handle to

the server that lets you shut the server down. We don't use that functionality here, so

we explicitly ignore server to suppress the unused-variables error. We put in a type

annotation around the ignored value to make the nature of the value we're ignoring

explicit.

The most important argument to Tcp.Server.create is the �nal one, which is the

client connection handler. Notably, the preceding code does nothing explicit to close

down the client connections when the communication is done. That's because the

server will automatically shut down the connection once the deferred returned by the

handler becomes determined.

Finally, we need to initiate the server and start the Async scheduler:

(* Call [run], and then start the scheduler *)
let () =
run ();
never_returns (Scheduler.go ())

One of the most common newbie errors with Async is to forget to run the scheduler.

It can be a bewildering mistake, because without the scheduler, your program won't

do anything at all; even calls to printf won't reach the terminal.

It's worth noting that even though we didn't spend much explicit e�ort on thinking

aboutmultiple clients, this server is able to handlemany clients concurrently connecting

and reading and writing data.

Now that we have the echo server, we can connect to the echo server using the

netcat tool, which is invoked as nc. Note that we use dune exec to both build and run

the executable. We use the double-dashes so that Dune's parsing of arguments doesn't

interfere with argument parsing for the executed program.

$ dune exec -- ./echo.exe &
$ echo "This is an echo server" | nc 127.0.0.1 8765
This is an echo server
$ echo "It repeats whatever I write" | nc 127.0.0.1 8765
It repeats whatever I write
$ killall echo.exe

Functions that Never Return

The call to never_returns around the call to Scheduler.go is a little bit surprising, but

it has a purpose: to make it clear to whoever invokes Scheduler.go that the function

never returns.

By default, a function that doesn't return will have an inferred return type of 'a:

let rec loop_forever () = loop_forever ();;
val loop_forever : unit -> 'a = <fun>

let always_fail () = assert false;;
val always_fail : unit -> 'a = <fun>

This is a little odd, but it does make sense. After all, if a function never returns,

we're free to impute any type at all to its non-existent return value. As a result, from

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

306 Concurrent Programming with Async

a typing perspective, a function that never returns can �t into any context within your

program.

But that itself can be problematic, especially with a function like Scheduler.go,

where the fact that it never returns is perhaps not entirely obvious. The point of

never_returns is to create an explicit marker so the user knows that the function in

question doesn't return.

To do this, Scheduler.go is de�ned to have a return value of Nothing.t.

#show Scheduler.go;;
val go : ?raise_unhandled_exn:bool -> unit -> never_returns

never_returns is just an alias of Nothing.t.

Nothing.t is uninhabited, which means there are no values of that type. As such, a

function can't actually return a value of type Nothing.t, so only a function that never

returns can have Nothing.t as its return type! And we can cause a function that never

returns to have a return value of Nothing.t by just adding a type annotation.

let rec loop_forever () : Nothing.t = loop_forever ();;
val loop_forever : unit -> never_returns = <fun>

The function never_returns consumes a value of type Nothing.t and returns an

unconstrained type 'a.

#show_val never_returns;;
val never_returns : never_returns -> 'a

If you try to write a function that uses Scheduler.go, and just assumes that it returns

unit, you'll get a helpful type error.

let do_stuff n =
let x = 3 in
if n > 0 then Scheduler.go ();
x + n;;

Line 3, characters 19-34:

Error: This expression has type never_returns

but an expression was expected of type unit

because it is in the result of a conditional with no else

branch

We can �x this by inserting a call to never_returns, thus making the fact that

Scheduler.go doesn't return apparent to the reader.

let do_stuff n =
let x = 3 in
if n > 0 then never_returns (Scheduler.go ());
x + n;;

val do_stuff : int -> int = <fun>

17.2.1 Improving the Echo Server

Let's try to go a little bit farther with our echo server by walking through a few

improvements. In particular, we will:

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

17.2 Improving the Echo Server 307

• Add a proper command-line interface with Command

• Add a �ag to specify the port to listen on and a �ag to make the server echo back the

capitalized version of whatever was sent to it

• Simplify the code using Async's Pipe interface

The following code does all of this:

open Core
open Async

let run ~uppercase ~port =
let host_and_port =
Tcp.Server.create
~on_handler_error:`Raise
(Tcp.Where_to_listen.of_port port)
(fun _addr r w ->
Pipe.transfer
(Reader.pipe r)
(Writer.pipe w)
~f:(if uppercase then String.uppercase else Fn.id))

in
ignore
(host_and_port
: (Socket.Address.Inet.t, int) Tcp.Server.t Deferred.t);

Deferred.never ()

let () =
Command.async
~summary:"Start an echo server"
(let%map_open.Command uppercase =
flag
"-uppercase"
no_arg
~doc:" Convert to uppercase before echoing back"

and port =
flag
"-port"
(optional_with_default 8765 int)
~doc:" Port to listen on (default 8765)"

in
fun () -> run ~uppercase ~port)

|> Command.run

Note the use of Deferred.never in the run function. As you might guess from the

name, Deferred.never returns a deferred that is never determined. In this case, that

indicates that the echo server doesn't ever shut down.

The biggest change in the preceding code is the use of Async's Pipe. A Pipe is

an asynchronous communication channel that's used for connecting di�erent parts of

your program. You can think of it as a consumer/producer queue that uses deferreds for

communicating when the pipe is ready to be read from or written to. Our use of pipes

is fairly minimal here, but they are an important part of Async, so it's worth discussing

them in some detail.

Pipes are created in connected read/write pairs:

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

308 Concurrent Programming with Async

let (r,w) = Pipe.create ();;
val r : '_weak4 Pipe.Reader.t = <abstr>

val w : '_weak4 Pipe.Writer.t = <abstr>

r and w are really just read and write handles to the same underlying object. Note

that r and w have weakly polymorphic types, as discussed in Chapter 9 (Imperative

Programming), and so can only contain values of a single, yet-to-be-determined type.

If we just try and write to the writer, we'll see that we block inde�nitely in utop.

You can break out of the wait by hitting Control-C:

Pipe.write w "Hello World!";;
Interrupted.

That's because a pipe has a certain amount of internal slack, a number of slots in

the pipe to which something can be written before the write will block. By default, a

pipe has zero slack, which means that the deferred returned by a write is determined

only when the value is read out of the pipe.

let (r,w) = Pipe.create ();;
val r : '_weak5 Pipe.Reader.t = <abstr>

val w : '_weak5 Pipe.Writer.t = <abstr>

let write_complete = Pipe.write w "Hello World!";;
val write_complete : unit Deferred.t = <abstr>

Pipe.read r;;
- : [`Eof | `Ok of string] = `Ok "Hello World!"

write_complete;;
- : unit = ()

In the function run, we're taking advantage of one of the many utility functions

provided for pipes in the Pipemodule. In particular, we're using Pipe.transfer to set

up a process that takes data from a reader-pipe and moves it to a writer-pipe. Here's

the type of Pipe.transfer:

Pipe.transfer;;
- : 'a Pipe.Reader.t -> 'b Pipe.Writer.t -> f:('a -> 'b) -> unit

Deferred.t =

<fun>

The two pipes being connected are generated by the Reader.pipe and Writer.pipe

call respectively. Note that pushback is preserved throughout the process, so that if

the writer gets blocked, the writer's pipe will stop pulling data from the reader's pipe,

which will prevent the reader from reading in more data.

Importantly, the deferred returned by Pipe.transfer becomes determined once

the reader has been closed and the last element is transferred from the reader to

the writer. Once that deferred becomes determined, the server will shut down that

client connection. So, when a client disconnects, the rest of the shutdown happens

transparently.

The command-line parsing for this program is based on the Command library that

we introduced in Chapter 16 (Command-Line Parsing). Opening Async, shadows the

Command module with an extended version that contains the async call:

#show Command.async_spec;;
val async_spec :

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

17.3 URI Handling 309

('a, unit Deferred.t) Async.Command.basic_spec_command

Command.with_options

This di�ers from the ordinary Command.basic call in that the main function must

return a Deferred.t, and that the running of the command (using Command.run) auto-

matically starts theAsync scheduler, without requiring an explicit call toScheduler.go.

17.3 Example: Searching De�nitions with DuckDuckGo

DuckDuckGo is a search engine with a freely available search interface. In this section,

we'll use Async to write a small command-line utility for querying DuckDuckGo to

extract de�nitions for a collection of terms.

Our code is going to rely on a number of other libraries, all of which can be installed

using opam. Refer to the installation instructions1 if you need help on the installation.

Here's the list of libraries we'll need:

textwrap A library for wrapping long lines. We'll use this for printing out our results.

uri A library for handling URIs, or �Uniform Resource Identi�ers,� of which HTTP

URLs are an example.

yojson A JSON parsing library that was described in Handling Json Data2 .

cohttp A library for creating HTTP clients and servers. We need Async support,

which comes with the cohttp-async package.

Now let's dive into the implementation.

17.3.1 URI Handling

HTTP URLs, which identify endpoints across the Web, are actually part of a more gen-

eral family known as Uniform Resource Identi�ers (URIs). The full URI speci�cation

is de�ned in RFC39863 and is rather complicated. Luckily, the uri library provides a

strongly typed interface that takes care of much of the hassle.

We'll need a function for generating the URIs that we're going to use to query the

DuckDuckGo servers:

open Core
open Async

(* Generate a DuckDuckGo search URI from a query string *)
let query_uri query =
let base_uri =
Uri.of_string "http://api.duckduckgo.com/?format=json"

in
Uri.add_query_param base_uri ("q", [query])

1 http://dev.realworldocaml.org/install.html
2 json.html#handling-json-data
3 http://tools.ietf.org/html/rfc3986

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

http://dev.realworldocaml.org/install.html
json.html#handling-json-data
http://tools.ietf.org/html/rfc3986
https://doi.org/10.1017/9781009129220.020

310 Concurrent Programming with Async

A Uri.t is constructed from the Uri.of_string function, and a query parameter

q is added with the desired search query. The library takes care of encoding the URI

correctly when outputting it in the network protocol.

17.3.2 Parsing JSON Strings

The HTTP response from DuckDuckGo is in JSON, a common (and thankfully simple)

format that is speci�ed in RFC46274 . We'll parse the JSON data using the Yojson

library, which was introduced in Chapter 19 (Handling JSON Data).

We expect the response from DuckDuckGo to come across as a JSON record, which

is represented by the Assoc tag in Yojson's JSON variant.We expect the de�nition itself

to come across under either the key �Abstract� or �De�nition,� and so the following

code looks under both keys, returning the �rst one for which a nonempty value is

de�ned:

(* Extract the "Definition" or "Abstract" field from the DuckDuckGo
results *)

let get_definition_from_json json =
match Yojson.Safe.from_string json with
| `Assoc kv_list ->
let find key =
match List.Assoc.find ~equal:String.equal kv_list key with
| None | Some (`String "") -> None
| Some s -> Some (Yojson.Safe.to_string s)

in
(match find "Abstract" with
| Some _ as x -> x
| None -> find "Definition")

| _ -> None

17.3.3 Executing an HTTP Client Query

Now let's look at the code for dispatching the search queries over HTTP, using the

Cohttp library:

(* Execute the DuckDuckGo search *)
let get_definition word =
let%bind _, body = Cohttp_async.Client.get (query_uri word) in
let%map string = Cohttp_async.Body.to_string body in
word, get_definition_from_json string

To better understand what's going on, it's useful to look at the type for

Cohttp_async.Client.get, which we can do in utop:

#require "cohttp-async";;
#show Cohttp_async.Client.get;;
val get :

?interrupt:unit Deferred.t ->

?ssl_config:Conduit_async.V2.Ssl.Config.t ->

?headers:Cohttp.Header.t ->

Uri.t -> (Cohttp.Response.t * Cohttp_async.Body.t) Deferred.t

4 http://www.ietf.org/rfc/rfc4627.txt

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

http://www.ietf.org/rfc/rfc4627.txt
https://doi.org/10.1017/9781009129220.020

17.3 Executing an HTTP Client Query 311

The get call takes as a required argument a URI and returns a deferred value

containing a Cohttp.Response.t (which we ignore) and a pipe reader to which the

body of the request will be streamed.

In this case, the HTTP body probably isn't very large, so we call

Cohttp_async.Body.to_string to collect the data from the connection as a single

deferred string, rather than consuming the data incrementally.

Running a single search isn't that interesting from a concurrency perspective, so

let's write code for dispatching multiple searches in parallel. First, we need code for

formatting and printing out the search result:

(* Print out a word/definition pair *)
let print_result (word, definition) =
printf
"%s\n%s\n\n%s\n\n"
word
(String.init (String.length word) ~f:(fun _ -> '-'))
(match definition with
| None -> "No definition found"
| Some def ->
String.concat ~sep:"\n" (Wrapper.wrap (Wrapper.make 70) def))

We use the Wrapper module from the textwrap package to do the line wrapping. It

may not be obvious that this routine is using Async, but it does: the version of printf

that's called here is actually Async's specialized printf that goes through the Async

scheduler rather than printing directly. The original de�nition of printf is shadowed by

this new one when you open Async. An important side e�ect of this is that if you write

an Async program and forget to start the scheduler, calls like printf won't actually

generate any output!

The next function dispatches the searches in parallel, waits for the results, and then

prints:

(* Run many searches in parallel, printing out the results after
they're all done. *)

let search_and_print words =
let%map results = Deferred.all (List.map words ~f:get_definition) in
List.iter results ~f:print_result

We used List.map to call get_definition on each word, and Deferred.all to wait

for all the results. Here's the type of Deferred.all:

Deferred.all;;
- : 'a Deferred.t list -> 'a list Deferred.t = <fun>

The list returned by Deferred.all re�ects the order of the deferreds passed to it.

As such, the de�nitions will be printed out in the same order that the search words are

passed in, no matter what order the queries return in. It also means that no printing

occurs until all results arrive.

We could rewrite this code to print out the results as they're received (and thus

potentially out of order) as follows:

(* Run many searches in parallel, printing out the results as you
go *)

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

312 Concurrent Programming with Async

let search_and_print words =
Deferred.all_unit
(List.map words ~f:(fun word ->

get_definition word >>| print_result))

The di�erence is that we both dispatch the query and print out the result in the

closure passed to map, rather than wait for all of the results to get back and then print

them out together. We use Deferred.all_unit, which takes a list of unit deferreds

and returns a single unit deferred that becomes determined when every deferred on

the input list is determined. We can see the type of this function in utop:

Deferred.all_unit;;
- : unit Deferred.t list -> unit Deferred.t = <fun>

Finally, we create a command-line interface using Command.async:

let () =
Command.async
~summary:"Retrieve definitions from duckduckgo search engine"
(let%map_open.Command words =
anon (sequence ("word" %: string))

in
fun () -> search_and_print words)

|> Command.run

And that's all we need for a simple but usable de�nition searcher:

$ dune exec -- ./search.exe "Concurrent Programming" "OCaml"
Concurrent Programming

"Concurrent computing is a form of computing in which several
computations are executed during overlapping time
periodsconcurrentlyinstead of sequentially. This is a property
of a systemthis may be an individual program, a computer, or a
networkand there is a separate execution point or \"thread of
control\" for each computation. A concurrent system is one where a
computation can advance without waiting for all other computations to
complete."

OCaml

"OCaml, originally named Objective Caml, is the main implementation of
the programming language Caml, created by Xavier Leroy, Jérôme
Vouillon, Damien Doligez, Didier Rémy, Ascánder Suárez and others
in 1996. A member of the ML language family, OCaml extends the core
Caml language with object-oriented programming constructs."

17.4 Exception Handling

When programming with external resources, errors are everywhere. Everything from a

�aky server to a network outage to exhausting of local resources can lead to a runtime

error. When programming in OCaml, some of these errors will show up explicitly in

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

17.4 Exception Handling 313

a function's return type, and some of them will show up as exceptions. We covered

exception handling in OCaml in Chapter 8.2 (Exceptions), but as we'll see, exception

handling in a concurrent program presents some new challenges.

Let's get a better sense of how exceptionswork inAsync by creating an asynchronous

computation that (sometimes) failswith an exception. The functionmaybe_raise blocks

for half a second, and then either throws an exception or returns unit, alternating

between the two behaviors on subsequent calls:

let maybe_raise =
let should_fail = ref false in
fun () ->
let will_fail = !should_fail in
should_fail := not will_fail;
let%map () = after (Time.Span.of_sec 0.5) in
if will_fail then raise Exit else ();;

val maybe_raise : unit -> unit Deferred.t = <fun>

maybe_raise ();;
- : unit = ()

maybe_raise ();;
Exception: (monitor.ml.Error Exit ("Caught by monitor

block_on_async"))

In utop, the exception thrown by maybe_raise () terminates the evaluation of just

that expression, but in a standalone program, an uncaught exception would bring down

the entire process.

So, how could we capture and handle such an exception? You might try to do this

using OCaml's built-in try/with expression, but as you can see that doesn't quite do

the trick:

let handle_error () =
try
let%map () = maybe_raise () in
"success"

with _ -> return "failure";;
val handle_error : unit -> string Deferred.t = <fun>

handle_error ();;
- : string = "success"

handle_error ();;
Exception: (monitor.ml.Error Exit ("Caught by monitor

block_on_async"))

This didn't work because try/with only captures exceptions that are thrown by the

code executed synchronously within it, while maybe_raise schedules an Async job

that will throw an exception in the future, after the try/with expression has exited.

We can capture this kind of asynchronous error using thetry_with function provided

by Async. try_with f takes as its argument a deferred-returning thunk f and returns

a deferred that becomes determined either as Ok of whatever f returned, or Error exn

if f threw an exception before its return value became determined.

Here's a trivial example of try_with in action.

let handle_error () =
match%map try_with (fun () -> maybe_raise ()) with
| Ok () -> "success"

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

314 Concurrent Programming with Async

| Error _ -> "failure";;
val handle_error : unit -> string Deferred.t = <fun>

handle_error ();;
- : string = "success"

handle_error ();;
- : string = "failure"

17.4.1 Monitors

try_with is a useful tool for handling exceptions in Async, but it's not the whole story.

All of Async's exception-handling mechanisms, try_with included, are built on top of

Async's system of monitors, which are inspired by the error-handling mechanism in

Erlang of the same name. Monitors are fairly low-level and are only occasionally used

directly, but it's nonetheless worth understanding how they work.

In Async, a monitor is a context that determines what to do when there is an

unhandled exception. Every Async job runs within the context of some monitor, which,

when the job is running, is referred to as the current monitor. When a new Async job

is scheduled, say, using bind or map, it inherits the current monitor of the job that

spawned it.

Monitors are arranged in a tree�when a new monitor is created (say, using

Monitor.create), it is a child of the current monitor. You can explicitly run jobs

within a monitor using within, which takes a thunk that returns a nondeferred value,

or within', which takes a thunk that returns a deferred. Here's an example:

let blow_up () =
let monitor = Monitor.create ~name:"blow up monitor" () in
within' ~monitor maybe_raise;;

val blow_up : unit -> unit Deferred.t = <fun>

blow_up ();;
- : unit = ()

blow_up ();;
Exception: (monitor.ml.Error Exit ("Caught by monitor blow up

monitor"))

In addition to the ordinary stack-trace, the exception displays the trace of monitors

through which the exception traveled, starting at the one we created, called �blow up

monitor.� The other monitors you see come from utop's special handling of deferreds.

Monitors can do more than just augment the error-trace of an exception. You

can also use a monitor to explicitly handle errors delivered to that monitor. The

Monitor.detach_and_get_error_stream call is a particularly important one. It de-

taches the monitor from its parent, handing back the stream of errors that would

otherwise have been delivered to the parent monitor. This allows one to do custom han-

dling of errors, which may include reraising errors to the parent. Here is a very simple

example of a function that captures and ignores errors in the processes it spawns.

let swallow_error () =
let monitor = Monitor.create () in
Stream.iter (Monitor.detach_and_get_error_stream monitor)
~f:(fun _exn -> printf "an error happened\n");

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

17.4 Monitors 315

within' ~monitor (fun () ->
let%bind () = after (Time.Span.of_sec 0.25) in
failwith "Kaboom!");;

val swallow_error : unit -> 'a Deferred.t = <fun>

The deferred returned by this function is never determined, since the computation

ends with an exception rather than a return value. That means that if we run this

function in utop, we'll never get our prompt back.

We can �x this by using Deferred.any along with a timeout to get a deferred

we know will become determined eventually. Deferred.any takes a list of deferreds,

and returns a deferred which will become determined assuming any of its arguments

becomes determined.

Deferred.any [after (Time.Span.of_sec 0.5)
; swallow_error ()];;

an error happened

- : unit = ()

As you can see, the message �an error happened� is printed out before the timeout

expires.

Here's an example of a monitor that passes some exceptions through to the parent

and handles others. Exceptions are sent to the parent using Monitor.send_exn, with

Monitor.current being called to �nd the current monitor, which is the parent of the

newly created monitor.

exception Ignore_me;;
exception Ignore_me

let swallow_some_errors exn_to_raise =
let child_monitor = Monitor.create () in
let parent_monitor = Monitor.current () in
Stream.iter
(Monitor.detach_and_get_error_stream child_monitor)
~f:(fun error ->
match Monitor.extract_exn error with
| Ignore_me -> printf "ignoring exn\n"
| _ -> Monitor.send_exn parent_monitor error);

within' ~monitor:child_monitor (fun () ->
let%bind () = after (Time.Span.of_sec 0.25) in
raise exn_to_raise);;

val swallow_some_errors : exn -> 'a Deferred.t = <fun>

Note that we use Monitor.extract_exn to grab the underlying exception that was

thrown. Async wraps exceptions it catches with extra information, including the mon-

itor trace, so you need to grab the underlying exception if you want to depend on the

details of the original exception thrown.

If we pass in an exception other than Ignore_me, like, say, the built-in exception

Not_found, then the exception will be passed to the parent monitor and delivered as

usual:

exception Another_exception;;
exception Another_exception

Deferred.any [after (Time.Span.of_sec 0.5)
; swallow_some_errors Another_exception];;

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

316 Concurrent Programming with Async

Exception:

(monitor.ml.Error (Another_exception) ("Caught by monitor (id 69)")).

If instead we use Ignore_me, the exception will be ignored, and the computation

will �nish when the timeout expires.

Deferred.any [after (Time.Span.of_sec 0.5)
; swallow_some_errors Ignore_me];;

ignoring exn

- : unit = ()

In practice, you should rarely use monitors directly, and instead use functions

like try_with and Monitor.protect that are built on top of monitors. One example

of a library that uses monitors directly is Tcp.Server.create, which tracks both

exceptions thrown by the logic that handles the network connection and by the callback

for responding to an individual request, in either case responding to an exception

by closing the connection. It is for building this kind of custom error handling that

monitors can be helpful.

17.4.2 Example: Handling Exceptions with DuckDuckGo

Let's now go back and improve the exception handling of our DuckDuckGo client. In

particular, we'll change it so that any query that fails is reported without preventing

other queries from completing.

The search code as it is fails rarely, so let's make a change that allows us to trigger

failures more predictably. We'll do this by making it possible to distribute the requests

over multiple servers. Then, we'll handle the errors that occur when one of those

servers is misspeci�ed.

First we'll need to change query_uri to take an argument specifying the server to

connect to:

(* Generate a DuckDuckGo search URI from a query string *)
let query_uri ~server query =
let base_uri =
Uri.of_string
(String.concat ["http://"; server; "/?format=json"])

in
Uri.add_query_param base_uri ("q", [query])

In addition, we'll make the necessary changes to get the list of servers on the

command-line, and to distribute the search queries round-robin across the list of

servers.

Now, let's see what happens when we rebuild the application and run it on two

servers, one of which won't respond to the query.

$ dune exec -- ./search.exe -servers localhost,api.duckduckgo.com
"Concurrent Programming" "OCaml"

(monitor.ml.Error (Unix.Unix_error "Connection refused" connect
127.0.0.1:80)

("Raised by primitive operation at file
\"duniverse/async_unix/src/unix_syscalls.ml\", line 1046,
characters 17-74"

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

17.4 Example: Handling Exceptions with DuckDuckGo 317

"Called from file \"duniverse/async_kernel/src/deferred1.ml\", line
17, characters 40-45"

"Called from file \"duniverse/async_kernel/src/job_queue.ml\", line
170, characters 6-47"

"Caught by monitor Tcp.close_sock_on_error"))
[1]

As you can see, we got a �Connection refused� failure, which ends the entire

program, even though one of the two queries would have gone through successfully on

its own. We can handle the failures of individual connections separately by using the

try_with function within each call to get_definition, as follows:

(* Execute the DuckDuckGo search *)
let get_definition ~server word =
match%map
try_with (fun () ->

let%bind _, body =
Cohttp_async.Client.get (query_uri ~server word)

in
let%map string = Cohttp_async.Body.to_string body in
word, get_definition_from_json string)

with
| Ok (word, result) -> word, Ok result
| Error _ -> word, Error "Unexpected failure"

Here, we �rst use try_with to capture the exception, and then use match%map

(another syntax provided by ppx_let) to convert the error into the form we want: a

pair whose �rst element is the word being searched for, and the second element is the

(possibly erroneous) result.

Now we just need to change the code for print_result so that it can handle the new

type:

(* Print out a word/definition pair *)
let print_result (word, definition) =
printf
"%s\n%s\n\n%s\n\n"
word
(String.init (String.length word) ~f:(fun _ -> '-'))
(match definition with
| Error s -> "DuckDuckGo query failed: " ^ s
| Ok None -> "No definition found"
| Ok (Some def) ->
String.concat ~sep:"\n" (Wrapper.wrap (Wrapper.make 70) def))

Now, if we run that same query, we'll get individualized handling of the connection

failures:

$ dune exec -- ./search.exe -servers localhost,api.duckduckgo.com
"Concurrent Programming" OCaml

Concurrent Programming

DuckDuckGo query failed: Unexpected failure

OCaml

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

318 Concurrent Programming with Async

"OCaml, originally named Objective Caml, is the main implementation of
the programming language Caml, created by Xavier Leroy, Jérôme
Vouillon, Damien Doligez, Didier Rémy, Ascánder Suárez and others
in 1996. A member of the ML language family, OCaml extends the core
Caml language with object-oriented programming constructs."

Now, only the query that went to localhost failed.

Note that in this code, we're relying on the fact that Cohttp_async.Client.get

will clean up after itself after an exception, in particular by closing its �le descrip-

tors. If you need to implement such functionality directly, you may want to use the

Monitor.protect call, which is analogous to the protect call described in Chap-

ter 8.2.3 (Cleaning Up in the Presence of Exceptions).

17.5 Timeouts, Cancellation, and Choices

In a concurrent program, one often needs to combine results from multiple, distinct

concurrent subcomputations going on in the same program. We already saw this in our

DuckDuckGo example, where we used Deferred.all and Deferred.all_unit to wait

for a list of deferreds to become determined.Another useful primitive isDeferred.both,

which lets you wait until two deferreds of di�erent types have returned, returning both

values as a tuple. Here, we use the function sec, which is shorthand for creating a

time-span equal to a given number of seconds:

let string_and_float =
Deferred.both
(let%map () = after (sec 0.5) in "A")
(let%map () = after (sec 0.25) in 32.33);;

val string_and_float : (string * float) Deferred.t = <abstr>

string_and_float;;
- : string * float = ("A", 32.33)

Sometimes, however, we want to wait only for the �rst of multiple events to occur.

This happens particularly when dealing with timeouts. In that case, we can use the

call Deferred.any, which, given a list of deferreds, returns a single deferred that will

become determined once any of the values on the list is determined.

Deferred.any
[(let%map () = after (sec 0.5) in "half a second")
; (let%map () = after (sec 1.0) in "one second")
; (let%map () = after (sec 4.0) in "four seconds")
];;

- : string = "half a second"

Let's use this to add timeouts to our DuckDuckGo searches. The following code is

a wrapper for get_definition that takes a timeout (in the form of a Time.Span.t) and

returns either the de�nition, or, if that takes too long, an error:

let get_definition_with_timeout ~server ~timeout word =
Deferred.any
[(let%map () = after timeout in

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

17.5 Timeouts, Cancellation, and Choices 319

word, Error "Timed out")
; (match%map get_definition ~server word with
| word, Error _ -> word, Error "Unexpected failure"
| word, (Ok _ as x) -> word, x)

]

We use let%map above to transform the deferred values we're waiting for so that

Deferred.any can choose between values of the same type.

A problemwith this code is that theHTTPquery kicked o� by get_definition is not

actually shut down when the timeout �res. As such, get_definition_with_timeout

can leak an open connection. Happily, Cohttp does provide a way of shutting down a

client. You can pass a deferred under the label interrupt to Cohttp_async.Client.get.

Once interrupt is determined, the client connection will be shut down.

The following code shows how you can change get_definition and

get_definition_with_timeout to cancel the get call if the timeout expires:

(* Execute the DuckDuckGo search *)
let get_definition ~server ~interrupt word =
match%map
try_with (fun () ->

let%bind _, body =
Cohttp_async.Client.get ~interrupt (query_uri ~server word)

in
let%map string = Cohttp_async.Body.to_string body in
word, get_definition_from_json string)

with
| Ok (word, result) -> word, Ok result
| Error _ -> word, Error "Unexpected failure"

Next, we'll modify get_definition_with_timeout to create a deferred to pass in

to get_definition, which will become determined when our timeout expires:

let get_definition_with_timeout ~server ~timeout word =
match%map
get_definition ~server ~interrupt:(after timeout) word

with
| word, (Ok _ as x) -> word, x
| word, Error _ -> word, Error "Unexpected failure"

This will cause the connection to shutdown cleanly when we time out; but our code

no longer explicitly knows whether or not the timeout has kicked in. In particular, the

error message on a timeout will now be "Unexpected failure" rather than "Timed

out", which it was in our previous implementation.

We can get more precise handling of timeouts using Async's choose function.

choose lets you pick among a collection of di�erent deferreds, reacting to exactly one

of them. Each deferred is paired, using the function choice, with a function that is

called if and only if that deferred is chosen. Here's the type signature of choice and

choose:

choice;;
- : 'a Deferred.t -> ('a -> 'b) -> 'b Deferred.choice = <fun>

choose;;
- : 'a Deferred.choice list -> 'a Deferred.t = <fun>

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

320 Concurrent Programming with Async

Note that there's no guarantee that the winning deferred will be the one that becomes

determined �rst. But choose does guarantee that only one choice will be chosen, and

only the chosen choice will execute the attached function.

In the following example, we use choose to ensure that the interrupt deferred

becomes determined if and only if the timeout deferred is chosen. Here's the code:

let get_definition_with_timeout ~server ~timeout word =
let interrupt = Ivar.create () in
choose
[choice (after timeout) (fun () ->

Ivar.fill interrupt ();
word, Error "Timed out")

; choice
(get_definition ~server ~interrupt:(Ivar.read interrupt) word)
(fun (word, result) ->
let result' =
match result with
| Ok _ as x -> x
| Error _ -> Error "Unexpected failure"

in
word, result')

]

Now, if we run this with a suitably small timeout, we'll see that one query succeeds

and the other fails reporting a timeout:

$ dune exec -- ./search.exe "concurrent programming" ocaml -timeout
0.1s

concurrent programming

"Concurrent computing is a form of computing in which several
computations are executed during overlapping time
periodsconcurrentlyinstead of sequentially. This is a property
of a systemthis may be an individual program, a computer, or a
networkand there is a separate execution point or \"thread of
control\" for each computation. A concurrent system is one where a
computation can advance without waiting for all other computations to
complete."

ocaml

DuckDuckGo query failed: Timed out

17.6 Working with System Threads

Although we haven't worked with them yet, OCaml does have built-in support for

true system threads, i.e., kernel-level threads whose interleaving is controlled by the

operating system. We discussed in the beginning of the chapter the advantages of

Async's cooperative threading model over system threads, but even if you mostly use

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

17.6 Working with System Threads 321

Async, OCaml's system threads are sometimes necessary, and it's worth understanding

them.

The most surprising aspect of OCaml's system threads is that they don't a�ord

you any access to physical parallelism. That's because OCaml's runtime has a single

runtime lock that at most one thread can be holding at a time.

Given that threads don't provide physical parallelism, why are they useful at all?

The most common reason for using system threads is that there are some operating

system calls that have no nonblocking alternative, which means that you can't run them

directly in a system like Async without blocking your entire program. For this reason,

Async maintains a thread pool for running such calls. Most of the time, as a user of

Async you don't need to think about this, but it is happening under the covers.

Another reason to have multiple threads is to deal with non-OCaml libraries that

have their own event loop or for another reason need their own threads. In that case,

it's sometimes useful to run some OCaml code on the foreign thread as part of the

communication to your main program. OCaml's foreign function interface is discussed

in more detail in Chapter 23 (Foreign Function Interface).

Multicore OCaml

OCaml doesn't support truly parallel threads today, but it will soon. The current

development branch of OCaml, which is expected to be released in 2022 as OCaml 5.0,

has a long awaited multicore-capable garbage collector, which is the result of years of

research and hard implementation work.

We won't discuss the multicore gc here in part because it's not yet released, and in

part because there's a lot of open questions about how OCaml programs should take

advantage of multicore in a way that's safe, convenient, and performant. Given all that,

we just don't know enough to write a chapter about multicore today.

In any case, while multicore OCaml isn't here yet, it's an exciting part of OCaml's

near-term future.

Another occasional use for system threads is to better interoperate with compute-

intensive OCaml code. In Async, if you have a long-running computation that never

calls bind or map, then that computation will block out the Async runtime until it

completes.

One way of dealing with this is to explicitly break up the calculation into smaller

pieces that are separated by binds. But sometimes this explicit yielding is impractical,

since it may involve intrusive changes to an existing codebase. Another solution is

to run the code in question in a separate thread. Async's In_thread module provides

multiple facilities for doing just this, In_thread.run being the simplest. We can simply

write:

let def = In_thread.run (fun () -> List.range 1 10);;
val def : int list Deferred.t = <abstr>

def;;
- : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9]

to cause List.range 1 10 to be run on one of Async's worker threads. When the

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

322 Concurrent Programming with Async

computation is complete, the result is placed in the deferred, where it can be used in

the ordinary way from Async.

Interoperability between Async and system threads can be quite tricky. Consider the

following function for testing how responsive Async is. The function takes a deferred-

returning thunk, and it �rst runs that thunk, and then uses Clock.every to wake up

every 100 milliseconds and print out a timestamp, until the returned deferred becomes

determined, at which point it prints out one last timestamp:

let log_delays thunk =
let start = Time.now () in
let print_time () =
let diff = Time.diff (Time.now ()) start in
printf "%s, " (Time.Span.to_string diff)

in
let d = thunk () in
Clock.every (sec 0.1) ~stop:d print_time;
let%bind () = d in
printf "\nFinished at: ";
print_time ();
printf "\n";
Writer.flushed (force Writer.stdout);;

val log_delays : (unit -> unit Deferred.t) -> unit Deferred.t = <fun>

If we feed this function a simple timeout deferred, it works as you might expect,

waking up roughly every 100 milliseconds:

log_delays (fun () -> after (sec 0.5));;
37.670135498046875us, 100.65722465515137ms, 201.19547843933105ms,

301.85389518737793ms, 402.58693695068359ms,

Finished at: 500.67615509033203ms,

- : unit = ()

Now see what happens if, instead of waiting on a clock event, we wait for a busy

loop to �nish running:

let busy_loop () =
let x = ref None in
for i = 1 to 100_000_000 do x := Some i done;;

val busy_loop : unit -> unit = <fun>

log_delays (fun () -> return (busy_loop ()));;
Finished at: 874.99594688415527ms,

- : unit = ()

As you can see, instead of waking up 10 times a second, log_delays is blocked out

entirely while busy_loop churns away.

If, on the other hand, we use In_thread.run to o�oad this to a di�erent system

thread, the behavior will be di�erent:

log_delays (fun () -> In_thread.run busy_loop);;
31.709671020507812us, 107.50102996826172ms, 207.65542984008789ms,

307.95812606811523ms, 458.15873146057129ms,

608.44659805297852ms, 708.55593681335449ms, 808.81166458129883ms,

Finished at: 840.72136878967285ms,

- : unit = ()

Now log_delays does get a chance to run, but it's no longer at clean 100millisecond

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

17.6 Thread-Safety and Locking 323

intervals. The reason is that now that we're using system threads, we are at the mercy

of the operating system to decide when each thread gets scheduled. The behavior of

threads is very much dependent on the operating system and how it is con�gured.

Another tricky aspect of dealing with OCaml threads has to do with allocation.

When compiling to native code, OCaml's threads only get a chance to give up the

runtime lock when they interact with the allocator, so if there's a piece of code that

doesn't allocate at all, then it will never allow another OCaml thread to run. Bytecode

doesn't have this behavior, so if we run a nonallocating loop in bytecode, our timer

process will get to run:

let noalloc_busy_loop () =
for i = 0 to 100_000_000 do () done;;

val noalloc_busy_loop : unit -> unit = <fun>

log_delays (fun () -> In_thread.run noalloc_busy_loop);;
32.186508178710938us, 116.56808853149414ms, 216.65477752685547ms,

316.83063507080078ms, 417.13213920593262ms,

Finished at: 418.69187355041504ms,

- : unit = ()

But if we compile this to a native-code executable, then the nonallocating busy loop

will block anything else from running:

$ dune exec -- native_code_log_delays.exe
197.41058349609375us,
Finished at: 1.2127914428710938s,

The takeaway from these examples is that predicting thread interleavings is a subtle

business. Staying within the bounds of Async has its limitations, but it leads to more

predictable behavior.

17.6.1 Thread-Safety and Locking

Once you start working with system threads, you'll need to be careful about mutable

data structures. Most mutable OCaml data structures will behave non-deterministically

when accessed concurrently by multiple threads. The issues you can run into range

from runtime exceptions to corrupted data structures. That means you should almost

always usemutexeswhen sharingmutable data between di�erent systems threads. Even

data structures that seem like they should be safe but are mutable under the covers, like

lazy values, can behave in surprising ways when accessed from multiple threads.

There are two commonly available mutex packages for OCaml: the Mutex module

that's part of the standard library, which is just a wrapper over OS-level mutexes and

Nano_mutex, a more e�cient alternative that takes advantage of some of the locking

done by the OCaml runtime to avoid needing to create an OS-level mutex much of the

time. As a result, creating a Nano_mutex.t is 20 times faster than creating a Mutex.t,

and acquiring the mutex is about 40 percent faster.

Overall, combining Async and threads is quite tricky, but it's pretty simple if the

following two conditions hold:

• There is no shared mutable state between the various threads involved.

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

324 Concurrent Programming with Async

• The computations executed by In_thread.run do not make any calls to the Async

library.

That said, you can safely use threads in ways that violate these constraints. In

particular, foreign threads can acquire the Async lock using calls from the Thread_safe

module in Async, and thereby run Async computations safely. This is a very �exible

way of connecting threads to the Async world, but it's a complex use case that is beyond

the scope of this chapter.

https://doi.org/10.1017/9781009129220.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.020

