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Abstract
Constriction in the flow passage of the physiological circulatory system is central to the occurrence of several
diseased conditions such as thrombosis and is also pivotal towards the understanding of several regulatory processes
in the human microvasculature. It is, therefore, imperative to advance a mechanistic insight into the dynamics of
lipid vesicles, cell mimicking, fluid-filled compartments, through a physiologically relevant microconfinement, with
particular focus on deciphering the role of its mechanophysical properties. Here we bring out the role of membrane
bending rigidity and the initial deflation (deviation in shape from sphericity) on the transient shape evolution of
a lipid vesicle as it migrates through a microfluidic constriction, a paradigm that is unexplored thus far. Based on
our experimental observations as well as theoretical insights, we construct a regime map to elucidate the range
of the key dimensionless parameters orchestrating this dynamical transition. Furthermore, our observations on the
vesicle’s stretching dynamics emerging from selective mapping with viscosity contrast between the encapsulated
and the suspending fluid medium offer potential physiologically relevant cues on the impact of cell aging on its
deformability across a constricted path. Such mechanistic insights may help in establishing quantitative correlations
between the dynamical transition of a lipid vesicle and its membrane mechanics, which may in turn have decisive
implications in health and disease while circulating across microvascular fluidic pathways.

Impact Statement
This study brings out a quantitative mechanistic insight into the dynamics of migrating lipid vesicles through
a constricted microfluidic passage. Having a direct similitude with the movement of red blood cells in human
microvascular pathways, the mapping between the initial shape and membrane bending rigidity modulus of
a vesicle with three distinct dynamics (stretching, rolling and tumbling) provides cues for understanding the
healthy and diseased states of cellular entities and establish exclusive connectivity of the same with the cellular
membrane mechanics as well as its cytoplasm properties, an aspect that has hitherto remained unaddressed.
This, in turn, may lead to a novel approach towards label-free disease detection based on exclusive image
analytics, for which the current understanding is mostly empirical rather than fundamental.
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1. Introduction

Comprehending the fluid dynamics of human microcirculation and its implication on various aspects of
health and diseases involves delving critically into understanding the morphodynamic evolution of dif-
ferent cellular matters in physiologically relevant fluidic pathways (Koeppen & Stanton 2009). Whereas
red blood cells (RBCs) have complexities that cannot be represented by mechanistic considerations
alone, their model idealizations, such as lipid vesicles, have emerged to be enormously effective in
offering valuable insights into their interactions with the surrounding fluidic media (Faivre 2006; Kaoui
2009). These encapsulations, akin to cells, are liquid-filled globules made of a phospholipid bilayer
membrane, encapsulating internal fluidic matter analogous to the cytoplasm (Mader et al. 2006; Kahali,
Santra & Chakraborty 2022). Despite a gross simplistic idealization, the dynamics of such model vesi-
cles has been established to mimic quite closely the dynamics of RBCs and other similar active biological
encapsulations and thus have remained at the forefront of biofluid mechanics research over the last two
decades (Beaucourt et al. 2004; Abkarian, Faivre & Viallat 2007).

The quest for understanding the fundamental interactions between vesicle dynamics and viscous
stresses in the surrounding medium motivated several early studies to probe the underlying transport
phenomena in steady linear shear flows, from both theoretical (Fischer et al. 1978; Keller & Skalak 1982;
Tran-Son-Tay et al. 1998; Biben & Misbah 2003; Beaucourt et al. 2004; Kantsler & Steinberg 2005;
Mader et al. 2006; Misbah 2006; Kantsler 2007; Noguchi & Gompper 2007) and experimental (Haas
et al. 1997; Abkarian & Viallat 2005; Kantsler & Steinberg 2006; Christopher et al. 2008) perspectives.
These studies reveal three distinct types of vesicle motion (depending upon the magnitude of viscosity
ratio between the inner and suspending fluid and the shear rate), namely tank treading (Beaucourt
et al. 2004; Biben, Kassner & Misbah 2005), tumbling (Rioual et al. 2004) and an intermediate stage
between tumbling and tank treading, known as vacillating breathing (Misbah 2006). A few studies were
complemented by experiments (Vitkova, Mader & Podgorski 2004; Coupier et al. 2012) and theories
(Fedosov, Peltomäki & Gompper 2014; Guckenberger et al. 2018; Reichel et al. 2019; Agarwal &
Biros 2020, 2022) on vesicle dynamics in pressure-driven flows as well, having conceptual resemblance
to physiological pumping (Santra & Chakraborty 2020). These studies could bring out unique shape
transitions of a vesicle (bullet, croissant, parachute and slipper), which could be related to its initial
deflation (deviation in shape from sphericity) and domain confinement (ratio of vesicle size to channel
width) of the exterior fluidic media.

In a realistic physiological microenvironment, cells do not encounter an idealized uniformity in
terms of channel cross-section as considered in many of the early studies but rather confront inevitable
variabilities in the flow geometry, commonly resulting from typical pathophysical scenarios such as
stenosis and aneurysms. In addition, metabolic abnormalities are also believed to be linked with the
reduced deformability of RBCs upon entering a constriction (Zeng et al. 2016). Further, constriction
in human vasculature has an established influence on the clustering of biochemically active particles,
including drug delivery agents or activated platelets, having far-reaching consequences in forming blood
clots (thrombus) in stenosed blood vessels (Bächer, Schrack & Gekle 2017). Furthermore, constriction-
induced elongation of cells is also linked with the mechanical transduction of biological signals,
alternatively known as mechanotransduction, in choked flow passages (Wan, Ristenpart & Stone 2008;
Mancuso & Ristenpart 2018). From a fundamental fluid dynamic perspective, all these scenarios
inevitably feature abrupt constrictions in the flow passage that lead to the rapid convergence of the
flow streamlines and thus result in drastic variations in the hydrodynamic shear stress in the exterior
medium. The mechanism adopted by the deformable cellular entities to cope with this dynamic alteration
in the fluidic microenvironment depends critically on the viscosity contrast between the interior and
the exterior fluids, the membrane bending rigidity (Marella & Udaykumar 2004; Wang et al. 2023)
and the initial shape deflation. While it is unfeasible to study detailed hydrodynamics of the observed
shape transition by probing human vasculature in vivo, essential mechanical insights of the same may
be obtained via in vitro bioengineered microsystems. These systems provide explicit handles of flow
control in feasible limits towards deciphering the input–output mapping, unlike what could be done on
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living beings with challenging invasive procedures. The advent of various microfabrication techniques
over recent years has intensified research endeavours towards in vitro studies of the morphodynamics
of deformable particles in microenvironments having a high level of similitude with physiological
systems under the intended design controls. Several of these studies focused on studying cellular
dynamics in constricted microchannels. Particular examples include real-time deformability cytometry
for a continuous mechanical characterization of biological cells via illumination and imaging (Otto et al.
2015) and the dynamics of shear-induced ATP release from human RBCs (Wan et al. 2008), among
others. These early studies were subsequently extended to characterize the mechanical behaviour of
RBCs (Zeng & Ristenpart 2014) in pressure-driven flow, including their classical stretching behaviour
(Mancuso & Ristenpart 2017).

Reported research reveals that while the dynamics of deformable cells in a constricted passage has
been studied, the resulting inferences drawn appear to be primarily subjective and qualitative as opposed
to providing the means of arriving at comprehensive quantitative insights. As a consequence, the particu-
lar parametric regimes that influence the exclusive morphological transitions of vesicles at microfluidic
constrictions remain largely unexplored. This deficit stems from the complexities in providing pre-
cise experimental and theoretical evidence under controlled kinematic conditions. Circumventing those
deficits, here we capture quantitatively the unique role of membrane bending rigidity and initial shape
deflation of a lipid vesicle as it transits along a geometrical constriction from stretching to tumbling
motion with an intermediate rolling motion under an applied pressure gradient. The present experimen-
tal and theoretical studies converge to a regime map that provides precise quantitative insight into these
dynamic transitions in terms of the relevant normalized physical parameters. Furthermore, our findings
decipher the effect of viscosity contrast between the inner and the outer fluid on the extent of maximum
stretching of the vesicle. These quantitative findings hold the potential of providing mechanistic insights
into cellular aging (cytoplasmic viscosity increases with respect to normal healthy conditions) on its
dynamic responses, for which the current state-of-the-art understanding is primarily empirical.

2. The physical problem: materials and methods

We consider a neutrally buoyant vesicle, filled with Newtonian fluid (density 𝜌1, viscosity 𝜂1), suspended
in another Newtonian fluid medium (density 𝜌2, viscosity 𝜂2), and subjected to a Poiseuille flow profile
with centreline velocity uc in a converging microchannel, as shown in figure 1. Both fluids are assumed
to be incompressible. A typical experiment starts with the release of an initially ellipsoidal vesicle
with unstretched major axis length L0, from an off-centreline position (non-dimensionally denoted by
eccentricity e = 2y/Wd) at the wider section (width Wd) of the channel and observing its dynamics as it
migrates through the tapered section (QR) before the constricted channel (width Wc) as demarcated by
the blue dotted line in figure 1. The constriction ratio of the channel is defined as 𝛼 = (Wd/Wc). The
inlet (PV), outlet (ST) and wall (PQRSTUV) boundaries are demarcated as Si, So and B, respectively
(see figure 1). The orientation angle (𝜃) of the vesicle is defined as the angle between its major axis
and the direction of flow. The Cartesian coordinate axis is located at the channel’s central axis. To gain
insight into the quantitative variation in stretching, we define a parameter termed stretch ratio (𝜆), which
is the ratio of the instantaneous length of the major axis to the initial unstretched length of the vesicle,
assuming a nearly ellipsoidal vesicle shape.

2.1. Numerical modelling

The vesicle morphodynamics has been studied using a combination of two- (2-D) and three-dimensional
(3-D) numerical simulations, which allows us to understand and confirm that the essential physics can
be represented by a 2-D model that would otherwise avoid expensive computations. Moreover, the 2-D
model assumption is perfectly justified from a physical perspective (from experimental findings), as the
rectangular cross-section of the microchannel used for experimentation obeys the law W/h ≤ 3 (Coupier
et al. 2008; Santra, Mandal & Chakraborty 2018), where W and h are, respectively, the width and height
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Figure 1. Schematic illustration of the flow domain depicting an initially elliptic vesicle, placed at an
off-centre position, migrating through a constricted channel in plane Poiseuille flow at the inlet (Si).

of the microchannel under consideration. Furthermore, in previously reported literature, several studies
have demonstrated the potential of 2-D numerical models in capturing several aspects of 3-D dynamics
of vesicles and RBCs, such as dynamics in a shear flow (Beaucourt et al. 2004; Noguchi & Gompper
2007; Dupire, Socol & Viallat 2012), cross-streamline migration in a parabolic flow (Coupier et al.
2008; Kaoui et al. 2008) and deformation due to fluid flow (Farutin & Misbah 2011; Coupier et al. 2012;
Agarwal & Biros 2022). Hence, in the present study, we have proceeded with the 2-D model to generate
all the numerical results subjected to validation with the 3-D model.

2.1.1. The 3-D model
We employ a projective dynamics framework (Bouaziz et al. 2014), which is based on a Hamiltonian
dynamics interpretation of Newton’s laws of motion (Liu, Bouaziz & Kavan 2017). In this method, the
vesicle membrane is modelled as a surface embedded in 3-D space, and the positions of the interfacial
marker points (obtained by triangulation of the surface) are advanced by minimizing the total energy of
the vesicle, which is due to external forces on the membrane on account of interaction with the carrier
fluid and internal energies which arise from constraints enforced to represent the membrane properties
of the vesicle. For a detailed discussion on these constraint-based representations of the membrane
properties, the reader is referred to Kotsalos, Latt & Chopard (2019). The fluid flow is simulated
using the lattice Boltzmann method, using a D3Q19 lattice structure and Bhatnagar–Gross–Krook
collision operator (Bhatnagar, Gross & Krook 1954). Further details on the different aspects of the
numerical method are presented in the supplementary material (§ 1) available at https://doi.org/10.
1017/flo.2024.1. The mapping between simulation parameters and their physical values is tabulated in
supplementary material, table S1. A long enough (length∼ 2.72 cm) microchannel with inlet and outlet
was considered in the microfluidic circuit design in order to avoid the entry and exit effect. The test
section is located far enough from the inlet and the outlet. In numerical simulations, the initial position
of the vesicle is adjusted in a manner such that it is at a distance of approximately five times the diameter
of the vesicle, from the inlet of the channel, and similarly, the zone of observation is truncated at a
distance which is of the order of five times the diameter of the vesicle, from the channel outlet.

2.1.2. The 2-D model
In an effort to explore computational economy, we use a boundary element method (Pozrikidis 2002)
for 2-D simulations, which numerically evaluates the following expression for the velocity (uj) at a point
(x0) lying on a boundary of the fluid domain:

uj (x0) = u∞j (x0) −
1

8π𝜇2

∫
M

fi(x)Gĳ (x, x0) dS(x) +
1 − 𝜆

8π

∫ PV

M
ui (x)Tĳk (x, x0)nk (x) dS(x)

+
1

8π

∫
B∪Si∪So

gi (x)Gĳ (x, x0) dS(x) +
∫

B∪Si∪So

ui (x)Tĳk (x, x0)nk (x) dS(x).
(2.1)
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Here, u∞j denotes the imposed velocity, 𝜆 is the viscosity ratio (𝜂1/𝜂2), nk denotes the unit normal vector,
M denotes the vesicle membrane, Si and So denote the inlet and outlet of the channel, respectively, B
represents the channel boundary and Gĳ and Tĳk are the free-space Green’s function and corresponding
stress tensor for the Stokes equation (Pozrikidis 1992). The key term in (2.1), which accounts for
the complex elastodynamic response of the membrane, is the vector fi(x), which denotes the jump in
hydrodynamic traction at the vesicle membrane and can be expressed as follows (Pozrikidis 2010):

fi = −

(
EB

𝜕𝜆S

𝜕l
+ EB𝜅

𝜕 (𝜅 − 𝜅B)

𝜕l

)
ti +

(
ED(𝜆S − 1)𝜅 − EB

𝜕2(𝜅 − 𝜅B)

𝜕2l

)
ni, (2.2)

where ED and EB denote the dilatational and bending moduli of the membrane, 𝜆s denotes the local
stretching of the membrane, 𝜅 denotes the local membrane curvature and 𝜅B is the membrane curvature
at equilibrium. The arc length parameter is denoted using l, and the tangential and normal vectors are
denoted by ti and ni, respectively. The motivation for choosing this constitutive relation is due to the
fact that it can be applied to a variety of encapsulated entities like vesicles, capsules and RBCs, upon a
suitable choice of model parameters (Pozrikidis 2010).

The last two terms appearing on the right-hand side of (2.1) denote the contributions to the interfacial
velocity due to channel confinement. Since the velocity satisfies no-slip and no-penetration boundary
conditions at the walls, so the last term is identically zero on the channel walls. Further, since the
channel inlet and outlet (Si, So) are distanced sufficiently far from the vesicle interface, the double-layer
potential becomes vanishingly small as compared to the other terms (Leyrat-Maurin & Barthes-Biesel
1994). Therefore, the last term can be completely dropped from the right-hand side of (2.1). The traction
exerted by the channel walls on the adjacent fluid is denoted by gi(x), which is unknown a priori. The
channel traction (gi) is obtained by solving the boundary integral equation (2.1) by letting x0 be on
the boundary (BUSiUSo). A similar approach was previously adopted for studying the dynamics of
capsules (Leyrat-Maurin & Barthes-Biesel 1994) and droplets (Martinez & Udell 1990). The numerical
algorithm initiates by assuming an initial shape and zero interfacial velocity at time t= 0. We then obtain
the interfacial traction from (2.2). Based on the same, we solve (2.1) for the channel traction by letting
x0 be located on the domain boundary. As the next step, we obtain the interfacial velocity from (2.1) by
letting x0 lie on the vesicle membrane. Subsequently, we advance the interfacial maker points using an
explicit Runge–Kutta scheme. We then proceed back to the interfacial traction calculation using (2.2)
and repeat the procedure until the entire domain is traversed. For detailed derivation of (2.1), the reader
is referred to chapter 5 of Pozrikidis (1992). The computations are performed, starting from the ‘rbc_2d’
MATLAB script available from the open-source BEMLIB package (Pozrikidis 2002).

2.1.3. Velocity profile approximation at inlet
A 2-D, nearly parabolic fluid velocity profile (in the XY plane) at the inlet has been assumed, which
is justified, since the rectangular cross-section of the 3-D channel geometry obeys the law W/h ≤ 3
(Coupier et al. 2008), where W and h are the minimum width and height of the channel geometry under
consideration. In the present experimental study, the channel dimensions are W∼ 80 μm and h∼ 30 μm,
showcasing the validity of the inequality law mentioned above. Moreover, during the experiments, we
waited for the flow to be established for a long time, resulting in preliminary centring of the vesicles in
the z-direction.

2.2. Experimental procedure

2.2.1. Vesicle synthesis
The giant lipid vesicles (GUVs) were synthesized in the laboratory, following the standard electro-
formation (Dimitrov & Angelova 1988; Angelova et al. 2007) protocol at a temperature of 25 °C. To
initiate the synthesis process, firstly, a lipid stock solution was prepared by adding 2.5 mg ml−1 of DOPC
(Sigma-Aldrich) phospholipids to a chloroform–methanol solution (2 : 1 v/v). Then, the stock solution
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was spread uniformly over an electrically conductive indium-tin-oxide (ITO)-coated glass (resistiv-
ity< 100 Ω (sq. cm)−1; Sigma Aldrich) slide using a spin coater. Sucrose (Sigma-Aldrich) aqueous
solution (400 mM) was used as the inner phase of vesicles. After drying of the stock solution under
vacuum for 6.5–7 hours, the sucrose solution was electro-swelled for nearly 2 hours using an AC arbi-
trary waveform generator (Agilent, model no. 33250A), operating at a peak-to-peak voltage of 2.5–2.6
Vpp and a frequency of 10 Hz inside a closed chamber consisting of the ITO-coated glass electrodes
separated by a non-conductive polydimethylsiloxane (PDMS) spacer. This results in the formation of
GUVs of size ranging between ∼6 μm and 40 μm in diameter (see supplementary material, figure S4,
for more details on the yield and the size distribution of electroformed vesicles).

An intended viscosity contrast (different from unity) between inner and outer fluid was achieved by
adding dextran (500 kDa, Hi-media) at 1 %, 2 % and 3.3 % (w/w) to the inner sucrose solution prior to
the electroformation process. See figure S5 in the supplementary material, which presents the variation
in dynamic viscosity of the inner solution as a function of concentration of dextran added. Next, the
vesicle solution was centrifuged (three times) at a very gentle speed (15g–30g) for 30–35 minutes to
achieve sedimentation of vesicles at the bottom of the Eppendorf tube due to the action of centrifugal
force. Centrifugation process is important to wash out the outer medium (dextran added) and replace
it with glucose aqueous solution of slightly higher osmolarity (Kantsler & Steinberg 2006) to achieve
shape deflation. The shear viscosities of the inner and the suspending phase liquids were measured
using a stress-imposed rheometer (Anton-Paar, MCR 302; TA Instruments) running in the cone and
plate configuration at a constant and controlled temperature of 25 ± 0.6◦C with the help of a Peltier
temperature controller. The properties of the reagents used as inner and suspending phase fluids are
listed in table S3 in the supplementary material. Further, to alter membrane bending rigidity modulus,
glutaraldehyde (Hi-media) aqueous solution was added to the electroformed vesicle solution in the range
0.5 % to 10 % (v/v) (Forsyth et al. 2010). For more details, see supplementary material, figure S3 and
table S2.

2.2.2. Microfluidic experiments and flow visualization
The microfluidic channels were fabricated using PDMS as the base material, mixed with a cross-linker
(curing agent) at a ratio of 10 : 1 (w/w) following a standard soft lithography protocol. The master mould
used was obtained via conventional photolithography techniques, performed using a negative photoresist
(SU8 2050, Mirco-Chem). Post-curing, the microchannels were plasma-bonded (Harrick plasma) to a
glass coverslip to facilitate the experimental study and flow visualization. All the experimental runs on
the microfluidic test bench were performed at a controlled temperature of 25 °C. The flow rates were
tuned selectively to impose precise variations in the extensional strain on the deforming vesicles (see the
experimental set-up in figure 2). Representative widths of the microchannel upstream of the convergent
section (Wd) and the constricted section (Wc) are 165 ± 2 μm and ∼80 μm, respectively. The height of
the channel was maintained at h = 30± 3 𝜇m. The convergent section has a typical length of ∼180 μm,
out of a total axial length of the test rig of about 2.75 cm. The distance from the inlet to the converging
section is about 1.52 cm (see figure 1), which is large enough as compared to the hydrodynamic entry
length in the Stokes flow limit.

To begin the experiment (see figure 2), the vesicle suspension was first loaded in an air-tight Hamilton
glass syringe, and any existing gas bubbles were purged out. Next, the syringe was connected to a
syringe pump (PHD 2000, Harvard Apparatus) operating in the infuse mode to inject the sample
at the microfluidic test section at a range of controlled flow rates (Q) ∼ 30 − 180 μL h−1 (Re ∼

O(10−2 − 10−1)). The respective shear rates, �𝛾 ∼ ū/h (where h is the channel height and ū is the cross-
sectionally averaged flow velocity) are O(10) and O(100) s−1, respectively. The vesicle dynamics was
visualized with an inverted microscope (Olympus IX71, Japan) operated in phase-contrast mode (× 40
magnification, 1.6×NA) and coupled with a high-speed camera (Phantom-v7). The high-speed camera
was set to capture time sequence images at a frequency of 4000–9100 Hz. The obtained time-series
image sequences were subsequently interpreted using a MATLAB GUI (Basu 2013) to trace the contour,
centroids, trajectory, velocity and orientation angle of the moving object.
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Figure 2. The physical system. (a,b) Experimental set-up having flow inlet (1), outlet (3) and the test
section (2). The transport phenomena are observed under an inverted, transmission-type microscope
operated in phase-contrast mode. The direction of flow is shown using arrows. (c1) A schematic of the
flow domain. Wd and Wc denote the width of the diverging section (AB) and constricted section (CD),
respectively. Region BC denotes the tapered region. (c2) The experimental viewgraph with scale bar.
(d) Top view and (e) front view of the experimental set-up under consideration. The coordinate axis
is located at the channel centreline. The normalized distance of the observed cell centroid from the
channel centreline is denoted by eccentricity e. Angle 𝜃 denotes the initial inclination angle.

3. Results and discussion

The observed vesicle dynamics can be mapped to one among three regimes, namely ‘stretching’, ‘rolling’
and ‘tumbling’. In the stretching regime, the vesicle undergoes an elongation about its major axis as it
passes through the constriction and thereafter relaxes to an equilibrium shape. On the other hand, the
tumbling regime is characterized by rotation of the vesicle about an axis perpendicular to the plane of
flow and negligible shape elongation. In the rolling regime, the vesicle exhibits characteristics of both
stretching and tumbling motion as it is associated with a simultaneous shape elongation and rotation
about its major axis. While the above shapes were qualitatively observed in the past, here we aim to
put forward their quantitative depiction as mapped with the relevant physical properties. Towards this,
we identify two important non-dimensional parameters responsible for these shape transitions, namely:
(a) reduced area (𝜏2d) or reduced volume and (b) normalized bending rigidity modulus ẼB = EB/EDR2

0,
where EB is the modulus of membrane bending rigidity, ED is the dilatation modulus of the vesicle mem-
brane and R0 is the effective radius of the vesicle, which is defined to be the radius of a circle having an
equivalent surface area and can be expressed as R0 =

√
A/π (for two dimensions) or R0 =

√
As/4π (for

three dimensions). Reduced area refers to the ratio of actual surface area of the vesicle to the area of a
circle having the same perimeter as the vesicle, i.e. 𝜏2D = A/π( p/2π)2. The 3-D analogue of reduced
area is known as reduced volume (𝜈) which refers to the ratio of the actual volume of a vesicle to
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the volume of a sphere having an equivalent surface area to the vesicle, i.e. 𝜈 = 3V/4π(As/4π)3/2.
The parametric dependence of 𝜏2d and ẼB on the shape dynamics is elucidated using a regime
diagram.

We observe that the transition from stretching to tumbling can be identified as belonging to a
well-known family of dynamical transitions known as saddle-node bifurcations. Another important
dimensionless parameter is the confinement ratio, Cn = 2R0/Wc, defined as the ratio of the effective
radius R0 of the vesicle to the half-width of the constricted channel. We also quantify the effect of the
ratio of cytoplasm (inner) to extracellular (outer) fluid viscosity, 𝜂r = 𝜂in/𝜂out, on the extent of stretching.
As quantified by stretch ratio, 𝜆 =L/L0, where L and L0 are the instantaneous and the initial length of the
major axis of an equivalent ellipsoid-shaped vesicle under consideration. The maximum stretch ratio
(𝜆max) is accordingly obtained as the ratio of the maximum instantaneous distance (Lmax) between a point
on the vesicle contour and its centroid to its initial unstretched distance (L0). Our computational studies
are aimed to mimic the experiments with a set of property variations having established similitude
with the movement of RBCs. For the same, we consider the reduced area to vary between 0.6 and 1
(Abkarian et al. 2007; Dupire et al. 2012) and normalized bending modulus ẼB to vary between O(10−6)
and O(10−2). These normalized parameters physically correspond to established membrane properties
of vesicles and RBCs with EB ∼ 3 × 10−19 J; ED ∼ 10−7 − 10−1 N m−1; R0 ∼ 3 − 40 μm (Pozrikidis
2010). The physical range of v is 0.89–0.99, for experiments. All the results are obtained in the creeping
flow regime conforming to hydrodynamics of low Reynolds number (Re), where Re ∼ O(10−2−10−1) is
calculated based on the suspending fluid properties.

3.1. Stretching, rolling and tumbling dynamics prior to the constriction

Figure 3(a–c) illustrate different morphodynamic features as the lipid vesicles pass through the tapered
region before the constriction (see the schematic of figure 3d). While describing these motions, the
vesicles are considered without any viscosity contrast (Srivastav 2013) (𝜂r ∼ 1), to bring out exclusive
influences of the bending rigidity of the membrane. In the stretching motion (figure 3a), the vesicles
experience geometric constriction-induced elongational strain due to the reduction in the cross-sectional
area resulting in a smooth elongation in their shape in the direction of flow, quantified by stretch ratio (𝜆).
This reaches a maximum at the end of the tapered region (corresponding to the maximum extensional
rate) and then gradually reduces to a steady value as it reaches an equilibrium shape inside the constricted
channel. The insets in figure 3(a) delineate the viewgraphs obtained from experiment and 2-D simulation
corresponding to the evolution of vesicle contours as a function of axial distance for a representative
vesicle of reduced volume ∼0.99 and R0 ∼ 12.1 μm. The magnitude of the shear rate at the constricted
section is maintained nearly the same by adjusting the flow velocity and the transverse position of the
vesicle. In the absence of any viscosity contrast between the inner and the outer fluids, it is the confluence
of membrane bending rigidity modulus (ẼB) and initial shape deflation (𝜏2d) that controls the dynamic
transition (see the regime plot in figure 4). Figure 3(c) represents the tumbling motion of a vesicle
(𝜈 = 0.97; R0 = 11.25 μm), akin to rigid-body rotation represented by the variation in its orientation
angle (𝜃) along the axial position, exhibiting characteristic spatiotemporal discontinuity. The rolling
motion features a continuous periodic variation of 𝜃 versus x/R0 (R0 = 11 μm) (see figure 3b), showing
the combined characteristics of stretching and tumbling, akin to saddle-node bifurcations where the
fixed points are either created or destroyed along with a parametric sweep. On comparison with the
numerical simulation results, it is evident from figure 3(a–c) that our 2-D model is in good agreement
with the experimental findings. These results clearly validate that the physics of dynamical evolution of
a single-out vesicle can be reliably captured via 2-D computations and also in good agreement with the
3-D lattice Boltzmann model (see supplementary material, §2(a,b), for more details on the validation
of both 2-D and 3-D numerical models with our experimental observations). Therefore, to arrive at an
optimal balance of physical consistency and computational economy, 2-D numerical simulations may be
adhered to.
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Figure 3. Three different vesicle dynamics observed prior to the constriction. (a) Stretching dynamics
demarcated by stretch ratio (𝜆) as a function of normalized axial displacement (𝜈 = 0.99; 𝜏2D = 0.99).
The insets represent the contours (from both experiment and 2-D simulation) at different axial locations.
The inset at bottom right depicts the evolution of orientation angle with axial position for stretching.
Evolution of the vesicle orientation angle as a function of normalized axial displacement obtained for
(b) rolling and (c) tumbling (𝜈 = 0.97; 𝜏2D = 0.96) motions. Open symbols denote the experimental
results while lines represent the simulations. (d) Schematic representation of the three different motions
(tumbling (T), stretching (S), rolling (R)) at the converging section prior to the constricted channel. The
scale bars are mentioned on each experimental viewgraph. See supplementary movies S1–S6 for more
details.
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3.2. Vesicle membrane-stiffness-mediated stretching–rolling–tumbling transition in the
microfluidic constriction

We further traverse the entire dynamic regime, starting from a stretching regime, with controlled
alterations in the vesicle membrane stiffness via an optimized experimental protocol. For example,
in an effort to stiffen the vesicle membrane against bending, they are first incubated for 20 minutes
at room temperature (∼26 °C) (Forsyth et al. 2010) with 5 % to 10 % (v/v) glutaraldehyde (Sigma-
Aldrich) solution and then used immediately for experimentation. The addition of glutaraldehyde helps
polymerize the lipid membrane and thus altering its bending rigidity modulus to an extent that it can
arrest the extent of stretching to a desired degree. The vesicles having controlled variations in membrane
stiffness are thus functionalized to exhibit different extents of stretching (see supplementary material,
figure S3).

Figure 4 showcases the different dynamic regimes that are traversed in the process, for a represen-
tative scenario having no viscosity contrast between the inner and the outer fluid. The results clearly
demonstrate the interplay between the membrane bending rigidity modulus ẼB and its initial shape
deflation towards transiting from one dynamic regime to another. From figure 4, it may be observed
that for 0.6 < 𝜏2D < 0.91, an increase in ẼB beyond a threshold limit results in a smooth transition
from stretching to rolling to tumbling motion, for a given shear rate. For lower values of ẼB, the mem-
brane can restore to its original shape upon removal of external stress via elastic recovery (Skotheim
& Secomb 2007). For sufficiently larger values of ẼB, the elastic energy rise may endure tumbling as
an energetically more favourable proposition as compared to the energy-expensive stretching. For the
intermediate values of ẼB, combined rotation and stretching is accompanied by a smooth variation in
the orientation angle under rolling motion. Quantitatively, the resulting shape alterations are manifested
by a continuous change in the orientation angle (𝜃) made by the major axis of the vesicle with the flow
direction with reference to its normalized axial position. The corresponding numerical predictions agree
well with the experimental trends as depicted in figure 3(a–c).

The observed shape transitions may be rationalized by introducing a parameter 𝜙(t), denoting the
instantaneous phase angle of an infinitesimal membrane element, so that its time rate of change,
d𝜙/dt, may be linearly mapped with the frequency of the observed motion (Keller & Skalak 1982).
Accordingly, the following inequalities hold: (d𝜙/dt)Tumbling < (d𝜙/dt)Rolling < (d𝜙/dt)Stretching. For a
model encapsulation having an ellipsoidal boundary (Keller & Skalak 1982), one may get d𝜙/dt ∼

1/(r−1 − r), where r is the ratio of the minor axis to the major axis length of the ellipse. Physically,
a decrease in r would indicate declining d𝜙/dt, resulting in a reduction in the frequency of equivalent
tank-treading motion. A sharp increase in the tank-treading frequency may further be observed as the
value of r approaches unity, leaving apart the singularity at r = 1. Further, for a fixed magnitude of
the bending modulus of the membrane, since 𝜏2d decreases with a decrease in r from pure geometric
considerations, it follows that d𝜙/dt also decreases with a decrease in 𝜏2d. See supplementary material,
§5, for a detailed derivation of the same. Furthermore, the orientation angle (𝜃) is observed to remain
nearly constant (see figure 3(a), inset) over the stretching regime (see supplementary material, figure
S1(a,d)) but exhibits a discontinuous yet periodic behaviour during tumbling. Hence, both stretching
and tumbling events are fixed-point solutions in the (𝜙–𝜃) plane, and their basins of attraction may be
demarcated exclusively by two parameters, namely the normalized bending modulus and the degree of
initial deflation (see figure 4).

3.3. Effect of viscosity contrast on stretching dynamics

Figure 5 depicts that the maximum stretch ratio (𝜆max) increases sharply with a marginal increase in the
inner-to-outer fluid viscosity ratio 𝜂r, until an optimal value 𝜂opt ∼ 5.8 is reached. Beyond that limit, 𝜆max
attains an asymptotic saturation. The inset of figure 5 shows the variation in stretch ratio as a function
of axial position for two different viscosity ratios (𝜂r = 1 and 8). The experimental and simulation
viewgraphs represent the vesicle contours at the different axial positions prior to the constriction. It is
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evident from figure 5 that the simulation results agree well with the experimental findings. The increase
in 𝜆max with 𝜂r (see figure 5) can be explained in the light of excess viscous stress exerted by the inner
fluid on the lipid bilayer membrane of the vesicle, leading to subsequent stretching and deformation
of the bilayer membrane. Since the viscous stresses scale linearly with the fluid viscosity, the same
would intuitively facilitate stretching. However, on increasing 𝜂r beyond 𝜂opt, the fluid circulation inside
the vesicle gets attenuated to the extent that the same behaves effectively like a rigid particle. For a
quantitative mechanistic insight on the same, see supplementary material, figure S6, which reveals that
for a fixed position on the interface (corresponding to a fixed polar angle 𝜃), the magnitude of the
traction force increases with the increase in viscosity ratio, realizing an enhanced stretching ratio with
an increase in 𝜂r until 𝜂opt is reached.

The above results obtained via modulation of the viscosity ratio appear clear in explaining the altered
dynamics of the RBCs in human vascular pathways with ageing, on the account of an increase in
cytosolic viscosity (Ma et al. 2022) due to the increased concentration of haemoglobin molecules, to an
extent up to three- to fivefold with reference to the average value of the same over the healthy life cycle of
RBCs (∼5.5 mPa s). Similar phenomenology may manifest in certain diseased conditions (for example,
malaria) due to the polymerization of haemoglobin as a common pathological artefact in infected
RBCs. While these observables are reported as potential disease markers in the medical literature, their
fundamental mechanophysical routes, which remained elusive thus far, may be potentially addressed by
the approach outlined in this work.

4. Conclusions

We investigate the dynamics of a deformable lipid vesicle flowing through a constricted microfluidic
pathway using a combination of experiments and numerical simulations. The primary contribution of
this study is to develop a quantitative mapping between membrane mechanical properties and initial
deflation of the vesicle from its dynamics, namely stretching, rolling and tumbling. This mapping has
been established with the help of a regime diagram which predicts stretching for high values of reduced
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area (volume), tumbling for high membrane rigidity and an intermediate rolling regime. Finally, we
have examined the effect of viscosity contrast of the inner and outer fluid over the stretching regime. The
maximum stretching ratio, in the process, was shown to increase by about five times, before attaining
saturation. This could hallmark the transition of the flexible vesicle to a nearly rigid entity that inhibited
further shape transitions.

In addition to providing quantitative mechanistic insights into the vesicle dynamics, we believe
that our study could act as a prelude to explaining various cellular morphologies observed in human
microvascular physiology. While qualitatively, many such observations on altered morphology of differ-
ent cells, typically RBCs, were previously reported as pathophysical alterations on account of various
diseases or aging, no effective quantitative rationalization on the same could be arrived at because of a
lack of precise mapping between the geometrical and physical properties and the observed morpholo-
gies, rendering the state of the art on the same to be primarily phenomenological and empirical rather
than fundamental. In that perspective, our results offer a natural promise of establishing a quantitative
connection between the observed cellular features and their properties, hallmarking various aspects of
health and disease. Proceeding further forward, with unprecedented recent advancements in high-speed
and high-resolution imaging, photographs of the dynamic images of identified cells may be potentially
utilized to predict the mechanophysical properties of the same under dynamic conditions as an alterna-
tive to traditional rheometry that may not depict the realistic straining conditions as a living cell traverses
complex physiological pathways having inevitable undulations and constrictions.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/10.1017/flo.2024.1.
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