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The Frobenius action on local cohomology modules

in mixed characteristic

Kazuma Shimomoto

Abstract

Heitmann’s proof of the direct summand conjecture has opened a new approach to the
study of homological conjectures in mixed characteristic. Inspired by his work and by
the methods of almost ring theory, we discuss a normalized length for certain torsion
modules, which was introduced by Faltings. Using the normalized length and the Frobenius
map, we prove some results of local cohomology for local rings in mixed characteristic,
which has an immediate implication for the subject of splinters studied by Singh.

1. Introduction

In this paper, we apply the Frobenius map to prove some results on local cohomology modules of
local rings of mixed characteristic. These results were motivated by connections to the homological
conjectures, in particular the direct summand conjecture which states the following.

Conjecture. Let R be a regular local ring and let R → S be a module-finite extension. Then R
is a direct summand of S as an R-module.

Let (R,m) be a Noetherian local ring. Recall that an R-algebra T satisfying mT �= T is a
(balanced) big Cohen–Macaulay R-algebra if every system of parameters of R is a regular sequence
on T . If T is a big Cohen–Macaulay algebra, then the local cohomology modules H i

m(T ) are zero
for all i < dim R. The importance of the notion of such algebras is contained in the following
(see [Hoc75]).

Proposition 1.1. Let (R,m) be a complete local domain of arbitrary characteristic. If there exists
a big Cohen–Macaulay R-algebra, then the direct summand conjecture holds.

Let R+ be the integral closure of R in the algebraic closure of the field of fractions of R.
Then it is shown in [HH92] that R+ is a big Cohen–Macaulay R-algebra if R has characteristic
p > 0. In the mixed characteristic case, the following result was recently established by Heitmann
(see [Hei02, Hei05]) to prove the direct summand conjecture in dimension 3.

Theorem 1.2. Let (R,m) be a three-dimensional complete local domain of mixed characteristic
p > 0. Then cε · H2

m(R+) = 0 for any c ∈ m and ε ∈ Q, ε > 0.

As a corollary, Hochster (see [Hoc02]) deduced the existence of big Cohen–Macaulay algebras.

Theorem 1.3. Let (R,m) be as in Theorem 1.2. Then there exists a big Cohen–Macaulay R-algebra
in a weakly functorial sense.
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The Frobenius action on local cohomology modules in mixed characteristic

In connection with the above result, an interesting question is whether R+ is ‘almost’ Cohen–
Macaulay in higher dimension in the sense that the local cohomology modules H i

m(R+) are ‘v-almost
zero’ (we give a definition of this term using a valuation in Definition 2.7) for all i < dim R. In fact,
once this is answered positively, Heitmann’s idea works everywhere to prove the direct summand
conjecture in any dimension. We also remark that the direct summand conjecture is a theorem for
all equicharacteristic rings (see [Hoc73] for the proof), while it is an open question in dimension
greater than three in mixed characteristic. Now let (R,m) be a d-dimensional power series ring over
a complete discrete valuation ring V of mixed characteristic p > 0 with perfect residue field. Let
R → S be a module-finite extension of local domains. By Cohen structure theorem, every complete
local ring is always module-finite over some power series ring. In particular, R+ = S+.

The structure of this paper is as follows. First we define a certain big ring R∞ that is obtained
as a flat colimit of R and then introduce a notion of normalized length λ∞(M) ∈ R ∪ {∞} for an
m-torsion R∞-module M , which was introduced by Faltings in his method of almost étale extensions
(see [Fal02]). Then the aim of this paper is to investigate the following question.

Question 1. Let Φ : H i
m(S) ⊗R R∞ → H i

m(S+) be the map of local cohomology modules induced
by the natural map S ⊗R R∞ → S+. Then is it true that λ∞(Im(Φ)) = 0 for all i < d?

Faltings investigated this question when the localization map R[p−1] → S[p−1] is étale. Our
main result (see Theorem 3.6) gives a partial answer to this question without any assumptions
on the module-finite extension R → S. Question 1 is related to a notion of almost zero modules
(see [Gab03] for the definition). We shall define a notion of v-almost zero modules below, which
suffices for the study of local cohomology modules. The importance of Question 1 is contained in
the following.

Proposition 1.4. If Question 1 has a positive answer for every module-finite extension R → S,
then R+ is almost Cohen–Macaulay. In particular, the direct summand conjecture holds.

The proof of this proposition follows from Proposition 2.15 together with Heitmann’s idea to
deduce the direct summand conjecture from the almost vanishing of local cohomology modules.
Proposition 2.15 is essential in studying v-almost zero modules. The main point in working with
S+ is that the Frobenius endomorphism on S+/pS+ is surjective. Hence, it induces a unique ring
isomorphism F̄S+ : S+/p1/pS+ � S+/pS+ and

H i
m(S+/p1/pS+) � H i

m(S+/pS+)[F ],

in which case the right-hand side is viewed as an R∞-module via the Frobenius map. Then one
applies Theorem 2.12 to study the above local cohomology map. To obtain non-trivial results, we
need to restrict our attention to the finite length cohomology Hk

m(S) together with an additional
assumption that Hk−1

m (S) is zero, in which case Φ : Hk
m(S)⊗R R∞ → Hk

m(S+) is, at least, shown to
be not injective if Hk

m(S) is non-zero.
The second main theorem in this paper is to state a certain type of finiteness conditions under

which the local cohomology modules H i
m(S∞) are v-almost zero for i < d for some big normal

domain S∞ of mixed characteristic that contains both S and R∞ and that satisfies the condition
that the Frobenius endomorphism

FS∞ : S∞/pS∞ → S∞/pS∞
is surjective. We use normalized length to produce such conditions (see Theorem 3.4). At this
point, as it is not clear as to the class of mixed characteristic rings on which the Frobenius map
is surjective after killing p, we leave this issue in this paper. Finally, we point out that the idea of
Faltings’ work stems from an attempt to extend the classical Nagata–Zariski’s purity theorem to
its almost analogue.
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2. Normalized length

Throughout this article, (R,m, k) will be a complete regular local ring of mixed characteristic p > 0

V [[x2, . . . , xd]]

such that (V, pV, k) is a complete discrete valuation ring with perfect residue field k of characteristic
p > 0. Then we consider the direct system of regular local rings

R = R0 ↪→ R1 ↪→ · · · ↪→ Re ↪→ · · ·
where Re := V [p1/pe

][[x1/pe

2 , . . . , x
1/pe

d ]] with maximal ideal me, and we let R∞ :=
⋃

e∈NRe. Then
the ring R∞ possesses the following properties:

(i) R∞ is a henselian quasilocal ring of dimension d with unique maximal ideal m∞;

(ii) R∞ is faithfully flat and integral over R;

(iii) the Frobenius endomorphism FR∞ : R∞/pR∞ → R∞/pR∞ is surjective.

To see this, note that the first two properties are stable under infinite ascending unions of rings,
while the third follows from the surjectivity: Re+1/pRe+1 � Re/pRe induced by the Frobenius map.
For more on henselian local rings, see [Nag62].

Let M denote the category of m-torsion R∞-modules where m is the maximal ideal of R. An
R∞-module M is said to be m-torsion if every element of M is annihilated by some power of m.
Examples are local cohomology modules. Let us start with the definition of normalized length.

Definition 2.1. We have the following.

(i) Let M ∈ M be a finitely presented module. Then there is a finite presentation for M :

R⊕m1∞
ϕ �� R⊕m0∞ �� M �� 0. (∗)

For sufficiently large n ∈ N, we have aij ∈ Rn with ϕ = (aij), and for some finite Rn-module
Mn we have

R⊕m1
n

ϕ �� R⊕m0
n

�� Mn
�� 0. (∗∗)

Since R∞ is flat over Rn, we may tensor R∞ with (∗∗) over Rn to obtain

R⊕m1∞
ϕ �� R⊕m0∞ �� R∞ ⊗Rn Mn

�� 0,

which is equivalent to the presentation (∗), and thus M � R∞ ⊗Rn Mn. Then define

λ∞(M) :=
1

pdn
· �(Mn) ∈ R.

(ii) Let M ∈ M be a finitely generated module. Then define

λ∞(M) := inf
N�M

λ∞(N) ∈ R

where ‘inf’ is taken over all finitely presented modules N in M that map onto M .

(iii) Let M ∈ M be an arbitrary module. Then define

λ∞(M) := sup
N⊂M

λ∞(N) ∈ R ∪ {∞}

where ‘sup’ is taken over all finitely generated submodules N of M .

Lemma 2.2. The normalized length λ∞(M) is well-defined for M ∈ M.
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Proof. Let M ∈ M be a finitely presented module. Then one has to verify that λ∞(M) is inde-
pendent of n in the definition. Let m � n. Then since Rn → Rm is flat and Mm � Rm ⊗Rn Mn,
we have

λ∞(M) =
1

pdn
· �(Mn) =

1
pdm

· 1
pd(n−m)

· �(Mn) =
1

pdm
· �(Rm ⊗Rn Mn) =

1
pdm

· �(Mm),

which is the claim.
Next, one has to verify that Definition 2.1(ii) coincides with Definition 2.1(i) for finitely presented

M ∈ M. Let N ∈ M be a finitely presented module that maps onto M . Then it suffices to see
that λ∞(N) � λ∞(M) since M maps onto itself. This will be seen by taking a finite presentation
Nn � Mn for n 	 0 and hence �(Nn) � �(Mn).

Finally, one needs to verify that Definition 2.1(iii) coincides with Definition 2.1(ii) for finitely
generated M ∈ M. Let N ⊂ M be any finitely generated submodule. Let us choose finite sets
of generators Σ ⊂ N and Σ′ ⊂ M such that Σ ⊂ Σ′. If Nn and Mn denote the Rn-submodules
generated by Σ and Σ′, respectively, then �(Nn) � �(Mn) for all n ∈ N. Hence, the desired claim
follows from Lemma 2.3 below.

We used the following lemma in the proof of Lemma 2.2.

Lemma 2.3. Let M ∈ M be a finitely generated module and let Σ be any system of generators
of M . Let Mn denote the Rn-module generated by Σ. Then Mn ⊗Rn R∞ ∈ M is a finitely presented
module that admits a surjection onto M , and

λ∞(M) = lim
n→∞λ∞(Mn ⊗Rn R∞) = lim

n→∞
1

pdn
· �(Mn).

Proof. Let Σ and Σ′ be finite sets of generators of the module M . We denote by Mn and M ′
n

the Rn-modules generated by Σ and Σ′, respectively. Then it is easy to see that Mn = M ′
n for

sufficiently large n > 0. So �(Mn) = �(M ′
n) for n 	 0. By definition, it suffices to prove if N is a

finitely presented module in M that surjects onto M , then there exists some n ∈ N such that the
R∞-module N admits a surjection onto Mn ⊗Rn R∞ as we would get

λ∞(M) � λ∞(Mn ⊗Rn R∞) � λ∞(N),

from which the conclusion easily follows.
Since N is finitely presented, there exists some n ∈ N such that N � Nn ⊗Rn R∞ for some finite

Rn-module Nn. Then define Mn to be image of the composite map Nn ↪→ Nn ⊗Rn R∞ � M and
the module N obviously admits a surjection onto Mn ⊗Rn R∞.

The following lemma follows from Definition 2.1(iii) of the definition.

Lemma 2.4. Let M ∈ M and let N ⊂ M be its submodule. Then λ∞(N) � λ∞(M).

Remark 2.5. One can extend the class of rings for which the normalized length is well-defined as
follows. For the definition of the length, we only use the fact that Re ↪→ Re+1 is flat and of the
constant rank pd. It is therefore natural to start with a family of flat extensions of Noetherian local
rings

R := R0 ⊂ · · · ⊂ Rn ⊂ Rn+1 ⊂ · · · ⊂ R∞
such that the rank [Rn+1 : Rn] stabilizes for n 	 0 and

√
mnRn+1 = mn+1 for all n ∈ N. Under

this set-up, one can define the normalized length as in the case R is a complete regular local ring.
We refer the reader to [Gab04] for more detail, where the normalized length is discussed for a more
general class of rings.
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Remark 2.6. From the definition, λ∞(M) is finite for any finitely generated M ∈ M. It is also true
that if M is finitely presented in M, then

λ∞(M) = 0 ⇐⇒ M = 0,

which does not hold for finitely generated modules. For example, take R∞/m∞ ∈ M, which is not
a finitely presented R∞-module, and it is easy to see that λ∞(R∞/m∞) = 0.

This remark suggests the following definition.

Definition 2.7. Let M be an R∞-module in M, and let v be a valuation on R∞ that is positive
on the maximal ideal of R∞. Then we say that:

(i) M has almost finite length if for any rational number ε > 0, there exists an element b ∈ R∞
such that λ∞(b · M) < ∞ and v(b) < ε;

(ii) M is v-almost zero if for any m ∈ M and rational number ε > 0, there exists an element
b ∈ R∞ such that b · m = 0 and v(b) < ε.

In Proposition 2.15, which is proved only for an m-adic valuation, we will relate the v-almost
zero modules to the vanishing of the normalized length. The normalized length behaves additively
on the short exact sequence of R∞-modules in M.

Proposition 2.8. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of m-torsion R∞-modules.
Then

λ∞(M) = λ∞(M ′) + λ∞(M ′′).

Proof. In the case where all relevant modules are either finitely presented or finitely generated, the
claim follows easily by the definition of the normalized length together with Lemma 2.3. So let us
consider the general case. Since the image of every finitely generated submodule of M in M ′′ is
finitely generated, it suffices to consider the case in which both M and M ′′ are finitely generated by
the definition of normalized length for arbitrary modules. Let us denote by Mn an Rn-submodule
of M generated by any fixed generators of the R∞-module M . Let M ′

n := M ′ ∩ Mn and let M ′′
n be

the image of Mn in M ′′. Then we have a short exact sequence: 0 → M ′
n → Mn → M ′′

n → 0.

For a finite set of elements of M ′, the Rn-submodule M̃ ′
n generated by them is contained in some

M ′
n and satisfies that �(M̃ ′

n) � �(M ′
n) for n 	 0. Then since M and M ′′ are finitely generated, it

follows from Lemma 2.3 that

λ∞(M ′) = lim
n→∞ lim sup

M̃ ′
n⊂M ′

1
pdn

�(M̃ ′
n) � lim

n→∞
1

pdn
�(M ′

n) = λ∞(M) − λ∞(M ′′),

which is equivalent to the inequality

λ∞(M) − λ∞(M ′′) � λ∞(M ′).

On the other hand, since M ′′ = lim→n M ′′
n ⊗Rn R∞, for any ε > 0 there exists sufficiently large

n > 0 such that

λ∞(M ′′) � λ∞(M ′′
n ⊗Rn R∞) − ε.

Let us consider the following commutative diagram with exact rows.

0 �� M ′
n ⊗Rn Rn+m

f
��

�� Mn ⊗Rn Rn+m

g

��

�� M ′′
n ⊗Rn Rn+m

h
��

�� 0

0 �� M ′
n+m

�� Mn+m
�� M ′′

n+m
�� 0

1482

https://doi.org/10.1112/S0010437X07002825 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002825


The Frobenius action on local cohomology modules in mixed characteristic

Since Coker(g) = 0, there is an epimorphism Ker(h) � Coker(f) = M ′
n+m/Rn+m ·M ′

n, which follows
from the snake lemma. Let γ = �(Ker(h)). Then there follows that

γ = �(M ′′
n ⊗Rn Rn+m) − �(M ′′

n+m) = pdm · �(M ′′
n) − �(M ′′

n+m).

It also follows by our assumption that

λ∞(M ′′) � �(M ′′
n)

pdn
− ε.

We can put all inequalities obtained above together to obtain that

γ

pd(n+m)
� λ∞(M ′′) − �(M ′′

n+m)
pd(n+m)

+ ε � ε.

On the other hand, since {λ∞(M ′′
n+m ⊗Rn+m R∞)}m∈N is a decreasing sequence in Q, we get

the inequality λ∞(M ′′) � λ∞(M ′′
n+m ⊗Rn+m R∞) for all m ∈ N. Now we have γ � ε · pd(n+m).

This inequality together with an epimorphism Ker(h) � Coker(f) yields that

�(M ′
n+m) � �(Rn+m · M ′

n) + ε · pd(n+m)

and, therefore,

λ∞(M) − λ∞(M ′′) � lim
n→∞

1
pdn

· �(M ′
n) � lim

m→∞
1

pd(n+m)
· �(Rn+m · M ′

n) + ε

= λ∞(R∞ · M ′
n) + ε � λ∞(M ′) + ε.

Since ε can be taken arbitrarily small, λ∞(M)−λ∞(M ′′) � λ∞(M ′), and hence the claim follows.

Proposition 2.9. Let N be an R∞-module that admits an injection into some finitely presented
module M ∈ M. If λ∞(N) = 0, then N = 0.

Proof. As N = 0 if and only if every finitely generated submodule of N is zero, we may harmlessly
assume N is finitely generated. Let us consider the exact sequence

0 → N → M → M/N → 0.

Then the quotient module M/N is finitely presented with λ∞(M) = λ∞(M/N). However, since M
is finitely presented, there exists an Rn-submodule Mn ⊂ M such that R∞⊗Rn Mn � M . Let M ′

n be
the image of Mn under the surjection M � M/N . Then it can be shown that R∞ ⊗Rn M ′

n � M/N
by computing the finite presentation of M/N . Then we must have �(Mn) = �(M ′

n), which is the
case only when Mn = M ′

n and M = M/N . Hence N = 0, which is the desired result.

Definition 2.10. Let M be any R∞-module such that p · M = 0. Then M [F ] denotes the
R∞-module which is isomorphic to M as an abelian group and has the module structure given
by a · m := apm =: m · a for a ∈ R∞ and m ∈ M [F ].

Note that M �→ M [F ] defines the identity functor on the underlying abelian groups and we give
the bimodule structure on the modules via the Frobenius map.

Example 2.11. One expects that it would be very useful if the Frobenius-like maps could be defined
for rings of mixed characteristic. We now give an example. Let M be an R∞/p1/pR∞-module that
admits a Frobenius map F in the following sense: the map F : M → M is a homomorphism of
abelian groups. As an R∞-module map, let F (am) = apF (m) for a ∈ R∞, m ∈ M , and hence
F ((a + b)m) = (a + b)pF (m) = apF (m) + bpF (m). Now one has the following map:

M ⊗R∞ R[F ]
∞ → M [F ] : m ⊗ a �→ F (m)a,

which is well-defined as p1/p annihilates the module M by assumption and is called the relative
Frobenius map.
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We are now ready to prove the following ‘Frobenius pull-back formula’, the importance of which
is expressed by studying certain torsion modules, in particular local cohomology modules, that
admit a Frobenius action.

Theorem 2.12. Let M be an m-torsion R∞/pR∞-module. Then

λ∞(M [F ]) =
1
pd

· λ∞(M).

Proof. Let us start with the case where M is finitely presented in M, and let

R⊕m1∞
ϕ �� R⊕m0∞ �� M �� 0

be the presentation for M such that ϕ is defined over Rn for some n � 0. Since the functor
M �→ M [F ] is exact and p · M = 0 by assumption, there follows the commutative diagram

(R∞/p1/pR∞)⊕m0

F m0 �
��

�� (R∞/p1/pR∞)⊕m1

F m1 �
��

((R∞/pR∞)[F ])⊕m0 �� ((R∞/pR∞)[F ])⊕m1 �� M [F ] �� 0

where the vertical maps are induced by the ring isomorphism

F̄R∞ : R∞/p1/pR∞ � (R∞/pR∞)[F ]

which is induced by the Frobenius map. Then, using the above diagram together with the ring
isomorphism Rn+1/p

1/pRn+1 � (Rn/pRn)[F ] induced by the Frobenius, we have the following exact
sequence

(Rn+1/p
1/pRn+1)m0 �� (Rn+1/p

1/pRn+1)m1 �� M
[F ]
n

�� 0

which in turn gives an R∞-module isomorphism R∞ ⊗Rn+1 M
[F ]
n � M [F ]. On the other hand, since

the residue class field of R is assumed to be perfect, we have

�(M [F ]
n ) = �(Mn)

and, therefore,

λ∞(M [F ]) =
1

pd(n+1)
· �(M [F ]

n ) =
1
pd

· 1
pdn

· �(Mn) =
λ∞(M)

pd
,

which completes the case of finitely presented modules.
Next let us assume that M is finitely generated in M. Let N be a finitely presented module in

M that admits a surjection N � M . Then this map factors as N � N/pN � M by assumption
and we deduce that

λ∞(N) � λ∞(N/pN) � λ∞(M).

Therefore, we can replace N with N/pN to prove the theorem. Then since N [F ] belongs to M and
is a finitely presented module that maps onto M [F ], we get λ∞(N) = pd ·λ∞(N [F ]) � pd ·λ∞(M [F ])
and thus λ∞(M) � pd · λ∞(M [F ]).

Conversely, let N ′ be a finitely presented module that maps onto M [F ]. Then there is an Rn-
module N ′

n such that N ′ = R∞ ⊗Rn N ′
n. Now take u1, . . . , us to be a set of generators of M [F ] and

define the Rn−1-module

Mn := Rn−1u1 + · · · + Rn−1us ⊂ M [F ].

Then M
[F ]
n can be viewed as an Rn-module via the Frobenius F : Rn/pRn → Rn−1/pRn−1, and

the module M
[F ]
n is finitely generated over Rn. Hence, we get the surjective map of R∞-modules
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as follows
N ′ = R∞ ⊗Rn N ′

n � R∞ ⊗Rn M [F ]
n � M [F ].

Now we claim that there is an R∞-module isomorphism:

R∞ ⊗Rn M [F ]
n � (R∞ ⊗Rn Mn+1)[F ].

For a proof, let
(Rn−1/pRn−1)

⊕m0 → (Rn−1/pRn−1)
⊕m1 → Mn → 0

be the presentation of the Rn−1-module Mn. Then the presentation of Mn+1 can be obtained by
replacing Rn−1 by Rn in the above presentation. Consider the following commutative diagram

R∞ ⊗Rn ((Rn−1/pRn−1)[F ])⊕m0

Φm0

��

�� R∞ ⊗Rn ((Rn−1/pRn−1)
[F ])⊕m1

Φm1

��

�� R∞ ⊗Rn M
[F ]
n

��

��

0

(R∞ ⊗Rn (Rn/pRn)⊕m0)[F ]

�
��

�� (R∞ ⊗Rn (Rn/pRn)⊕m1)[F ]

�
��

�� (R∞ ⊗Rn Mn+1)[F ] �� 0

((R∞/pR∞)⊕m0)[F ] �� ((R∞/pR∞)⊕m1)[F ]

in which both Φm0 and Φm1 are induced by the R∞-module map

Φ : R∞ ⊗Rn (Rn−1/pRn−1)[F ] → (R∞/pR∞)[F ] : r ⊗ m �→ rpm

and (Rn−1/pRn−1)[F ] is viewed as an Rn-module via the Frobenius F : Rn/pRn → Rn−1/pRn−1.
Then Φ factors as

R∞ ⊗Rn (Rn−1/pRn−1)
[F ] → R∞ ⊗Rn Rn/p1/pRn → R∞/p1/pR∞ → (R∞/pR∞)[F ],

which is obviously an R∞-algebra isomorphism. Hence,

R∞ ⊗Rn M [F ]
n � (R∞ ⊗Rn Mn+1)[F ].

Since the R∞-module N := R∞ ⊗Rn Mn+1 gets mapped onto M and N is finitely presented, it
follows that

λ∞(M) � λ∞(N) = pd · λ∞(N [F ]) � pd · λ∞(N ′).
Therefore, we get the desired formula λ(M) = pd ·λ(M [F ]) for the case of finitely generated modules.

Finally, let M be an arbitrary module in M, and let N ⊂ M be any finitely generated submodule.
Then N [F ] is an R∞-submodule of M [F ] and N [F ] is finitely generated over R∞ since the residue
field of R∞ is assumed to be perfect. We have

λ∞(N) = pd · λ∞(N [F ]) � pd · λ∞(M [F ]),

which gives λ∞(M) � pd · λ∞(M [F ]). Conversely, let N ′ ⊂ M [F ] be a finitely generated submodule.
Then we can find a set of generators {vi}i∈I of M , a finite subset I ′ ⊂ I, and an R∞-module N
such that

M [F ] =
(∑

i∈I

R∞vi

)[F ]

, N =
∑
i∈I′

R∞vi, and N ′ = N [F ].

Then we deduce that λ∞(M) � λ∞(N) = pd · λ∞(N [F ]) = pd · λ∞(N ′) and, hence, λ∞(M) =
pd · λ∞(M [F ]), which completes the proof.

In the following, we write

(x1/∞) :=
⋃
n∈N

(x1/pn
)R∞
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for an element x ∈ R∞ whenever x1/pn ∈ R∞ for all n ∈ N. Note that this is a flat R∞-module
since it is an ascending union of principal ideals. As a corollary, one can prove the following.

Corollary 2.13. Let M ∈ M such that p1/pn · M = 0 for all n > 0. Then λ∞(M) = 0.

Proof. By the definition, we easily reduce to the case in which M ∈ M is finitely generated. Then
by assumption, we must have M � M [F ] as the Frobenius map on R∞/(p1/∞) is a bijection.
Then we have λ∞(M) = pd · λ∞(M [F ]) = pd · λ∞(M) and thus λ∞(M) = 0 since λ∞(M) is
finite.

Finally, we discuss the relation of v-almost zero modules to the vanishing of the normalized
length. Let us first recall the definition of an m-adic valuation on R.

Definition 2.14. Let K be the field of fractions of R. An m-adic valuation on R is a discrete
valuation v : K\{0} → Z satisfying the property that for any non-zero b ∈ R, v = v(b) is defined as
the integer such that b ∈ mv, but b /∈ mv+1.

If v denote the m-adic valuation on R, then since R∞ is integral over R, it extends to a valuation
on R∞ with value group Q. We denote by v this extended valuation for simplicity.

Proposition 2.15. Suppose that λ∞(M) = 0 for M ∈ M. Then M is v-almost zero.

Proof. It will suffice to consider the case in which M is a cyclic R∞-module. Then R∞ · x � M for
some x ∈ M and there is an isomorphism R∞/AnnR∞(x) � R∞ · x. Now assume that there exists
a non-zero k ∈ Z such that

inf{v(b) | b ∈ AnnR∞(R∞ · x)} � p−k.

Then for any n ∈ N with n > k, we deduce that

�(Rn · x) � #
{

pε1xε2
2 · · · xεd

d

∣∣∣∣
d∑

i=1

εi < p−k and p−n � εi

}
= pd(n−k),

where the middle term denotes the number of monomials pε1xε2
2 · · · xεd

d ∈ Rn with specified condi-
tions. Now it follows easily from Lemma 2.3 that

λ∞(R∞ · x) = lim
n→∞

�(Rn · x)
pdn

� 1
pdk

> 0,

which contradicts our assumption that λ∞(M) = 0. Hence, the proposition follows.

Remark 2.16. We do not know whether the converse of the above proposition holds. It seems that the
answer to this question is yes even if the annihilator of the module is quite complicated. Obviously,
it suffices to consider the case where M is a cyclic module.

3. Applications to local cohomology modules

In this section, we start with a finite extension of local domains R → S and introduce a notion of
a semi-perfect algebra S∞ over S.

Definition 3.1. Let R → S be a ring extension of domains of mixed characteristic p > 0. Then an
algebra S∞ over S is called semi-perfect if:

(i) there exists a commutative square
R∞ �� S∞

R

��

�� S

��

such that every map is a ring extension of domains;
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(ii) S∞ is an integrally closed domain in its fraction field;
(iii) the Frobenius endomorphism FS∞ : S∞/pS∞ → S∞/pS∞ is surjective.

In what follows, S∞ shall denote some fixed semi-perfect algebra for S. Such a ring is usually
obtained as a large ring extension of S.

Positive characteristic. Let S be a reduced ring of positive characteristic p > 0. Let S∞ be a filtered
direct limit of the system S ↪→ S1/p ↪→ · · · ↪→ S1/pn

↪→ · · · . Then S∞ is the minimal perfect
S-algebra. In fact, the Frobenius map on it is a bijection.

Mixed characteristic. In this case, it is easy to see that the Frobenius map on R∞/pR∞ is surjective.
However, since R∞/pR∞ is not reduced, the Frobenius map is not injective. Let R+ be the absolute
integral closure of R (see [Art71]); that is, it is the integral closure of R in the algebraic closure
of the field of fractions of R. Then R+ is obviously a semi-perfect ring over any domain S that is
integral over R. In the mixed characteristic case, the notion of semi-perfect rings is quite subtle
since there are not many known examples.

Lemma 3.2. Let S∞ be a semi-perfect S-algebra. Then there exists a ring isomorphism:

F̄S∞ : S∞/p1/pS∞ � S∞/pS∞,

which is induced by the Frobenius endomorphism FS∞ : S∞/pS∞ → S∞/pS∞.

Proof. Let K̄ denote the algebraic closure of the fraction field of S∞. Then it is easy to see that
FS∞(x̄) = 0 with x ∈ S∞ ⇐⇒ xp = p · θ for some θ ∈ S∞. Taking the pth root of xp = p · θ in K̄,
we have x = p1/p · θ̃, where θ̃ is a root to the equation tp − θ = 0. Hence, θ̃ ∈ S∞[1/p], which gives
θ̃ ∈ S∞, since S∞ is assumed integrally closed. This proves the desired claim.

In what follows, we let v be a valuation on R∞ that extends an m-adic valuation of R, and let
d = dimR. A ring isomorphism F̄S∞ : S∞/p1/pS∞ � S∞/pS∞ yields a well-defined homomorphism
on Čech complexes:

F̄S∞∗ : C•(S∞/p1/pS∞) � C•(S∞/pS∞)[F ]

and the induced map on local cohomology modules:

F̄S∞∗ : H i
m(S∞/p1/pS∞) � H i

m(S∞/pS∞)[F ]

for i ∈ N. Now let us assume that the following condition holds. For ε ∈ Q with ε > 0, there exists
an element r ∈ R∞ such that

λ∞(r · H i
m(S∞)) < ∞ (∗ ∗ ∗)

with v(r) < ε for some i < d. Recall that the condition (∗ ∗ ∗) simply says that the local cohomology
H i
m(S∞) has almost finite length with respect to the valuation v. In order to prove the main theorem,

we need the following lemma taken from [Gab04].

Lemma 3.3. Let 0 → N ′ → N → N ′′ → 0 be a short exact sequence in the category M and let
a, b ∈ R∞. Then the following hold:

(1) λ∞(abN) � λ∞(aN ′) + λ∞(bN ′′);
(2) suppose that λ∞(N ′) = 0 (respectively, λ∞(N ′′) = 0), then λ∞(aN) = λ∞(aN ′′) (respectively,

λ∞(aN) = λ∞(aN ′)).

Proof. (1) First of all, we note that there is a commutative diagram:

0 �� bN ∩ N ′

a

��

�� bN

a

��

�� bN ′′

a

��

�� 0

0 �� bN ∩ N ′ �� bN �� bN ′′ �� 0
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where the horizontal sequences are short exact. It is easy to show that there is a surjection bN ′′/L �
abN ′′ where L denotes the image of the kernel of the multiplication map a : bN → bN under the
surjection bN � bN ′′. Hence, there follows an exact sequence

0 → a(bN ∩ N ′) → abN → bN ′′/L → 0.

So λ∞(abN) = λ∞(a(bN ∩ N ′)) + λ∞(bN ′′/L) � λ∞(aN ′) + λ∞(bN ′′). Hence, part (1) is proved.
(2) This follows easily from the short exact sequence

0 → aN ∩ N ′ → aN → aN ′′ → 0 (respectively, 0 → aN ′ → aN → P → 0)

where P is a quotient of N ′′, and the fact that λ∞(aN ∩ N ′) = 0 (respectively, λ∞(P ) = 0).

Now we are ready to prove the almost vanishing theorem for local cohomology modules. Let M be
a module over a ring A and let a ∈ A. Then we use the following notation: Ma := {m ∈ M | am = 0}.
Theorem 3.4. Let R → S be a module-finite extension of domains and we fix k ∈ N with 0 < k < d.
Assume the following conditions:

(1) S∞ is a semi-perfect algebra over S;

(2) λ∞(Hk−1
m (S∞)) = 0;

(3) Hk
m(S∞) has almost finite length.

Then the local cohomology module Hk
m(S∞) is v-almost zero.

Proof. Note that by assumption we have a well-defined R∞-isomorphism:

F̄S∞∗ : H i
m(S∞/p1/pS∞) � H i

m(S∞/pS∞)[F ].

Note that since S∞ is a domain, H0
m(S∞) = 0. The following diagram of standard short exact

sequences:

0 �� S∞
p1/p

�� S∞ �� S∞/p1/pS∞

� F̄S∞
��

�� 0

0 �� S∞
p �� S∞ �� S∞/pS∞ �� 0

yields a diagram of local cohomology modules:

· · · �� Hk−1
m (S∞/p1/pS∞)

� F̄S∞∗
��

�� Hk
m(S∞)

p1/p
�� Hk
m(S∞) �� · · ·

· · · �� Hk−1
m (S∞/pS∞) �� Hk

m(S∞)
p �� Hk

m(S∞) �� · · ·
Let us fix a positive ε ∈ Q. Then there exists r ∈ R∞ with v(r) < ε such that λ∞(r ·Hk

m(S∞)) < ∞.
From the above exact sequence there follows a surjection:

Hk−1
m (S∞/p1/pS∞) � Hk

m(S∞)p1/p (respectively, Hk−1
m (S∞/pS∞) � Hk

m(S∞)p).

Then by the Frobenius pull-back formula, we deduce

λ∞(r · Hk−1
m (S∞/p1/pS∞)) = λ∞(r · (Hk−1

m (S∞/pS∞))[F ]) =
1
pd

· λ∞(rp · Hk−1
m (S∞/pS∞)) < ∞,

which, together with Lemma 3.3(2), yields the equality:

λ∞(r · Hk
m(S∞)p1/p) =

1
pd

· λ∞(rp · Hk
m(S∞)p). (1)
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To ease the notation, we set N := Hk
m(S∞). Let us consider the filtration of Np as follows:

Np1/p ⊂ Np2/p ⊂ · · · ⊂ Npt/p ⊂ · · · ⊂ Np.

Then since p(t−1)/pNpt/p ⊂ Np1/p , the multiplication map p(t−1)/p : Npt/p → Np1/p induces an
injective map Npt/p/Np(t−1)/p ↪→ Np1/p and we have

λ∞(Npt/p/Np(t−1)/p) � λ∞(Np1/p). (2)

Let us next consider the short exact sequence

0 → Np(t−1)/p → Npt/p → Npt/p/Np(t−1)/p → 0.

Then from Lemma 3.3 we have

λ∞(rt(Npt/p)) � λ∞(rt−1(Np(t−1)/p)) + λ∞(r(Npt/p/Np(t−1)/p))

for t = 2, . . . , p. An induction on t yields

λ∞(rp(Np)) �
p∑

t=1

λ∞(r(Npt/p/Np(t−1)/p)), (3)

and it follows easily from (2) and (3) that

λ∞(rp(Np)) � p · λ∞(r(Np1/p)).

We can now deduce from this inequality and (1):

λ∞(rp(Np))
pd

= λ∞(r(Np1/p)) � λ∞(rp(Np))
p

,

which is possible only when λ∞(r(Np1/p)) = 0 (or, equivalently, λ∞(rp(Np)) = 0). For simplicity,
we denote rp by r, so that λ∞(r(Np)) = 0. Now let η ∈ N . Since N is p-torsion, we have η ∈ Npn

for sufficiently large n ∈ N. Then we may use the fact that p · Npt ⊂ Npt−1, Lemma 3.3 together
with the following short exact sequence inductively

0 �� Np �� Npt
p �� p · Npt �� 0

to deduce that

λ∞(rn(Npn)) = 0.

In light of Proposition 2.15, for ε ∈ Q as above, there exists an element s ∈ R∞ such that (srn)η = 0
with v(srn) = v(s) + v(rn) < ε + nε = ε(n + 1). If we have chosen ε sufficiently small, we can make
ε(n + 1) also sufficiently small, as n ∈ N depends on the choice of η ∈ N . Hence, this proves the
desired claim.

Remark 3.5. An R∞-module M with λ∞(M) = 0 is v-almost zero. However, it might be the case that
the annihilator of every element of M is very complicated and M is not finitely generated. It looks
reasonable to ask whether the local cohomology module of any semi-perfect ring is v-almost zero in
light of the above theorem. For some relevant results of the annihilator, see also [Rob76, Sch82].

Now we remind the reader that Rn and d = dimR are defined as previously. Let Rn → Sn be a
module-finite extension of domains with p1/p ∈ Sn. Let S∞ be any semi-perfect algebra over Sn and
let φ : Hk

m(Sn) → Hk
m(S∞) be the map induced by the inclusion Sn → S∞. Then define the map

Φ : Hk
m(Sn) ⊗Rn R∞ → Hk

m(S∞)

by Φ(a ⊗ b) := φ(a)b for a ∈ Hk
m(Sn) and b ∈ R∞. We also denote by

Φp1/p : Hk
m(Sn)p1/p ⊗Rn R∞ → Hk

m(S∞)p1/p
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the restriction map of Φ to the submodule annihilated by p1/p. Alternatively, one may regard the
map Φ to be induced by the natural map Sn ⊗Rn R∞ → S∞ as R∞ is flat over Rn.

Theorem 3.6. Keeping the notation and hypothesis as above, assume that we have Hk−1
m (Sn) = 0

and �(Hk
m(Sn)) < ∞ for 0 < k < d. Then

λ∞(Im(Φp1/p)) � 1
pd(n+1)−1

· �(Hk
m(Sn)p1/p).

In particular, Φ is not injective if Hk
m(Sn) is non-zero.

Proof. First, we note that Hk
m(Sn) �= 0 ⇐⇒ Hk

m(Sn)p1/p �= 0. Since Sn is a domain, one has the
following short exact sequence:

0 �� Sn
b �� Sn

�� Sn/bSn
�� 0

for any non-zero b ∈ Sn. Then, by assumption, the associated long exact sequence

0 �� Hk−1
m (Sn/bSn) �� Hk

m(Sn) b �� Hk
m(Sn) �� · · ·

yields an isomorphism
Hk
m(Sn)b � Hk−1

m (Sn/bSn). (1′)
Let us consider the following commutative square of R∞-modules:

Sn/p1/pSn ⊗Rn R∞

F̄Sn
��

�� S∞/p1/pS∞

F̄S∞ �
��

(Sn/pSn ⊗Rn R∞)[F ] �� (S∞/pS∞)[F ]

in which both of the horizontal maps are induced by the natural map Sn/p1/pSn → S∞/p1/pS∞
(respectively, Sn/pSn → S∞/pS∞) and the vertical maps are induced by the Frobenius map. Then
by use of the isomorphism (1′) together with the flatness of R∞ over Rn, we have the induced map
on local cohomology modules:

Hk
m(Sn)p1/p ⊗Rn R∞

F̄Sn∗
��

Φ̃
p1/p

�� Hk−1
m (S∞/p1/pS∞)

F̄S∞∗ �
��

(Hk
m(Sn)p ⊗Rn R∞)[F ]

Φ̃p �� Hk−1
m (S∞/pS∞)[F ]

(2′)

By assumption, the module Hk
m(Sn)p1/p ⊗Rn R∞ is finitely presented in M, and we get

λ∞(Hk
m(Sn)p1/p ⊗Rn R∞) =

1
pdn

· �(Hk
m(Sn)p1/p)

and similarly

λ∞(Hk
m(Sn)p ⊗Rn R∞) =

1
pdn

· �(Hk
m(Sn)p).

On the other hand, an easy calculation shows that �(Hk
m(Sn)p) � p ·�(Hk

m(Sn)p1/p). Hence, it follows
from the diagram (2′) and the Frobenius pull-back formula that

λ∞(Im(Φ̃p1/p)) � λ∞((Im(Φ̃p))[F ]) =
1
pd

· λ∞(Im(Φ̃p)) � 1
pd(n+1)

· �(Hk
m(Sn)p)

� p

pd(n+1)
· �(Hk

m(Sn)p1/p) =
1

pd(n+1)−1
· �(Hk

m(Sn)p1/p).
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Let jb : Hk−1
m (S∞/bS∞) � Hk

m(S∞)b denote the surjection map induced by the cohomology exact
sequence associated to

0 �� S∞
b �� S∞ �� S∞/bS∞ �� 0

for any non-zero b ∈ S∞. Then, by assumption, it is easy to see that Φb = jb ◦ Φ̃b, from which
λ∞(Im(Φ̃p1/p)) � λ∞(Im(Φp1/p)). Hence, the theorem follows easily from this inequality.

The non-injectivity of the map Φ is due to the following equality:

λ∞(Hk
m(Sn)p1/p ⊗Rn R∞) =

1
pdn

· �(Hk
m(Sn)p1/p).

The next corollary is a weak version of Heitmann’s direct summand theorem.

Corollary 3.7. Let Rn → Sn be a module-finite extension of normal domains and p1/p ∈ Sn, and
let d > 2. Then the map

Φ : H2
m(Sn) ⊗Rn R∞ → H2

m(S+)
is not injective if H2

m(Sn) is non-zero.

Proof. By Serre’s normality criterion, it follows that H1
m(Sn) = 0 and �(H2

m(Sn)) < ∞ by local
duality. Then the corollary follows from Theorem 3.6.

There is another implication for splinters studied by Singh [Sin99]. Recall that a Noetherian
domain A is a splinter if A is a direct summand, as an A-module, of every module-finite extension
domain. It is easy to see that a splinter is a normal domain.

Corollary 3.8. In addition to the hypothesis of Theorem 3.6, assume that S ⊗R R∞ is a domain
and Hk

m(S) is non-zero. Then there exists a flat module-finite extension S → T such that T is not
a splinter.

Proof. Since Φ : Hk
m(S) ⊗R R∞ → Hk

m(S+) is not injective and S ⊗R R∞ =
⋃

n�0 S ⊗R Rn, the
map Hk

m(S) ⊗R Rn → Hk
m(S+) is not injective for some n � 0. Now it is easy to see that

the domain T := S ⊗R Rn is flat over S and is not a splinter.

Finally, we end this section with an example of a normal domain that is not a splinter, due to
Singh (unpublished).

Example 3.9. Let

S :=
Z2[[x, y]]

(xk − yl − 2m)
where Z2 is the ring of 2-adic integers and (k, l,m) > (2, 2, 2). Then S is shown to be a normal
domain. Now take u :=

√
xk−2yl−2 /∈ S and v := 2−1(xk−1 − uy) /∈ S. Then u is integral over S

and it is easy to verify that v is subject to the following equation:

v2 + uyv − xk−22m−2 = 0.

Hence, S → T := S[u, v] is module-finite. Then since xk−1 = uy + v2, if S were a direct summand
of T , we would have that x ∈ (y, 2)T , while x /∈ (y, 2)S = (y, 2)T ∩ S, which is a contradiction.
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