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Abstract

We improve some previously known deterministic algorithms for finding integer solutions x, y to the
exponential equation of the form a f x + bgy = c over finite fields.
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1. Introduction

Let Fq be the finite field of q elements and let F∗q denote the multiplicative group of
nonzero elements of Fq. For a, b, c, f , g ∈ F∗q we consider the exponential equation

a f x + bgy = c (1.1)

in nonnegative integers x and y.
Various classical and quantum algorithms for solving Equation (1.1) have been

given by van Dam and Shparlinski [7]. Some of the motivation behind [7] comes from
a certain cryptographic construction of Lenstra and de Weger [3] and also connections
with the theory of cyclotomic classes (see [1, 6]). Sasaki [4] extended some of the
results and ideas of [7] to the case of exponential equations in n ≥ 2 variables, that is,

n∑
i=1

ai f xi
i = c.

The approach of [7], also used in [4], is based on number-theoretic results on the
distribution of solutions to exponential equations in finite fields. Here we supplement
the ideas of [7] by another very simple argument which allows us to improve some of
the results from [7].
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In particular, by [7, Theorem 1], for any a, b, c, f , g ∈ F∗q, one can either find a
solution to Equation (1.1) or decide that it has no solution, in deterministic time

Tdet ≤ q9/8+o(1) (1.2)

as q→∞.
Furthermore, it is shown in [7, Theorem 2] that for any a, b, f , g ∈ F∗q, for all but

o(q) elements c ∈ F∗q, one can either find a solution to Equation (1.1) or decide that it
has no solution, in deterministic time

Tdet ≤ q1+o(1) (1.3)

as q→∞.
Here we improve both (1.2) and (1.3) quite significantly. As in [7], our approach

is based on results about the distribution of solutions to Equation (1.1) in small boxes
(see, for example, Lemmas 3.1 and 3.2). In turn, the proofs of these results are based
on estimates of character and exponential sums (see [7]). Thus any progress in this
direction immediately leads to further improvements.

2. Results

We start with a result which applies to all equations.

Theorem 2.1. Let a, b, c, f , g ∈ F∗q and let f and g be of multiplicative orders s and t,
respectively. One can either find a solution (x, y) ∈ Z2 to Equation (1.1), or decide that
it does not have a solution, in deterministic time

Tdet ≤ min{(st)1/2, q3/4}(log q)O(1).

In particular, we see that, for any s and t, the algorithm of Theorem 2.1 runs in time
Tdet ≤ q3/4+o(1) as q→∞, improving (1.2) for any s and t.

We next consider the case where the right hand side of the Equation (1.1) varies.

Theorem 2.2. Let a, b, f , g ∈ F∗q and let f and g be of multiplicative orders s and t,
respectively. For all but o(q) elements c ∈ F∗q, one can either find a solution (x, y) ∈ Z2

to Equation (1.1), or decide that it does not have a solution, in deterministic time

Tdet ≤ min{(st)1/2, qs−1/2, qt−1/2}(log q)O(1).

In particular, we see that for any s and t, the algorithm of Theorem 2.2 runs in time
Tdet ≤ q2/3+o(1) as q→∞, improving (1.3) for any s and t.

It is very likely that the same argument can also be used to improve the results
of [4].
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3. Distribution of solutions to Equation (1.1)

We recall the following result given by [7, Corollary 1].

Lemma 3.1. Let a, b, c, f , g ∈ F∗q and let f and g be of multiplicative orders s and t,
respectively. There exists an absolute constant C > 0 such that if

Cq3/2s−1 log q ≤ r ≤ t,

for some integer r, then Equation (1.1) has a solution in integers x and y with
x ∈ {0, . . . , s − 1} and y ∈ {0, . . . , r − 1}.

For almost all c ∈ F∗q we have a stronger result given by [7, Corollary 2].

Lemma 3.2. Let a, b, f , g ∈ F∗q and let f and g be of multiplicative orders s and t,
respectively. There exists an absolute constant C > 0 such that, for all but o(q) elements
c ∈ F∗q, if

Cq2s−2 log q ≤ r ≤ t,

for some integer r, then Equation (1.1) has a solution in integers x and y with
x ∈ {0, . . . , s − 1} and y ∈ {0, . . . , r − 1}.

4. Proof of Theorem 2.1

Set
r = min{t, dCq3/2s−1 log qe}.

Clearly, by Lemma 3.1, if there is a solution to Equation (1.1) then there is also a
solution

(x, y) ∈ [0, s − 1] × [0, r − 1].

We now employ the classical ‘baby-steps, giant-steps’ strategy of Shanks [5] (see
also [2, Section 5.3]).

We first consider the case when s ≤ r. Choose an integer parameter L ≤ r, compute
the list L of elements bgu, 0 ≤ u ≤ L, and then sort this list in any prescribed order.
This part takes time L(log q)O(1).

Next, for each v = 1, . . . , dr/Le and x = 0, . . . , s − 1, compute g−Lv(c − a f x) and
search for a match in the list L (since L is sorted this can be done in polynomial time
for every v and x). Every match gives us a solution to Equation (1.1). Conversely,
if there is a solution, we can always find one in this way. Hence the total time is
(L + sr/L)(log q)O(1). This time optimises for

L = d(rs)1/2e, (4.1)

which is an admissible choice since L ≤ r for s ≤ r. Thus in this case the algorithm
runs in time

(rs)1/2(log q)O(1) = min{(st)1/2, q3/4}(log q)O(1)

and we have the desired result.
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Now we consider the case when s > r. We now choose an integer parameter L ≤ s
and compute the list L of elements a f u, 0 ≤ u ≤ L, and sort this list in any prescribed
order. Then, for each v = 1, . . . , ds/Le and y = 0, . . . , r − 1, we compute f −Lv(c − bgy)
and search for a match in the list L. Exactly as before, we see that the total time is
(L + sr/L)(log q)O(1). We use L as in (4.1) again to conclude the proof.

5. Proof of Theorem 2.2

Set
r = min{t, dCq2s−2 log qe},

but otherwise proceed as in the proof of Theorem 2.1. By Lemma 3.2, if there is a
solution to Equation (1.1) then there is also a solution

(x, y) ∈ [0, s − 1] × [0, r − 1].

With the choice of L as in (4.1), we obtain an algorithm of complexity

(L + sr/L)(log q)O(1) = (sr)1/2(log q)O(1)

= min{(st)1/2, qs−1/2}(log q)O(1).

By interchanging the roles of s and t we also obtain an algorithm of complexity
min{(st)1/2, qt−1/2}(log q)O(1), which concludes the proof.
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