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We present the first detailed thermal and velocity field characterization of convection in
a rotating cylindrical tank of liquid gallium, which has thermophysical properties similar
to those of planetary core fluids. Our laboratory experiments, and a closely associated
direct numerical simulation, are all carried out in the regime prior to the onset of steady
convective modes. This allows us to study the oscillatory convective modes, sidewall
modes and broadband turbulent flow that develop in liquid metals before the advent
of steady columnar modes. Our thermo-velocimetric measurements show that strongly
inertial, thermal wind flows develop, with velocities reaching those of non-rotating
cases. Oscillatory bulk convection and wall modes coexist across a wide range of our
experiments, along with strong zonal flows that peak in the Stewartson layer, but that
extend deep into the fluid bulk in the higher supercriticality cases. The flows contain
significant time-mean helicity that is anti-symmetric across the midplane, demonstrating
that oscillatory liquid metal convection contains the kinematic components to sustain
system-scale dynamo generation.

Key words: geodynamo, rotating flows

1. Introduction

The geomagnetic field is induced by the liquid metal flow within Earth’s outer core via
self-excited dynamo action. Thermal and compositional buoyancy drives the fluid motion
because the iron-rich core is cooling from its primordial state through heat loss to the
mantle (Jacobs 1953; Davies et al. 2015). The detailed flow topology is unknown (Calkins
et al. 2012; Guervilly & Cardin 2016; Aurnou & King 2017; Kaplan et al. 2017; Guervilly,
Cardin & Schaeffer 2019), since the 3000 km thick silicate mantle hinders our ability to
observe the core dynamics directly (Roberts & King 2013). Furthermore, thermally driven
global-scale dynamo models in low Prandtl number fluids, characteristic of liquid metals,
cannot be carried out by direct numerical simulations (DNS) to date (Davies, Gubbins &
Jimack 2009; Roberts & King 2013; Nataf & Schaeffer 2015; Schaeffer et al. 2017).

† Email address for correspondence: t.vogt@hzdr.de
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Our understanding of the flow dynamics in Earth’s outer core must instead rely on
theory, experiments and numerical simulations under simplified conditions. Towards this
end, we investigate the effect of rotation on low Prandtl number thermal convection by
means of laboratory experiments and DNS. We consider a rotating Rayleigh–Bénard
convection (RBC) set-up, consisting of a cylindrical vessel filled with liquid metal where
the convective flow is driven by a temperature difference between a warmer bottom and a
colder top boundary. The cylinder rotates around its vertical axis, which is aligned parallel
with gravity, roughly similar to the high latitude regions within Earth’s outer core (i.e.
Cao, Yadav & Aurnou 2018).

Rotating Rayleigh–Bénard convection is controlled by three dimensionless parameters.
The Rayleigh number Ra describes the ratio of buoyancy to thermal and viscous diffusion
and is defined as

Ra = αgΔTH3/(κν), (1.1)

where α denotes the thermal expansion coefficient, g is the gravitational acceleration, ΔT
is the applied temperature difference between the bottom and top of the fluid layer, H is
the height of the fluid layer, κ is the thermal diffusivity and ν is the kinematic viscosity.
In rotating systems, the Ekman number Ek describes the ratio of the viscous and Coriolis
forces

Ek = ν/(2ΩH2), (1.2)

where Ω is the system’s angular rotation rate. Whereas Ra and Ek estimate the forces
involved, the Prandtl number Pr describes the characteristics of the fluid, and is given by
the ratio of the viscous and thermal diffusivities

Pr = ν/κ. (1.3)

The majority of experiments and numerical simulations of rotating convection consider
fluids with Prandtl number values of O(1), corresponding to fluids like air (Pr � 0.7) or
water (1.75 ≤ Pr ≤ 13.5) (Zhong, Ecke & Steinberg 1993; Julien et al. 1996; Kunnen,
Geurts & Clercx 2010; Stevens, Clercx & Lohse 2010; Zhong & Ahlers 2010; Weiss &
Ahlers 2011; King, Stellmach & Aurnou 2012; Stevens, Clercx & Lohse 2013; Ecke &
Niemela 2014; Horn & Shishkina 2014; Cheng et al. 2015). In the laboratory, these fluids
are typically easy to handle experimentally, and are also accessible for optical velocimetric
measurements (e.g. Kunnen et al. 2010; Aujogue et al. 2018). Studying convection in Pr ≈
1 fluids is attractive from a numerical point of view because the numerical costs are much
lower than for high and low Pr fluids (Shishkina et al. 2010; Calkins et al. 2012; Horn &
Schmid 2017). For this reason, the majority of present-day rotating convection and dynamo
simulations employ Pr ≈ 1 fluids, and hence disregard possible Pr � 1 effects (cf. Aubert
et al. 2001; King & Aurnou 2013; Kaplan et al. 2017; Bouffard et al. 2019; Guervilly et al.
2019).

The critical Rayleigh number, Rac, at which convection first develops, or onsets,
generally increases with Ω , since rotational effects typically inhibit convection in rotating
systems (Chandrasekhar 1961; Julien & Knobloch 1998; Zhang & Schubert 2000, cf.
Horn & Aurnou 2018, 2019). In moderate Pr fluids, convection onsets via flow modes
that have their highest amplitude close to the sidewall, and are thus called wall modes
(Zhong, Ecke & Steinberg 1991; Ecke, Zhong & Knobloch 1992; Ning & Ecke 1993;
Zhong et al. 1993; Liu & Ecke 1997, 1999). At moderate supercriticalities, Ra/Rac, the
bulk flow is dominated by elongated columnar structures, that are called convective Taylor
columns or Ekman vortices (Nakagawa & Frenzen 1955; Julien et al. 1996; Sakai 1997;
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Sprague et al. 2006; Kunnen, Clercx & Geurts 2008; Stevens et al. 2009; Grooms et al.
2010; Weiss et al. 2010; Zhong & Ahlers 2010; King et al. 2012; Stevens et al. 2013;
Cheng et al. 2015; Gastine, Wicht & Aubert 2016; Guervilly et al. 2019). These
quasi-steady columnar structures are the key magnetically inductive flow component in
present day dynamo simulations (Olson, Christensen & Glatzmaier 1999; Roberts & King
2013; Aurnou et al. 2015; Christensen & Wicht 2015).

The Prandtl number in a liquid metal is typically Pr ≈ O(10−2), indicating
that temperature diffuses much faster than momentum. As a consequence, the
inertia-dominated velocity field in liquid metal convection tends to become turbulent at
moderate supercriticalities, while the temperature field is characterized by larger, and more
coherent patterns (e.g. Vogt et al. 2018a). In low Pr fluids, however, rotating convection
is inherently different and far less well understood. For Pr � 1 rotating convection, the
bulk onset mode is oscillatory (Zhang & Liao 2009; Horn & Schmid 2017; Aurnou et al.
2018). It is often presumed that since oscillatory modes are inefficient transporters of heat,
they can only generate weak convective motions that will be easily overwhelmed by the
stationary modes that are excited at larger supercriticalities (e.g. Roberts & King 2013).
Based on such arguments, low Pr oscillatory convective flows are often ignored in models
of planetary dynamo action.

Prior to the advent of dynamo simulations, however, it was argued that small-scale
inertial oscillations could drive global-scale dynamo action (e.g. Olson 1977; Moffatt
1978; Olson 1983, and more recently in Calkins et al. 2015 and Davidson & Ranjan 2018).
Rapidly rotating, kinematic plane layer dynamo models have now demonstrated that low
Pr oscillatory convective modes are actually capable of generating dynamo action at lower
Ra and in lower electrical conductivity fluids than in moderate Pr cases (Calkins et al.
2016a,b).

The aim of this work is to shed further light on the fluid dynamics of low Pr
rotating convection via combined laboratory–numerical experiments. We follow up on
our previous experimental investigation, Aurnou et al. (2018), in which low Pr rotating
convection was investigated by means of point-wise temperature measurements in the bulk
and at the sidewall of a cylindrical convection vessel. The thermal measurements indicated
that convection sets in first via oscillatory modes, in good agreement with theory (Zhang
& Liao 2009). At slightly higher supercriticalities, wall modes were detected that coexisted
with the oscillatory bulk modes. Furthermore, broadband turbulence was inferred to
develop well below the onset of steady convection modes. Hence, the quasi-steady
convective Taylor columns that dominate rotating convection at Pr � 1 were not found
to dominate in these Pr � 1 experiments, in agreement with Horn & Schmid (2017).

Considering the potential importance of this finding with respect to the flow structures
that underlie planetary dynamo generation, here we extend our low Pr rotating convection
experimental system to include velocity measurements by means of ultrasound Doppler
velocimetry (UDV) and complement our laboratory experiments with direct numerical
simulation results. We investigate a parameter range comparable to the thermometric
experiments of Aurnou et al. (2018). Our UDV and DNS results demonstrate that
the thermal–inertial oscillatory convection velocities simultaneously attain rotationally
dominated thermal wind values, uTW = αgΔT/(2Ω), and near free-fall values, uff =√

αgΔTH, for which thermal buoyancy is transferred completely into fluid inertia (cf.
Aurnou, Horn & Julien 2020). Multi-modal bulk oscillations dominate the velocity field
over the whole range of supercriticalities investigated. Additionally, coherent time-mean
zonal flows and time-mean helicity are found in the rotating liquid metal convection,
showing that the essential ingredients for dynamo generation (Roberts 2015) are already
present in oscillatory, low Pr rotating convection.
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2. Onset predictions for low Pr rotating convection

In rotating systems, thermal buoyancy has to overcome the stabilizing effect of the
Coriolis force in order to initiate convective flow instabilities. The critical Rayleigh
number Rac for the onset of convection increases with decreasing Ek (Chandrasekhar
1961). Convective instability sets in first via bulk thermal–inertial oscillations – not wall
modes and not steady columns – in fluids with Pr ≤ 0.68 and Ek � 10−7 (Horn & Schmid
2017; Aurnou et al. 2018). These oscillations can be described by a balance between the
inertial, Coriolis and pressure gradient forces (Zhang & Liao 2017). In a horizontally
infinite plane (∞), the oscillatory (O) convection is predicted to first develop, or onset,
at

Ra∞
O � 17.4(Ek/Pr)−4/3. (2.1)

See Chandrasekhar & Elbert (1955), Chandrasekhar (1961), Julien & Knobloch (1998)
and Zhang & Roberts (1997). The oscillation frequency at the onset of this oscillatory
convection is

f̃ ∞
O = f ∞

O / fΩ � 4.7(Ek/Pr)1/3. (2.2)

Frequencies marked with a tilde are normalized by the characteristic rotation frequency
fΩ = 1/TΩ = Ω/(2π) throughout this work, i.e. f̃ ≡ f / fΩ . The horizontal length scale of
the oscillatory mode, measured perpendicular to the rotation direction ẑ, is given by

�∞
O � 2.4(Ek/Pr)1/3H. (2.3)

There exist asymptotic predictions for finite cylindrical (cyl) fluid volumes at low Pr and
Ek from Zhang & Liao (2009). Their equations (4.21) and (4.22) yield more accurate
estimates for the onset Rayleigh number Racyl

O and the oscillation frequency f̃ cyl
O . Both

values approach the values estimated with (2.1) and (2.2) as Ek → 0, but far more
slowly than in Pr > 1 fluids (Goldstein et al. 1994). In this study, we define convective
supercriticality as

R̃a = Ra/Racyl
O , (2.4)

such that R̃a > 1 for convection to onset.
The sidewalls of a cylindrical container can help to overcome the stabilizing effect of

rotation, leading to the formation of wall modes (Ecke et al. 1992; Herrmann & Busse
1993; Kuo & Cross 1993; Zhang & Liao 2017). The onset of convective wall modes is
predicted to occur at (Zhang & Liao 2009)

RaW � 31.8Ek−1 + 46.6Ek−2/3, (2.5)

and they travel in the retrograde azimuthal direction with a drift frequency of

f̃W � 132.1(Ek/Pr) − 1465.5(Ek4/3/Pr). (2.6)

The higher-order correction terms in (2.5) and (2.6) were derived by Zhang & Liao (2009)
to account for no-slip boundary conditions, building on the free-slip formulations of
Herrmann & Busse (1993). Both studies assume a semi-infinite domain such that there
is zero curvature of the sidewall. Both sets of predictions are shown to be accurate for
Ek � 10−3 in the current cylindrical set-up with Γ = 1.87 (Horn & Schmid 2017). Horn
& Shishkina (2015) also showed good agreement with these predictions in a Pr = 0.8
set-up with Γ = 0.5. For even smaller aspect ratios, however, curvature effects become
important, leading to notably higher RaW values (unpublished DNS).
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Since wall modes form on the thermally passive sidewalls of cylindrical containers, they
do not have an exact equivalent in spherical geometries (e.g. Aurnou et al. 2018). However,
in a recent experimental study it has been argued that slowly oscillatory, wall-mode-like
flows form at the virtual boundary of the tangent cylinder, which is the virtual cylinder
circumscribing Earth’s solid inner core and aligned with the axis of rotation (Aujogue
et al. 2018).

The onset of steady convection is predicted, for Ek � 1, when the Rayleigh number
exceeds the critical value

Ra∞
S � 8.7Ek−4/3, (2.7)

with horizontal length scale

�∞
S � 2.4Ek1/3H, (2.8)

see Chandrasekhar (1961) and Julien & Knobloch (1998).
A comparison of the onset conditions of the different low Pr rotating convective modes

shows that the bulk oscillatory convective instability sets in before the wall modes and
well before the onset of stationary convection in our experiments. Here, Ra∞

S /Racyl
O ≈ 20,

whereas our highest supercriticality experimental case occurs at R̃a = Ra/Racyl
O = 15.7.

Thus, we investigate the properties of bulk oscillatory convection and drifting sidewall
convective modes, without the effects of the stationary convection modes that typically
dominate higher Pr rotating convection systems.

3. Laboratory–numerical system

3.1. Laboratory set-up
Figure 1(a) shows a schematic drawing of the experimental set-up. The experiments were
performed in a cylindrical vessel having an inner height of H = 98.4 mm and inner radius
of R = 98.4 mm which gives an aspect ratio of Γ = 2R/H = 2. The sidewall is made
of stainless steel and several layers of thermal insulation. The bottom plate is made of
copper that is heated from a non-inductively wound electrical heatpad, whereby the input
power ranges from P = 50 W to 800 W in this study. The heat is removed from the top
copper plate by a circulating water bath. The whole set-up is mounted on a turntable that
allows for a rotation around the upright axis of the cylindrical vessel. We investigated four
rotation rates: 4.08 r.p.m., 8.16 r.p.m., 16.33 r.p.m. and 32.66 r.p.m., corresponding to
Ek = 4 × 10−5, 2 × 10−5, 1 × 10−5 and 5 × 10−6, respectively. The experimental set-up is
similar to that described in Aurnou et al. (2018), except for their use of an acrylic sidewall
material. A detailed description of the device can be found in King et al. (2012).

The container is filled with the liquid metal gallium. The material properties of gallium
were adopted from Aurnou et al. (2018). It has a melting temperature of Tmp = 29.8 ◦C,
with a melting point density of ρmp = 6.09 × 103 kg m−3. The thermal conductivity is k =
31.4 W (mK)−1, the thermal expansion coefficient is α = 1.25 × 10−4 K−1 and the specific
heat capacity is cp = 397.6 J (kgK)−1. The dynamic viscosity of gallium is described
by μ = μ0 exp(Ea/RT), whereby μ0 = 0.46 mPa s−1 is the viscosity coefficient, Ea =
4000 J mol−1 is the activation energy and R = 8.3144 J (mol K)−1 is the gas constant.
Typical kinematic viscosity and thermal diffusivity values in our experiments are ν =
μ/ρ = 3.4 × 10−7 m2 s−1 and κ = k/(ρ cp) = 1.3 × 10−5 m2 s−1, corresponding to a
characteristic Prandtl number value of Pr � 0.026.
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FIGURE 1. Schematic of the experimental set-up (a) and the UDV Sensor positions for
(b) the axial velocity and (c) the chord velocity measurements. (d) Photograph of the
experimental set-up without sidewall insulation in place. Image credit: Y. Xu (UCLA).

3.2. Measuring technique
The main experimental results in this study are provided by spatio-temporal velocity
recordings based on UDV. The UDV technique uses short ultrasound bursts that are
transmitted from a piezo-electric transducer into the liquid metal (figure 2). After each
burst, the transducer acts as a receiver that detects echoes emitted from microscopic
impurities contained in the liquid metal. These impurities are primarily oxides that exist in
non-precious liquid metals like gallium and do not need to be added. The pulse emission
and the subsequent echo recording are repeated periodically. This allows one to calculate
the distance x between particles and transducer based on the time delay τ between an
emitted burst and its echo

x = csτ/2, (3.1)

where cs is the fluid’s speed of sound. If the particle moves with the fluid between two
bursts, the position change is related to the velocity as follows

x2 − x1 = cs(τ2 − τ1)/2 = ux/ fp, (3.2)

where fp is the pulse repetition frequency of the ultrasonic wavepackets. Since the time
difference (τ2 − τ1) is typically rather small, the measuring system instead utilizes the
more easily measured phase shift

δ = 2π fe(τ2 − τ1), (3.3)

where fe is the emitted ultrasound frequency. From (3.2) and (3.3), the particles
beam-parallel velocity is calculated as

ux = csδ fp/(4π fe). (3.4)

Ultrasonic Doppler velocimetry is a well-established tool to measure velocity profiles
in opaque fluids such as liquid metals (see Aubert et al. 2001; Brito et al. 2001; Eckert
& Gerbeth 2002; Gillet et al. 2007; Nataf et al. 2008; Vogt et al. 2013; Vogt, Räbiger
& Eckert 2014; Tasaka et al. 2016; Vogt et al. 2018a,b). The UDV system employed in
this study is the DOP3010 (Signal Processing SA, Lausanne), equipped with fe = 8 MHz
piezo-electric transducers. One transducer is located in the top copper plate at r/R = 0.7
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(x2; τ2)

(x1; τ1)uy
ux

Ultrasound-transducer
Ultrasound-bursts Microscopic particle

fp fe

FIGURE 2. Ultrasonic Doppler velocimetry schematic. The pulse repetition frequency is fp, the
frequency of the ultrasound burst is fe and ux and uy are the velocities parallel and perpendicular
to the ultrasonic beam, respectively. The distance from the ultrasound transducer is xi at
measurement time τi.
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FIGURE 3. Schematic representation of expression (3.5), which relates the distance along
chord-probe beam c and the radial coordinate r.

and measures the vertical velocity (figure 1b). A second transducer is located halfway up
the vessel and measures the velocity along a chord that crosses the beam of the vertical
transducer in the midplane (figure 3).

The chord is related to the radius as follows:

c
C

= A ± a
2A

=
√

R2 − (0.7R)2 ±
√

r2 − (0.7R)2

2
√

R2 − (0.7R)2
. (3.5)

The measuring system records velocity profiles with a temporal resolution of ∼0.3 s. The
spatial resolution is ∼1 mm in the beam direction and ∼5 mm in the lateral direction due
to the diameter of the ultrasound emitting piezo.

The experiment is also equipped with a total of 30 thermistors with six thermistors
embedded in the top plate and six embedded in the bottom plate, which measure
the temperature drop across the fluid layer. One thermistor is immersed in the liquid
metal bulk, whose data are used in temperature Fourier transformations. The remaining
seventeen thermistors are attached on the outside of the stainless steel sidewall, similar to
Aurnou et al. (2018). All temperature data are acquired at a 10 Hz sampling rate.

3.3. Direct numerical simulations
DNS are performed using the fourth-order accurate finite volume code GOLDFISH
(Shishkina et al. 2015; Horn & Schmid 2017). In the DNS, the non-dimensional,
incompressible Navier–Stokes equation are numerically solved together with the
temperature equation in the Oberbeck–Boussinesq approximation:
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∇ · u = 0, (3.6a)

Dtu =
√

Pr
Ra

∇2u − ∇p −
√

Pr
Ra Ek2

êz × u + T êz, (3.6b)

DtT =
√

1
Ra Pr

∇2T. (3.6c)

The reference scales for the DNS non-dimensionalization are the temperature difference
ΔT , the fluid layer height H and the free-fall velocity uff = √

αgΔTH. The top and bottom
boundaries are perfectly isothermal and the sidewall is thermally insulating; no-slip,
impenetrable velocity boundary conditions are enforced on all walls. The focus of the
numerical analysis is on a single canonical case with Pr = 0.025, Γ = 1.87, Ra = 8 × 106

and Ek = 5 × 10−6, corresponding to R̃a = 2.30. Complementary analyses of this DNS
have been published previously (Horn & Schmid 2017). Here, we continued this simulation
to save snapshots at a finer sampling rate of 10 snapshots per free-fall time unit to produce
synthetic Dopplergrams with a comparable temporal resolution as the experiments. All
data analysed in this paper originate from this new data set. The slight mismatch of Γ
between DNS and laboratory experiments appears to have only a minor effect and still
allows for good quantitative comparison with laboratory experiments (e.g. Vogt et al.
2018a).

4. Results

4.1. Global heat and momentum transport
Laboratory experiments are made at four different Ek, with the highest R̃a achieved in the
highest Ek cases. All data are recorded during the equilibrated state in which the mean
fluid temperature is constant. Figure 4(a) shows the measured convective heat transfer,
expressed non-dimensionally in terms of the Nusselt number, which is the ratio of the total
vertical heat flux Qtot = P/(πR2) and the purely conductive heat flux Qcond = kΔT/H

Nu = PH/(πkΔTR2), (4.1)

plotted as a function of supercriticality R̃a. It was shown by Aurnou et al. (2018) that
experiments at different Ekman numbers can be best compared if they are plotted versus
the supercriticality R̃a. This is confirmed by our experiments as shown in figure 4(a).
Although we used less sidewall insulation in this suite of experiments, good agreement is
found between our present Nu data and those of Aurnou et al. (2018).

Four different states can be identified in the range of R̃a considered. At R̃a ≤ 1
the system is subcritical and the heat transfer is purely conductive. Convection sets in
at R̃a � 1 in the form of thermal–inertial oscillations in the fluid bulk. Wall modes develop
at R̃a � 2, leading to an increased heat transport scaling efficiency. Above R̃a � 4, the
determination of individual modes becomes difficult since the flow and temperature fields
are increasingly determined by broadband thermal and velocity signals. The onset of
steady bulk convection is predicted at R̃a = RaS/Racyl

O ≈ 20, which is beyond the range
of supercriticalities investigated in this study.

Figure 4(b) shows UDV measurements in liquid metal rotating convection. Figure 4(b)
presents Reynolds numbers, Rez,max = uz,max H/ν, calculated using the peak velocity depth
averaged over the range 0.45 < z/H < 0.55 on the vertical ultrasonic transducer located at
a radial position r/R ≈ 2/3 (see figure 1b). These raw Rez,max data are not well collapsed,
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FIGURE 4. (a) Nusselt number, Nu, plotted as a function of convective supercriticality R̃a. The
corresponding Ekman numbers are indicated with the symbol colour. The abbreviation O denotes
oscillatory bulk, W denotes wall modes and BBT stands for broadband turbulence. (b) Reynolds
number Rez,max based on the vertical velocity maximum versus R̃a.

and instead are separated by their Ek-values with light blue, low Ek values at the top of
the data and dark blue, high Ek values at the bottom of the data. However, for all the data
beyond R̃a � 1.2, we find Rez,max > 103. Thus, rather intense flows develop just after the
onset of convection, as characteristic of low Pr fluids (Clever & Busse 1981; Grossmann
& Lohse 2008; Calkins et al. 2015; Vogt et al. 2018a).

4.2. Velocity scalings
Figure 5(a) plots the vertical UDV data normalized with the free-fall velocity uff =√

αgΔTH, which is the upper bounding velocity in an inertially dominated convection
system (e.g. King & Aurnou 2013). The first measurable flow appeared at R̃a = 1.002 and
reaches velocity values of uz,max/uff � 0.1 for R̃a > 1. The data suggest a uz,max/uff ∝
R̃a

2/3
power-law trend for R̃a > 2. Interestingly, the vertical velocities already reach

50 % of the free-fall velocity estimate, uz,max/uff = 0.51, in our moderately supercritical
R̃a = 15.7 case. This demonstrates that strongly inertial flows develop in moderate R̃a,
low Pr rotating convection experiments.

Figure 5(b) shows the uz,max data normalized by the maximum velocity scaling,
ReRBC

max = 0.99(Ra/Pr)0.483, for the non-rotating Pr ≈ 0.026 Rayleigh–Bénard convection
experiments carried out by Vogt et al. (2018a) in the same experimental set-up. The
highest supercriticality case attains nearly the same maximum velocity as found in
non-rotating RBC at the same Ra, uz,max = 0.94 uRBC

max . It remains unknown whether
oscillatory convection velocities can exceed the near free-fall low Pr RBC velocities, or if
the velocity scaling will flatten out such that uz,max � uRBC

max in higher supercriticality cases.
Figure 5(c) plots uz,max normalized by the thermal wind velocity, uTW = αgΔT/(2Ω),

which should be the dominant flow velocity when the dynamics is strongly controlled by
the system’s rotation. With this normalization, all the data are clustered in the vicinity of
unity (0.7 < uz,max/uTW < 1.8) (e.g. Aurnou et al. 2020), showing that the thermal wind
scaling holds well. Comparing figures 5(a) and 5(c) shows that our thermal–inertial flows
are simultaneously in thermal wind balance and in inertial balance. Thus, these Ra <

Ra∞
S , low Pr flows are well described by a Coriolis–inertial–Archimedean (CIA) triple

balance, as is argued to be relevant in planetary core bulk dynamics (e.g. Aubert et al.
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FIGURE 5. Normalized maximum vertical UDV velocities, uz,max , plotted versus convective
supercriticality R̃a. (a) uz,max normalized by the inertial free-fall velocity uff = √

αgΔTH.
(b) uz,max normalized by the maximum velocity scaling in the non-rotating liquid gallium RBC
experiments of Vogt et al. (2018a). (c) uz,max normalized by the thermal wind velocity uTW =
αgΔT/(2Ω). (d) Estimated local Reynolds number based on uz,max and the bulk oscillatory
length scale estimate �∞

O ∼ (Ek/Pr)1/3H. (e) Estimated local Rossby number based on uz,max
and �∞

O . ( f ) Estimated local Reynolds number based on uz,max and the approximate Ekman layer
thickness �Ek ∼ Ek1/2H.

2001; Christensen & Aubert 2006; Jones 2011; King & Buffett 2013; Gastine et al. 2016;
Long et al. 2020).

CIA dynamics implies that the UDV data should collapse using a thermal wind based,
local Reynolds number, since the lateral width of the bulk convective modes is the
dynamically relevant scale in rapidly rotating vorticity dynamics (e.g. Calkins 2018).
This local Reynolds number should scale linearly with the convective supercriticality
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(Maffei et al. 2020)

Re� = uTW�∞
O

ν
∼ RaEk4/3

Pr4/3
∼ R̃a. (4.2)

Figure 5(d) tests (4.2) by plotting Rez,max(Ek/Pr)1/3 ≈ Re� versus R̃a. The best fit to
the R̃a > 2 data is in good agreement with the linear scaling prediction of (4.2), in
further support that our flows exist in a thermal–inertial, CIA-style balance. For ease
of cross-comparison, expression (4.2) can be converted to its system scale counterpart,
yielding

Re = Re�

H
�∞

O
∼ Ra Ek

Pr
, (4.3)

in agreement with Guervilly et al. (2019), Maffei et al. (2020) and Aurnou et al. (2020).
In contrast to figure 5(d), the uz,max measurements are not well collapsed by the

system-scale Rossby number, Roz,max = uz,max/(2ΩH), which estimates the ratio of flow
inertia and system-scale Coriolis force and whose values lie in the range 3 × 10−3 �
Roz,max � 3 × 10−1. The Ro data are spread out nearly as strongly as the Rez,max data
in figure 4(b). In figure 5(e), we instead test how the local thermal wind based Rossby
number,

Ro� = uTW/(2Ω�∞
O ) ∼ RaEk5/3Pr−2/3 ≈ uz,max/(2Ω�∞

O ), (4.4)

scales with R̃a. The UDV data are moderately well collapsed by the scaling Ro� ∝ R̃a
5/4

.
This best fit scaling can be explained by noting that R̃a

5/4 ∼ Ra5/4(Ek/Pr)5/3. Thus,
Ro�/R̃a

5/4 ∼ Ra−1/4Pr, which is independent of Ek. Since Pr is nearly fixed in our
experiments, this ratio varies only with Ra−1/4. With Ra only varying by roughly a decade
(table 1), we argue that the data will depart from the Ro� ∼ R̃a

5/4
scaling by less than a

factor of approximately 101/4 = 1.8, in adequate agreement with the scatter in figure 5(e).
Similarly structured arguments can be used to qualitatively interpret the R̃a

2/3
best fit

scaling in figure 5(a). Again assuming uz,max ≈ uTW , we find that (uz,max/uff )/R̃a
2/3 ∼

Ra−1/6Ek1/9Pr7/18, which varies only weakly across our experimental data range.
We note further that the figure 5(e) data lie in the 0.1 � Ro� � 1 range. In this Ro� =

O(1) regime, the thermal wind and free-fall velocities should be comparable (Aurnou et al.
2020), which explains why these low Pr rotating convection velocities are approaching the
non-rotating free-fall limit.

Figure 5( f ) plots the local Reynolds number based on the Ekman boundary layer
thickness, λEk � Ek1/2H. This yields Rez,max λEk/H = Rez,max Ek1/2. One might assume
that the thermal–inertial data would be insensitive to viscous boundary layer processes.
However, the data in figure 5( f ) are fairly well collapsed by Rez,max Ek1/2. This suggests,
that the effects of Ekman boundary layers and viscous dissipation are not negligible in
these low Pr rotating convection experiments (cf. Stellmach et al. 2014; Julien et al. 2016;
Plumley et al. 2016, 2017; Maffei et al. 2020).

Figure 6 compares vertical and chord-probe velocities, uz and uc, respectively. The
filled circles show maximum velocity values and the triangular symbols mark the root
mean square values. The velocity values were each averaged in an approximately 10 mm
wide measuring window centred at the half-height of the cylinder (0.45 ≤ z/H ≤ 0.55)
or around the midpoint of the chord (0.45 ≤ c/C ≤ 0.55). If the vertical oscillations are
described by a sinusoidal oscillation (as is expected at onset Chandrasekhar 1961; Julien
& Knobloch 1998), then the maximum and root mean square (r.m.s.) values would be
related via uz,max = √

2 uz,rms. This, however, is not the case. The typical factor between
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Ek ×
10−5

Ra ×
106 R̃a Pr

Ω

(rad s−1) P (W)
ΔT
(K) Nu Rez,max

uff
(mm s−1)

uz,rms
(mm s−1)

uz,max

(mm s−1)
uc,max

(mm s−1)

4 0.96 3.40 0.027 0.42 50 3.75 1.38 1321 21.28 1.5 4.6 2.8
4 1.43 5.10 0.027 0.42 100 5.59 1.84 — 25.97 — — —
4 1.43 5.10 0.027 0.42 100 5.59 1.84 1577 25.97 1.7 5.4 —
4 2.12 7.56 0.027 0.42 200 8.17 2.51 — 31.39 — — —
4 2.12 7.56 0.027 0.42 200 8.17 2.51 2856 31.39 2.9 9.9 10.6
4 3.10 11.04 0.027 0.42 400 11.85 3.47 3817 37.82 4.2 13.2 —
4 3.10 11.04 0.027 0.42 400 11.85 3.47 4466 37.82 4.8 15.4 16.1
4 4.42 15.74 0.027 0.42 800 16.87 4.80 6678 45.12 6.8 23.1 23.6
2 1.17 1.82 0.027 0.84 50 4.58 1.13 1024 23.51 1.0 3.5 —
2 1.97 3.07 0.027 0.84 100 7.63 1.36 1676 30.35 1.5 5.8 4.6
2 1.99 3.10 0.027 0.84 100 7.70 1.35 1588 30.48 1.6 5.5 —
2 3.07 4.80 0.027 0.84 200 11.73 1.75 2434 37.62 2.1 8.4 8.6
2 3.07 4.79 0.027 0.84 200 11.73 1.75 2471 37.62 2.4 8.5 6.5
2 4.64 7.25 0.026 0.84 400 17.53 2.35 4531 46.00 4.3 15.7 16.0
2 4.60 7.18 0.026 0.84 400 17.38 2.37 4273 45.79 3.3 14.8 —
2 6.67 10.41 0.026 0.84 800 25.02 3.25 5472 54.94 5.7 18.9 21.3
2 6.67 10.41 0.026 0.84 800 25.02 3.25 5536 54.94 5.8 19.1 21.8
1 1.58 1.06 0.027 1.71 60 6.14 1.04 772 27.22 0.8 2.7
1 2.33 1.58 0.027 1.71 100 9.01 1.14 — 32.98 — —
1 2.34 1.58 0.027 1.71 100 9.05 1.15 1276 33.04 1.1 4.4 1.0
1 3.46 2.34 0.027 1.71 150 13.16 1.21 1639 39.85 1.1 5.7 —
1 3.46 2.34 0.027 1.71 150 13.19 1.19 2106 39.89 1.6 7.3 3.8
1 3.48 2.35 0.027 1.71 150 13.27 1.19 1551 40.01 1.6 5.4 3.1
1 3.48 2.35 0.027 1.71 150 13.27 1.19 1292 40.01 1.5 4.5 —
1 4.17 2.82 0.026 1.71 200 15.78 1.30 1968 43.63 1.7 6.8 4.5
1 6.81 4.60 0.026 1.71 400 25.30 1.63 3301 55.26 3.1 11.4 —
1 6.87 4.64 0.026 1.71 400 25.51 1.62 3247 55.48 3.1 11.2 13.7
1 10.2 6.91 0.025 1.71 800 37.41 2.18 4987 67.19 4.5 17.2 —
1 10.2 6.93 0.025 1.71 800 37.49 2.17 5522 67.25 4.9 19.1 18.4
0.5 3.01 0.87 0.027 3.42 108 11.53 1.03 — 37.30 — —
0.5 3.47 1.00 0.027 3.42 127 13.20 1.05 558 39.92 0.8 1.9
0.5 4.05 1.17 0.027 3.42 150 15.49 1.07 1380 43.23 1.4 4.8 1.0
0.5 5.25 1.52 0.026 3.42 200 19.83 1.10 1807 48.92 1.8 6.2 2.0
0.5 6.63 1.92 0.026 3.42 256 24.86 1.12 2108 54.77 2.1 7.3 3.2
0.5 7.26 2.10 0.026 3.42 300 27.33 1.15 2072 57.43 2.1 7.2 3.1

0.5 7.71 2.23 0.026 3.42 325 28.88 1.17 2412 59.04 2.2 8.3 4.4
0.5 8.00 2.30 0.025 3.51 312 30.27 1.21 2414 60.43 2.2 8.4 5.3

0.5 8.25 2.38 0.026 3.42 340 30.55 1.21 2421 60.72 2.1 8.4 4.7
0.5 8.35 2.41 0.026 3.42 350 31.05 1.21 1970 61.21 2.1 6.8 4.1
0.5 9.10 2.63 0.025 3.42 400 33.22 1.24 — 63.31 — — —
0.5 9.10 2.63 0.025 3.42 400 33.22 1.24 2414 63.31 2.3 8.3 —
0.5 9.10 2.63 0.025 3.42 400 33.22 1.24 — 63.31 2.2 — —
0.5 12.6 3.65 0.025 3.42 600 45.82 1.40 3373 74.36 3.2 11.7 10.4

TABLE 1. Parameters for the Γ = 2 laboratory experiments and the Γ = 1.87 DNS. The first
three columns show the derived non-dimensional control parameters: Ekman number Ek,
Rayleigh number Ra and supercriticality R̃a = Ra/Racyl

O . The next three columns show the
measured dimensional control parameters: angular velocity Ω , applied heating power P and
vertical temperature difference ΔT . Columns 7 and 8 show the Nusselt number Nu and the
Reynolds number based on the maximum vertical velocity Rez,max . The last four columns
show the calculated free-fall velocity uff , the UDV root mean square vertical velocity uz,rms,
the maximum vertical velocities uz,max and chord velocities uc,max . Missing values are due to
insufficient UDV signal quality. The horizontal lines mark the canonical laboratory case and the
DNS case (in italics). The numerical data were rescaled using the material parameters of gallium
(see § 3.1) and the cylinder height H = 98.4 mm.
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FIGURE 6. UDV measurements of maximum (circle) and root mean square (triangle) velocities
as a function of convective supercriticality R̃a = Ra/Racyl

O . (a) Vertical velocities, uz, depth
averaged over 0.45 ≤ z/H ≤ 0.55. (b) Chord velocities, uc, spatially averaged over 0.45 ≤
c/C ≤ 0.55. (c,d) Show the ratio of the chord velocity and vertical velocity for (c) maximum
values and (d) root mean square values, and demonstrate that the vertical and horizontal kinetic
energies are roughly similar in the broadband turbulence regime.

the maximum and r.m.s. values is closer to 3.5 (see table 1), implying that these are no
longer simple sinusoidal oscillations. The same holds for the chord velocity values.

Figures 6(c) and 6(d) show that the vertical and horizontal velocity magnitudes are of
the same order of magnitude across our entire range of experiments, and are within �30 %
of one another in the broadband turbulence regime. This equipartitioning of vertical
and horizontal kinetic energies, u2

z ∼ u2
c , in our low Pr, Ra < Ra∞

S oscillatory cases is
qualitatively similar to the equipartitioning found in the Pr ∼ 1 non-magnetic rotating
convection DNS of Stellmach & Hansen (2004) and Horn & Shishkina (2015) and in the
rapidly rotating asymptotically reduced models of Julien et al. (2012).

4.3. Spectra
Spectral analyses of the temperature and velocity time series allow us to characterize
the spatio-temporal modal content of our experimental results. First, we will look at the
temperature spectra. The temperature spectral analysis concentrates on two thermistors
located at half-height of the fluid layer, z = H/2. One thermistor, denoted T2/3, is located
in the fluid bulk at a radial position r/R ≈ 2/3. The other is attached to the exterior of the
stainless steel sidewall of the vessel at r/R = 1.05, and is denoted TSW . The spectra of these
thermistors are shown in figure 7(a,b) for a constant Ek = 5 × 10−6 and R̃a = (1.002, 2.23
and 3.65). The spectrum at the lowest supercriticality case at R̃a = 1.002 shows a clear
peak at the predicted value f̃ cyl

O on thermistor T2/3 (figure 7a). In contrast, the spectrum at
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FIGURE 7. Amplitude of the Fourier transforms of temperature and velocity signals versus
normalized frequency f̃ = f / fΩ . The Ekman number is Ek = 5 × 10−6 and the supercriticality
R̃a is indicated by the line colour. All spectra are evaluated on the midplane, z/H = 1/2.
(a) Temperature spectra measured with a thermistor situated within the fluid bulk at r/R = 2/3.
(b) Temperature spectra measured on the cylindrical tank’s outer sidewall at r/R = 1.05. (c)
Vertical velocity spectra measured at r/R = 2/3. (d) Chord velocity spectra evaluated in the
vicinity the the sidewall. Vertical dashed lines indicate the onset frequency for wall modes
f̃W = 0.024 and bulk oscillations f̃ cyl

O = 0.274.

the sidewall, shown in figure 7(b), does not show a pronounced peak for R̃a = 1.002. The
spectrum at R̃a = 2.23 reveals a clear peak on both thermistors at the predicted wall-mode
frequency f̃W . The peak related to the oscillatory convection has become broader and
shifted towards higher frequencies. The spectrum at R̃a = 3.65 shows further evidence
for wall modes and oscillatory convection in figure 7(a). Both peaks have shifted towards
higher frequencies with respect to the predicted frequency at onset. Additionally, the width
of the frequency peak around f̃ cyl

O has further expanded. A comparison of figure 7(a,b)
shows that the fluid bulk is dominated by oscillatory convection whereas the wall modes
remain dominant in the vicinity of the sidewall.

Figures 7(c) and 7(d) show the corresponding velocity spectra, which are evaluated
at two locations comparable to the thermistor positions in figure 7(a,b). The velocity
spectra in figure 7(c) were recorded with the UDV transducer that measures the vertical
velocity at a radial position r/R = 2/3. The velocity data are depth averaged over
0.45 < z/H < 0.55. A comparison of the corresponding figures 7(a) and 7(c) reveals a
qualitative agreement of the peak frequency f̃ cyl

O . In contrast, wall-mode peaks are evident
in the T2/3 spectra but not in the uz,2/3 spectra. These wall mode signatures are visible
in the temperature spectra and not in the velocity spectra due to the low Pr nature of
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the fluid. All the wall modes signatures exponentially decay inwards from the sidewall, but
the thermal signatures extends much farther into the fluid bulk than the velocity signatures
since κ � 40 ν in gallium (Horn & Schmid 2017; Aurnou et al. 2018).

Figure 7(d) shows velocity spectra recorded with the chord probe and evaluated in
the vicinity of the sidewall (0.05 ≤ c/C ≤ 0.07). The uc spectra show evidence for
wall modes, although they are much less well pronounced than in the temperature
spectra.

The relative height that a fluid element travels during one convective oscillation can be
roughly approximated by assuming a sinusoidal vertical motion, δz/H = uz,rms/(2 f cyl

O H).
We take characteristic values of f cyl

O = 0.125 Hz and uz,rms � 2.2 mm s−1 for the
experiments in the oscillatory regime 1 ≤ R̃a ≤ 2. This gives a relative travel distance
of δz/H ≈ 0.09, such that the fluid traverses approximately 10 % of the fluid layer depth
over its oscillatory path. Since this implies that thermal anomalies are not advected
vertically across the entire layer, these oscillatory modes should be relatively inefficient
in transporting heat (see figure 4a). Figures 4(b) and 5(a) show that, even though the low
Pr oscillatory modes are thermally inefficient, they generate relatively high flow velocities
that approach uff even at relatively low supercriticalities (e.g. Ra < Ra∞

S ).

4.4. Canonical case
In this section, we focus on the flow field in the R̃a = 2.23 laboratory case and the
corresponding R̃a = 2.30 DNS, both of which are in the multimodal regime with
coexisting bulk oscillations and wall modes. The laboratory Dopplergrams presented in
figure 8(a,b) show the evolution of the vertical velocity for different time frames. The
ordinate is normalized by the fluid layer depth H, the abscissa is normalized with the
system’s rotation time TΩ and the velocity colour scale is normalized by the free-fall
velocity uff . A positive value of uz/uff represents an upwardly directed flow. A regular
oscillation over the entire cylinder height is clearly visible. The amplitude of the oscillation
is already in the range of uz/uff ≈ ±0.15, although this case is still moderately close to
onset. The oscillating axial velocity field differs significantly from the stationary columns
that appear in rotating convection at Pr ≥ 1 fluids, where coherent unidirectional flows in
the z-direction are observable (Stellmach et al. 2014).

Figures 8(c) and 8(d) show Dopplergrams of the chord velocity data. The measuring
depth, displayed on the ordinate, is normalized with the total length of the chord C.
The chord probe measures a combination of the cylindrically radial velocity ur and the
azimuthal velocity uφ (§ 3.2). The time-averaged velocity distribution along the chord
is approximately symmetrical around c/C = 0.5, which leads to the conclusion that
the mean radial flow component is negligible. This quasi-symmetry of the uc profiles
was observed in all measurements above R̃a ≥ 2. At the chord’s midpoint c/C = 0.5
(r = 0.7R), the UDV senses only the azimuthal velocity component, |uc| = |uφ|. At the
other measuring depths |uc| < |uφ| is valid because only the projection of uφ on the chord
is captured by the sensor.

The flow field near the sidewall, c/C ≈ 0; 1, is dominated by retrograde (opposite
direction as the applied Ω) azimuthal flows (uc < 0). The middle range of the chord
is dominated by prograde (same direction as the applied Ω) velocities (uc > 0). The
range of velocities in the chord direction is comparable to the velocity range in vertical
direction. When looking at the near wall region of the chord measurement, a low
frequency oscillating behaviour becomes visible and indicates the presence of wall modes
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FIGURE 8. UDV Dopplergrams: spatio-temporal evolution of laboratory convection velocities
at Ek = 5 × 10−6 and R̃a = 2.23 (Ra = 7.7 × 106, Pr = 0.026, Γ = 2). (a,b) Vertical velocity
distribution along the cylinder height, where positive (red) values correspond to upwards directed
flows. (c,d) Velocity distribution along the chord, where positive values correspond to flows in
the direction of rotation (prograde). All velocity values are normalized by the free-fall velocity
uff = √

αgΔTH = 59 mm s−1 for this case.

(cf. figure 7b). The frequency of the wall modes is f̃W = 0.025, which compares well with
Zhang & Liao’s (2009) predicted value of f̃W = 0.024.

Figure 9 shows synthetic numerical Dopplergrams, constructed similarly to figure 8.
Figures 8 and 9 show good agreement between laboratory and DNS results, with both
containing oscillatory, coherent axial up- and downwelling velocities in the bulk as
well as wall modes on the lateral periphery of the domains. Notable differences exist,
however, in the regions near the sidewall. Both physical and metrological causes are
considered for these differences. The boundary conditions between experiment and the
DNS have minor differences in the aspect ratio and in the thermal boundary conditions.
While the sidewalls are thermally perfectly insulated in the numerical simulation, low
radial and axial heat fluxes through the stainless steel wall occur in the experiment.
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FIGURE 9. Synthetic Dopplergrams obtained from the R̃a = 2.30 DNS (Ek = 5 × 10−6; Ra =
8.0 × 106; Pr = 0.025; Γ = 1.87). The visualization scheme is identical to that of figure 8. The
thickness of the Ekman boundary layer is marked by the dashed λEk line just below the upper
boundary in (a). The thicknesses of the inner and outer Stewartson boundary layers are indicated
by the dashed λ1/3 = (2 Ek)1/3 lines and dot-dashed λ1/4 = (2 Ek)1/4 lines in (c,d). All velocity
values are normalized by the free-fall velocity uff = √

αgΔTH = 61 mm s−1 for this case.

Deviations in the thermal boundary conditions may influence the wall-mode properties,
since wall modes are sensitive to the thermal boundary conditions (e.g. Herrmann &
Busse 1993). A possible metrological explanation for the qualitative deviations between
figures 8(c,d) and 9(c,d) is the differing measuring volumes used in the UDV and the DNS
measurements. The UDV measurements have a cylindrical measuring volume which has
a beam diameter of ∼5 mm. The finite diameter of the UDV measuring volume leads to
a radial averaging of the velocities, especially in areas close to the curved sidewall. In
contrast, the synthetic numerical Dopplergrams measure the velocity distribution along an
ideal line of zero width. As a result, the wall modes are more pronounced in the numerical
Dopplergrams in comparison to the UDV measurements.
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The dashed horizontal line right at the top of figure 9(a) shows the thickness of
the Ekman boundary layer, λEk = Ek1/2H � 2 × 10−3H. The dashed and dot-dashed
horizontal lines in figure 9(c,d) show the respective inner and outer Stewartson boundary
layer thicknesses on the cylindrical sidewall

λ1/3 = (2Ek)1/3H and λ1/4 = (2Ek)1/4H, (4.5a,b)

see Stewartson (1957), Friedlander (1980) and Kunnen, Clercx & Van Heijst (2013). These
Stewartson layer predictions are in good qualitative agreement with the locations of the
sidewall flow structures.

Figure 10 shows velocity and helicity data along different horizontal cross-sections of
the R̃a = 2.30 DNS. Figure 10(a) shows a snapshot of the vertical velocity distribution
in a horizontal section at half-height of the cylinder, uz(r, φ, z = H/2)/uff . A positive
(red) velocity corresponds to an upward flow. The solid black line in the left half of the
image shows the radial profile of the time and azimuthal r.m.s. velocity, showing an almost
constant value in the bulk with a maximum located near the sidewall. The theoretical
predicted length scale of the vertical oscillations, �∞

O , is shown in the upper left quadrant.
Good agreement exists between this theoretical length scale to the observed size of the
flow structures in the bulk. The boundary between the oscillation-dominated bulk and
the wall-mode-dominated sidewall region correlates well with the λ1/4 outer Stewartson
boundary layer (dot-dashed circle). The maximum vertical velocity, on the other hand,
correlates well with the λ1/3 inner Stewartson layer (dashed circle). The wall modes have
an azimuthal wavenumber of m = 4 based on these uz data.

Figure 10(b) shows a snapshot of the midplane azimuthal flow field uφ(r, φ, z =
H/2)/uff . The solid black line in the left half of the image shows the time and
azimuthal averaged velocity profile. The azimuthal flow field is mainly dominated by wall
modes. The outermost regions show a prograde flow whose velocity maxima correlate
approximately with the λ1/3 inner Stewartson layer. Further away from the sidewall, there
exists a retrograde flow whose velocity minima correlate approximately with the λ1/4
outer Stewartson layer. The radial width of the wall modes in the azimuthal flow field
is larger than in the vertical velocity field, in good agreement with Kunnen et al. (2013).
The wall-mode wavenumber appears to be m = 8 in the azimuthal velocity data, but this
is a fallacy. The uφ component of the wall mode is antisymmetric with respect to the
midplane, resulting in an effective phase shift of half a wavelength between the upper and
lower hemicylinder. Due to the nonlinearity of the wall modes, however, signatures of the
wall-mode vortices from both hemicylinders are observable on the midplane. This results
in this apparent, but not factual, wavenumber doubling in figure 10(b). That nonlinear wall
modes do not have a sharp antisymmetry across the midplane was observed previously in
Horn & Schmid (2017) (see their figure 9(b) and supplementary movies 7 and 11).

Figures 10(c) and 10(d) show snapshots of the non-dimensional vertical helicity, hz =
uzωz, in the respective midplanes of the lower hemicylinder (z/H = 1/4) and of the upper
hemi-cylinder (z/H = 3/4). The time-azimuthal mean radial profiles of bulk vertical
helicity, 〈hz〉t,φ , are represented by the solid black lines in the left half of each image. The
profiles extend from r = 0 to r = R − λ1/4, since the sidewall flows generate far stronger
local |hz| signals that swamp the values in the fluid bulk. The bulk 〈hz〉t,φ profiles show that
low Pr oscillatory convection generates mean negative helicity in the lower hemi-cylinder
and mean positive helicity in the upper hemicylinder. This is qualitatively visualized in
panels (c) and (d), where positive (purple) patches dominate in the lower hemicylinder
shown in (c) and negative (green) patches dominate in the upper hemicylinder shown
in (d). The helicity values in figure 10(c,d) are normalized by u2

TW/�∞
O , yielding

instantaneous values that are O(±1) and time-mean bulk profiles having values of
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FIGURE 10. DNS: normalized instantaneous velocity and helicity distributions on different
horizontal cross-sections. The inner and outer Stewartson layers, λ1/3 and λ1/4, are marked
with a dashed and dot-dashed line, respectively; �∞

O indicates the oscillatory onset length scale
according to (2.3). (a) Vertical velocity uz at half-height; (b) azimuthal velocity uφ at half-height;
(c,d) helicity hz = uzωz at z/H = 1/4 and 3/4, respectively. The black curves in each panel
show the time-azimuthal mean of that quantity. In the near wall region, the normalized helicity
swings between −3.95 and 1.78 on the z/H = 1/4 plane. Comparable helicity values, with signs
reversed, are found on the z/H = 3/4 plane. Velocities in (a,b) are normalized by uff , whereas
helicities in (c,d) are normalized by u2

TW/�∞
O .

order ±0.1. This demonstrates that oscillatory convection in metals contains significant
helicity (cf. Roberts & King 2013).

This hemicylindrical time-mean helicity distribution is qualitatively similar to the
rotating magnetoconvection modelling results of Giesecke, Ziegler & Rüdiger (2005)
and the rotating convection models of Schmitz & Tilgner (2010). More quantitatively,
we find, using the water simulation with Pr = 6.4, Ek = 2 × 10−4, Ra = 2.6 × 106,
Γ = 2 from Horn & Schmid (2017), that the time-mean helicity is approximately 10
times greater than that of the turbulent liquid metal DNS presented here. The Pr = 6.4,
quasi-laminar (Rez,max = 115; Re�∞

S
= 15; Ro�∞

S
= 0.18; Ra = 2.7Ra∞

S ) helicity values
are likely comparable to the more turbulent (Rez,max = 2414; Re�∞

O
= 325; Ro�∞

O
= 0.09;

Ra = 2.23Racyl
O ) liquid metal DNS, when one considers that the steady Pr = 6.4 columns

will tend to lose their axial coherence in the quasi-geostrophic turbulence regime (Julien
et al. 2012; Aurnou et al. 2015). It remains an open question as to how the helicity varies
as a function of Pr in rapidly rotating strongly turbulent convection.
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FIGURE 11. UDV Dopplergrams for laboratory high supercriticality case at R̃a = 15.7 (Ek =
4 × 10−5, Ra = 4.4 × 106, Pr = 0.026, Γ = 2). (a) Vertical velocity distribution along the
cylinder height; (b) velocity distribution along the midplane chord. All velocity values are
normalized by the free-fall velocity uff = √

αgΔTH = 45.1 mm s−1 in this case.

The DNS flow field analyses support the idea of a fully self-consistent dynamo in the
oscillatory regime, as has also been proposed by Calkins et al. (2015, 2016b); Davidson
& Ranjan (2018). Helicity is an important ingredient in many dynamo systems (e.g.
Schmitz & Tilgner 2010; Soderlund, King & Aurnou 2012), where it is well known
that north–south hemispherical dichotomies in the helicity field can produce axial dipole
dynamo solutions (e.g. McFadden, Merrill & McElhinny 1988; Davidson & Ranjan 2015;
Moffatt & Dormy 2019). The hemicylindrical helicity dichotomy found here is not a
time-varying phenomenon. Therefore, low Pr oscillatory rotating convective flows contain
the essential kinematic ingredients for system-scale magnetic field generation.

4.5. Strongly supercritical case
Figure 11 shows UDV Dopplergrams for our highest supercriticality case (R̃a = 15.7).
The vertical velocity field in figure 11(a) is still dominated by vertical oscillations that
nearly extend over the entire fluid layer depth, even though the parameters for this case
are relatively far above onset. The frequency of the oscillations is, however, significantly
higher than in cases closer to Racyl

O (cf. figure 8b), and their appearance is less regular in
both space and time (Julien & Knobloch 1998; Horn & Schmid 2017; Aurnou et al. 2018).
The flow velocities reach ≈ 50 % of the free-fall velocity in both measured directions, and
≈ 95 % of the velocity scaling predictions from the liquid gallium RBC experiments of
Vogt et al. (2018a). The oscillatory convection velocities in our experiments correspond
to maximum Reynolds number of order Re ≈ 7 × 103, and are likely fully turbulent
even though Ra � 0.7Ra∞

S . The chord-probe data, shown in figure 11(b), show a strong
prograde motion close to the sidewall, whereas, on average, a retrograde flow exists in the
bulk. Thus, the azimuthal flow field has become inverted relative to that in figure 9. The
chord-probe velocity range and time scales are comparable to those in the vertical velocity
data, similar to the lower R̃a data in figures 8 and 9.
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FIGURE 12. Time-averaged chord-probe velocity profiles, uc, for different R̃a and Ek. The solid
line represents laboratory UDV data and the dotted line in panel (a) corresponds to the R̃a = 2.30
DNS. Positive values correspond to flow into the direction of rotation (prograde); the vertical
dashed lines indicate the thickness of the inner and outer Stewartson layers, λ1/3 and λ1/4,
projected onto c/C coordinates. The open circles indicate the proposed boundary zonal flow
(BZF) scaling Ra1/4Ek2/3 and the squares indicate a slightly modified Ra1/4(2Ek)2/3 scaling.

4.6. Zonal flows
Figure 12 shows time-averaged chord-probe UDV profiles, uc, for different R̃a and Ek. The
velocity distribution is plotted over the measuring distance 0 < c/C < 1/2. The accuracy
of the velocity profiles at the end of the measuring line at c/C = 1 is affected by multiple
reflections of the ultrasound signal on the curved sidewall. For this reason, we plot only
the first half of the approximately symmetrical profiles in figure 12. Panels (a) through (d)
show cases at successively higher Ek, corresponding to higher R̃a conditions. The colour
scale of each profile is selected such that green hues denote the oscillatory (O) regime;
red, pink and orange hues denote the wall-mode-dominated (W) regime; and blue hues
denote cases in the broadband (BBT) regime. The vertically dashed and dashed-dotted
lines indicate the inner and outer Stewartson layers, respectively.

Figure 12(a) displays the uc velocity profiles in the Ek = 5 × 10−6 cases, which
correspond to our lowest R̃a experiments. The green-hued curves, corresponding to the
oscillatory regime, show a weak prograde flow. The red-hued curves, corresponding to
the wall-mode regime, show increasing |uc| values. The R̃a = 2.30 DNS case synthetic uc
profile is demarcated via the dotted pink curve. The velocity amplitudes in the DNS are
larger compared to the experimentally determined profiles, especially near the sidewall
(c/C � 0.15). This difference is likely due to the thermal sidewall boundary conditions
and the finite width of the ultrasonic beam, which leads to an averaging effect that is
especially strong near the cylindrical sidewall (cf. § 4.4).
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The maximum of the prograde flow occurs near the wall, and is located in the vicinity
of the λ1/3 inner Stewartson layer, in good agreement with de Wit et al. (2020), Favier &
Knobloch (2020) and Zhang et al. (2020). In lower R̃a cases, a velocity minimum is located
near to the predicted λ1/4 outer Stewartson layer. In the bulk there is a prograde flow
observed in lower R̃a cases, but it changes into a retrograde flow in the R̃a ≥ 3.65 cases.
Qualitatively, the velocity distributions in the broadband regime (R̃a � 4) are all similar,
showing a maximum located at λ1/3 and a strong retrograde bulk flow whose intensity
increases with R̃a. The zero crossing point in the velocity profiles between the prograde
flow at the sidewall and the retrograde flow in the interior may correlate with λ1/4 in the
higher supercriticality cases shown in figures 12(c) and 12(d).

The strong sidewall circulations in figure 12 are called boundary zonal flows (BZFs),
following Zhang et al. (2020). They have been shown to be linked to nonlinear wall modes
processes and Stewartson boundary layer like behaviours (Favier & Knobloch 2020; de
Wit et al. 2020; Shishkina 2020). Our experiments are the first to show the existence of
BZF in low Pr fluid, and in the regime where steady convective modes are not yet viable
(Ra < Ra∞

S ). Thus, our results support the notion that BZFs are a universal feature of
rotating convective flows. Zhang et al. (2020) argued that the zero crossing, i.e. the first
instance away from the sidewall where 〈uφ〉t,φ = 0, is a measure of the radial thickness
of the BZF. In their Pr � 0.8. experiments in SF6, they found that the BZF defined as
such scales as Ra1/4Ek2/3; the entire BZF becomes thicker with increasing Ra at constant
Ek. This thickening of the BZF has been associated with wall modes becoming nonlinear
(Favier & Knobloch 2020). We demarcated Zhang et al. (2020)’s proposed Ra1/4Ek2/3

BZF scaling by the circles in figure 12. In our experiments this scaling always lines up
well with the peak prograde location of the BZF, near λ1/3. We argue that this alignment
likely occurs since R̃a = O(1) in our experiments. Taking Ra ∼ Rac yields

Ra1/4Ek2/3 ∼ ((Ek/Pr)−4/3)1/4Ek2/3 = (Ek Pr)1/3 ∼ λ1/3, (4.6)

which shows that Ra1/4Ek2/3 scales with the inner Stewartson layer thickness near
convective onset.

As an alternative, the square symbols in figure 12 denote Ra1/4(2Ek)2/3, based on the
argument that sidewall boundary thicknesses are usually better captured via a function of
ν/(ΩH) = 2Ek (Stewartson 1957; Kunnen et al. 2013). This second scaling only captures
the zero crossings for higher values of Ek; in the rapidly rotating, low Ek limit, these two
scalings will tend to converge towards λ1/3 as shown in (4.6). Thus, it is not clear from our
results that the existing scaling predictions adequately describe the scaling properties of
the BZF zero crossing points in our experimental data. Note that the Pr1/3 term in (4.6)
exists only in low Pr fluids. This suggests that experiments in which Pr is strongly varied
will be capable of determining the scaling behaviours of the BZF.

The strong retrograde azimuthal bulk flow in the R̃a > 4 cases may also indicate the
formation of a large-scale vortex (LSV). LSVs can develop by an inverse cascade in
which energy is transported from small to large scales. The occurrence of an inverse
cascade is favoured by a two-dimensionality of the large-scale flow field (Kraichnan 1967;
Boffetta & Ecke 2012), which can arise in geo- and astrophysical systems through the
action of stabilizing forces such as the Coriolis force due to rotation or via Lorentz
forces induced by magnetic fields. In rotating convection, LSV structures can form if
there is sufficient turbulence in the flow field and Ro � 1 so that the system-scale flow is
quasi-two-dimensional (Favier, Silvers & Proctor 2014; Guervilly, Hughes & Jones 2014;
Rubio et al. 2014; Stellmach et al. 2014; Couston et al. 2020). Although our data are
suggestive of a domain filling LSV, the limited radial coverage of the chord-probe data,
uc(r > 0.7R), does not allow us to validate the existence of such a structure. Further, this
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raises the question as to how one would deconvolve a container-scale LSV in a cylindrical
domain from a BZF that extends into the fluid bulk.

5. Discussion

We have presented novel simultaneous UDV and thermal laboratory measurements
in rotating liquid metal convection, complemented by DNS. The experiments allow an
investigation of the flow regime over a wide range of parameters, while the DNS allows a
much more detailed analysis of the flow structure at a selected parameter combination.

Our investigation focusses on Pr � 0.026 convection in the Ekman number range
4 × 10−5 ≤ Ek ≤ 5 × 10−6 and the Rayleigh number range 9.56 × 105 ≤ Ra ≤ 1.26 ×
107. Convection in this system onsets via coherent oscillations inside the bulk of the
fluid, and using the onset predictions by Zhang & Liao (2009), our measurements cover
supercriticalities R̃a between 1 and 15.7. While convective heat transport is relatively
inefficient in liquid metals, the thermal–inertial flow speeds are in good agreement
with thermal wind estimates and simultaneously reach ∼10 % of free-fall velocity uff

immediately after the onset of convection and reach up to 50 % for the highest R̃a. These
maximal velocities correspond to nearly 95 % of the RBC flow velocities at the same Ra
and Pr number. Further, the local Rossby number reaches very near unity, Ro� � 1, in the
R̃a = 15.7 case.

Our thermal and UDV data both show that the convective flow becomes quickly
multimodal, first via various oscillatory modes, and then at R̃a > 2, additional
wall-attached flow modes are formed in the vicinity of the cylinder sidewall. The wall
modes increase the slope of the Nu-Ra scaling trend. This increased heat transport
efficiency occurs because the wall modes transport temperature anomalies across the
entire fluid layer (e.g. Lu et al. 2020; de Wit et al. 2020), unlike the oscillatory bulk
flows. The onset frequencies for both the oscillations and the wall modes agree well
with the theoretical predictions of (Zhang & Liao 2009). The peak oscillatory and
wall-mode frequencies and the width of the peaks increases with R̃a in agreement
with previous findings by Horn & Schmid (2017) and Aurnou et al. (2018). Nonlinear
wall-mode processes lead to the development of a strong sidewall circulation, also known
as boundary zonal flow, well below the stationary onset in our low Pr fluid. The thickness
of the BZF appears to converge to (Ek Pr)1/3, but experiments with varying Pr are required
for an unambiguous determination of the scaling properties of the BZF. At R̃a > 4, the
velocity and temperature spectra indicate broadband turbulence with the vertical velocity
field dominated by oscillations even at R̃a = 15.7. The bulk vertical and horizontal
velocities are comparable in all our experiments, with very near to equipartitioned values
in the broadband turbulence regime.

Liquid metal convection is relevant for understanding flows occurring inside Earth’s
outer liquid metal core (Aurnou & Olson 2001; Guervilly & Cardin 2016; Kaplan et al.
2017). Even though convection in spherical shells at low Pr liquid-metal-like fluids
onsets via a viscous columnar mode in the equatorial region (Zhang & Schubert 2000;
Zhang & Liao 2017), recent dynamo models show that at higher supercriticalities the
flow inside the tangent cylinder can dominate outer core dynamics and is characterized
by complex, large-scale vortical flows that interact with strongly helical small-scale
convection (Schaeffer et al. 2017; Cao et al. 2018; Aubert 2019). The current understanding
of the generation of the geomagnetic field is based on convective flows that are dominated
by convective Taylor columns that are also found in steady, viscous form in laboratory and
numerical experiments in moderate Pr fluids. Even if equatorial viscous drifting modes
characterize the onset of low Pr convection in spherical shells (e.g. Kaplan et al. 2017),
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the oscillatory modes may become dominant once convection onsets in the polar regions.
Thus, the energetic low Pr oscillatory flows found in this study lead us to question how
broadband oscillatory convection in liquid metals will alter the behaviours of global-scale
dynamos.

In particular, our DNS results reveal a significant net positive mean helicity in the
upper hemicylinder and a negative in the lower hemicylinder. This result supports the
conjecture that large-scale dynamo action may be generate by local-scale, low Pr rotating
convective flows, as formulated in the multi-scale, asymptotically reduced model of
Calkins et al. (2015). Our oscillatory rotating convection dominated scenario differs
greatly from that of the large eddy dynamo simulations of Aubert, Gastine & Fournier
(2017), in which only large-scale (� � �∞

O ) flows exist in the modelled core and are
singularly responsible for generating planetary magnetic fields over all length and time
scales.

In addition to the conversion of vertical r.m.s. velocity into vertical helicity throughout
the fluid bulk, we have also found strong zonal flows focussed in the Stewartson layers,
which also extend well into the bulk. Thus, our low Pr rotating convective flows in an
upright cylinder contain all the classical kinematic properties that are typically invoked
in support of a fully self-consistent dynamo in the oscillatory regime (Moffatt & Dormy
2019). Future kinematic and fully dynamic dynamo simulations are required to test this
hypothesis.

We may also view our cylindrical experiments as a greatly oversimplified model of
the fluid within the northern tangent cylinder region of Earth’s core (Aurnou et al.
2003; Aujogue et al. 2018; Cao et al. 2018). Our results suggest that the thermally
driven component of polar convection would tend to break apart into inertial oscillatory
modes, that appear capable of generating significant time-mean helicity (cf. Davidson &
Ranjan 2015). Assuming Pr � 10−2 and Ek � 10−15 in Earth’s core, scaling (4.3) predicts
an Earth-like Reynolds number of Re ∼ 108 at a moderately low Rayleigh number of
Ra � 1021. Furthermore, our results suggest that drifting modes and strong zonal flows
might exist along the tangent cylinder (cf. Livermore, Hollerbach & Finlay 2017; Aujogue
et al. 2018; Favier & Knobloch 2020). The thermo-mechanical boundary conditions,
though, differ significantly between our laboratory and DNS cylinders and the tangent
cylinder free shear layer in the core.

Having carried out the first thermo-velocimetric study of cylindrical low Pr rotating
convection, we envision a number of following studies. Our experimental range of 1 <
R̃a < 16 was too narrow to build robust scaling relations for Nu and Re. Even more so, our
local Rossby numbers reached from roughly 0.05 to unity. Further experiments made over
a larger R̃a range will allow for scaling relations to be determined both in the Ro� � 1
regime and in the Ro� � 1 regime (Cheng et al. 2018). One strength of this study is that
it has allowed us to separate oscillatory from stationary modes in the fluid bulk. In future
studies, we will seek to have both the oscillatory and the stationary bulk modes active
simultaneously, in order to determine if one mode is strongly dominant.
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