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ABSTRACT. For more than a century Alpine glaciers have been retreating dramatically, and they are
expected to shrink even more quickly over the coming decades. This study addresses the future evolution
of Grosser Aletschgletscher, Switzerland, the largest glacier in the European Alps. A three-dimensional
combined surface mass-balance and glacier dynamics model was applied. The ice flow was described
with the full Stokes equations. The glacier surface evolution was obtained by solving a transport equation
for the volume of fluid. Daily surface melt and accumulation were calculated on the basis of climate
data. The combined model was validated against several types of measurements made throughout the
20th century. For future climate change, scenarios based on regional climate models in the ENSEMBLES
project were used. According to the median climatic evolution, Aletschgletscher was expected to lose
90% of its ice volume by the end of 2100. Even when the model was driven using current climate
conditions (the past two decades) the glacier tongue experienced a considerable retreat of 6 km,
indicating its strong disequilibrium with the present climate. By including a model for the evolution
of supraglacial debris and its effect in reducing glacier melt, we show that this factor can significantly
slow future glacier retreat.

INTRODUCTION
Climate change over the 21st century is expected to
considerably accelerate the retreat of glaciers in the
European Alps (e.g. Schneeberger and others, 2003; Zemp
and others, 2006; Solomon and others, 2007). Prediction of
the future extent of Alpine glaciers is of major interest, due to
their regulating effect on the hydrological cycle (Huntington,
2006), their economic importance (tourism, hydropower
production), their link with different types of natural hazards
(e.g. Werder and others, 2010) and their potential to raise
the global eustatic sea level (Kaser and others, 2006).
Since the end of the Little Ice Age in the mid-19th

century, Alpine glaciers have receded significantly due to a
marked temperature increase (Haeberli and Beniston, 1998).
However, the response of their terminus position, as well
as the glacier surface mass balance, shows a nonuniform
pattern (e.g. Huss and others, 2010; Lüthi and others, 2010).
Whereas small glaciers have a short response time and
adapt rapidly to changed climate conditions, large glaciers
dampen climatic fluctuations on the decadal scale and
retreat more smoothly. Thus, voluminous glaciers such as
Grosser Aletschgletscher – by far the largest glacier in the
European Alps – are valuable indicators of long-term climate
trends, since they are almost insensitive to short-term swings,
such as those that caused many small glaciers in the Alps
to advance in the 1920s and 1980s (Glaciological reports,
1881–2009).
A number of comprehensive three-dimensional (3-D)

numerical models for the computation of the ice flow and
surface evolution of valley glaciers have been developed
during the past decade. Some of the models used the
first-order approximation (Blatter, 1995) for the ice-flow

computation (e.g. Albrecht, 2000; Schneeberger and others,
2001, 2003). More recently, the 3-D full Stokes equations
have become more viable in the field of mountain glacier
modelling for several reasons (e.g. Zwinger and others,
2007; Jouvet and others, 2008, 2009; Zwinger and Moore,
2009). First, shallow models may be deficient at describing
complex ice flow over sloping bedrock (Le Meur and others,
2004). Second, the Stokes numerical implementation using
finite-element methods is well known (Ern and Guermond,
2004) and can be performed using external open-source
or commercial codes. Third, the performance of standard
computers allows the Stokes problem to be solved with high
resolution and within reasonable computational time.
Over the past 20 years, glacier prognostics have been a

subject of growing interest (Oerlemans and others, 1998).
Specific studies of the future retreat of Alpine glaciers have
been performed, for example for Griesgletscher (Albrecht,
2000), Rhonegletscher (Wallinga and Van de Wal, 1998;
Jouvet and others, 2009) and Glacier de Saint-Sorlin (Le Meur
and others, 2007). In order to link the ice-flow models
with climatic changes, a wide range of mass-balance
models have been considered. For instance, Wallinga and
Van de Wal (1998) use a simple parameterization that
relies on the annual temperature at the equilibrium-line
altitude (ELA), whereas Giesen and Oerlemans (2010) use
an energy-balance formulation to drive an ice-flow model
for Hardangerjøkulen, Norway, over the 21st century.
Here ice is treated as an incompressible, isothermal

and viscous fluid, and basal sliding is included. The 3-D
numerical model is based on a volume of fluid formulation
to describe the domain of ice (Jouvet and others, 2008).
This model combines the finite-element method to solve
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Fig. 1. Overview map of Grosser Aletschgletscher and smaller
glaciers in the drainage basin. Glacier outlines and surface contours
(200m interval) refer to the year 1999. The shading indicates the ice
thickness. The dashed line shows the central flowline. Black dots
indicate the location of velocity measurements. The solid contour at
the confluence of three glaciers at Konkordiaplatz shows the upper
limit of the zone where basal sliding is considered.

the full Stokes equations and the method of characteristics
to compute the time evolution of the volume of fluid.
Digital elevation models (DEMs) of the bedrock and of the
ice thickness are used to mesh and initialize the glacier
geometry. Glacier surface mass balance is calculated in daily
time-steps using a distributed accumulation and tempera-
ture-index melt model (Hock, 1999). Using meteorological
data, the evolution of Grosser Aletschgletscher since 1880
is simulated and compared to measurements. Future retreat
of Grosser Aletschgletscher, and other nearby glaciers,
is modelled based on eight different climate scenarios.
Regional climate-model results from the ENSEMBLES project
(Van der Linden and Mitchell, 2009), a simple temperature
increase referring to the ‘two degree target’ and climate
conditions in several periods in the past are considered
to perform simulations for the period 2000–2100. In the
last part of the paper, we analyse the influence of the
spatio-temporal changes in supraglacial debris on the rate
of glacier retreat.

DATA AND FIELD OBSERVATIONS
Grosser Aletschgletscher consists of three large accumu-
lation basins merging into a long and curved tongue at
Konkordiaplatz (Fig. 1). In 1999 Grosser Aletschgletscher

had a length of ∼22 km and an area of 83 km2 (Bauder
and others, 2007). The volume of Aletschgletscher was
roughly 15 km3 in 1999, representing ∼20% of the entire
ice volume in Switzerland (Farinotti and others, 2009). Its
ice thickness reaches >800m at Konkordiaplatz. Since 1880
the terminus position of Aletschgletscher has retreated by
2.8 km (Glaciological reports, 1881–2009). The glacier has
lost an ice volume of >5 km3 (Bauder and others, 2007),
corresponding to about one-quarter of its initial volume. This
study includes two other medium-sized glaciers on the east
side of Grosser Aletschgletscher (Oberaletschgletscher and
Mittelaletschgletscher) and some smaller glaciers (Fig. 1).
Thus, the entire glacier cluster in the drainage basin of
Aletschgletscher is modelled.
A wide range of field data is available for the study site:

Five DEMs were derived either from topographic maps
(1880, 1926, 1957) or from aerial photographs (1980,
1999) (Bauder and others, 2007). The DEMs have a
resolution of 50m, and an accuracy of ±3–5m (first two
DEMs) and ±0.3–1m (last three DEMs).

In April 1995 several radio-echo sounding profiles were
compiled to determine the ice thickness. As most of the
profiles did not reach the lowest parts of the glacier bed
they were reinterpreted by Farinotti and others (2009),
using amethod to estimate distributed ice thickness based
on an inversion of surface topography. As a result, a
complete bedrock map of the entire glacier now exists
which agrees with field data, where available.

Point-based surface mass balance was measured on
Grosser Aletschgletscher for several decades. One
measurement site has existed near Jungfraujoch in the
accumulation area with continuous mass-balance data
since 1920 (Huss and others, 2009). Additionally, mass
balance was measured annually at several dozen stakes
located on the tongue between the mid-1940s and the
early 1980s. At some stakes, readings in winter, including
snow pits, were performed in order to determine the snow
accumulation.

Accurate coordinates derived from theodolite-based
trigonometry are available for all stakes. These annual dis-
placements between reported period lengths of ∼1 year
were used to calculate annual ice-flow velocities. As
the stakes on the tongue of Grosser Aletschgletscher
were arranged in clusters (Fig. 1), flow velocities for
each cluster and all years of measurements (about
1950–80) were averaged for easier comparison with the
model results.

Monthly discharge measurements since 1923 are avail-
able from a gauging station near the glacier tongue.

Different meteorological time series documented the
changes in climatic conditions during the 20th century.
We used the homogenized daily temperatures recorded
since 1864 at Sion (Begert and others, 2005) and daily
precipitation sums from Lauterbrunnen to drive the mass-
balance model.

METHODS
In this section, the symbols ‘,i’ and ‘,j’ denote the space
derivative with respect to the ith and jth spatial components
while the ‘dot above’ symbol denotes the time derivative.
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Ice-flow model
Ice is considered to be an incompressible non-Newtonian
fluid. The constitutive law for the ice flow is given by
the regularized Glen’s law (Glen, 1958; Greve and Blatter,
2009):

εij = A(τ
n−1
II + τn−10 )τij , (1)

where εij = (ui,j + uj,i )/2 are the components of the strain-
rate tensor, ui are the velocity components, τij = σij− 1

3δijσii
are the components of the deviatoric stress tensor, σij are the
components of the stress tensor, τII is the second invariant
of τ defined by 2τ2II = τijτji , A is the rate factor, n is Glen’s
exponent and τ0 ≥ 0 is a regularization parameter. Note
that ice effective viscosity, μ, defined by Equation (1) and
the linear relation

τij = 2μεij (2)

is a function of ε which remains finite at zero when
τ0 > 0 but becomes infinite when τ0 = 0, i.e. as in
the original Glen’s law. In all simulations, we set n = 3
(Gudmundsson, 1999), the regularization parameter is fixed
to τ0 = 0.031MPa and the rate factor, A, is calibrated
with observed surface flow velocities. In practice, ice is
so viscous that inertial and acceleration effects can be
neglected. As a consequence, the equations expressing mass
and momentum conservation for an incompressible material
are reduced to the stationary Stokes equations:

−2(μεij ),j + p,i = ρgi , (3)

ui,i = 0, (4)

where p is the internal ice pressure, ρ is the ice density
and gi represents the components of the gravity force. The
ice is assumed to be isothermal, as records of englacial
temperature (Laternser, 1992; Suter and others, 2001) show
that Grosser Aletschgletscher is temperate, except for limited
areas above 4000ma.s.l.

Boundary conditions
No force is exerted on the free glacier surface,

σijni = 0, (5)

where ni represents the components of the outward-pointing
unit vector. At the bedrock interface, both slip and no-
slip conditions are applied in different parts of the glacier.
Modelling subglacial sliding is difficult since it depends
on many factors (e.g. the roughness of the bedrock,
the subglacial water pressure and the ice temperature
(Weertman, 1957; Fowler, 1986; Vieli and others, 2000;
Schoof, 2005)). The effective pressure – the difference
between ice and water pressure – plays a major role in the
sliding processes (Schoof, 2010), but is hard to evaluate since
it is driven by many factors that change rapidly with time.
For this reason, the water pressure is expected to strongly
fluctuate over short timescales (Fischer and Clarke, 1997),
thus hampering the application of parameter calibration
procedures. The complexity of such phenomena motivates
us to focus on a simpler model that is independent of the
effective pressure. Glacier sliding occurs mainly when basal
ice is at the melting temperature or when meltwater reaches
the bedrock. As a consequence, less sliding is expected in the
highest regions of the glacier, where meltwater production
decreases. Based on this simple consideration, bedrock is
divided into two parts by the altitude, zl, of the bedrock.

Sliding is only considered below zl. Above zl, ice is assumed
to be fixed to the bedrock and we have the condition

ui = 0 (6)

for i = 1, 2, 3, while below zl we consider the following
empirical Weertman’s sliding law (Weertman, 1957; Hutter,
1983):

ub = cτ
n
b , (7)

where ub is the basal sliding velocity, τb is the basal shear
stress and c is a sliding coefficient. The sliding threshold
altitude is set to a bedrock elevation of zl = 2400ma.s.l.
Thus, the sliding area contains the entire glacier tongue
and Konkordiaplatz (Fig. 1). The sliding coefficient, c, is
calibrated with observed surface ice-flow velocities.

Volume of fluid function
The domain of ice is described by a Eulerian formulation
that allows all changes in topology to be taken into account.
FollowingMaronnier and others (2003) and Jouvet and others
(2008), we define the volume of fluid function, taking the
value ‘1’ inside the glacier and ‘0’ outside. This function,
denoted ϕ, is defined in a large box which contains the entire
glacier and its near environment. A local mass balance along
the ice/air interface yields the transport equation,

ϕ̇+ uiϕ,i = bδS, (8)

where b is the mass-balance function and bδS is a source
term acting on the ice/air interface.

Numerical model
The numerical method was presented in detail by Jouvet and
others (2008, 2009), and we recall the main outlines of the
method here. A decoupling algorithm allows Equations (3),
(4) and (8) to be solved using different numerical methods.
First, the nonlinear Stokes problem, Equations (3) and (4),

with boundary conditions Equations (5), (6) and (7), is solved
on a fixed, unstructured mesh consisting of tetrahedrons. At
each time-step, the problem nonlinearities due to Glen’s law
and to the sliding law are solved using a fixed-point iteration
method. For this purpose, we use a relationship between
the viscosity and the strain rate obtained by combining
Equations (1) and (2), the stress being eliminated. More
precisely, for a given strain rate, the viscosity is obtained by
solving an nth-order polynomial equation. For each fixed-
point loop, we use the strain rate obtained in the previous
iteration and find the viscosity using Newton’s method.
The fixed-point method is even simpler in the case of
nonlinear sliding, since Equation (7) can be inverted, i.e. the
tangential stress is explicitly computable using the velocity
obtained in the previous iteration. In practice, fewer than ten
iterations are sufficient to reach convergence (Jouvet, 2010).
At each fixed-point iteration, the linear Stokes problem is
solved using a continuous, piecewise linear stabilized finite-
element method (Franca and Frey, 1992).
Second, the transport equation, Equation (8), is solved on a

fixed, regular grid of smaller cells covering the ice domain,
using a forward method of characteristics (Maronnier and
others, 2003; Jouvet and others, 2008). Since the volume of
fluid is a discontinuous function across the ice/air interface,
numerical diffusion must be reduced as much as possible.
For this purpose, a post-processing procedure – a ‘simple
line interface calculation’ method (Scardovelli and Zaleski,
1999) – was performed. The transfer of data between the two
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meshes was performed by specific interpolation procedures
(Maronnier and others, 2003). First, the volume of fluid was
interpolated from the structured grid to the unstructured
mesh to determine the part of the unstructured mesh filled
with ice to be considered for the new velocity calculation.
Next, the velocities were interpolated on the structured grid
to allow the transport step to be performed.
The method described combines the advantages of the

finite-element method to treat the complex geometries of
glaciers and the benefits of the volume-of-fluid method
which is robust, mass-conserving and can take into account
all changes in topology (Jouvet and others, 2008).
Given the DEM of the bedrock, a surface mesh was

generated by splitting each square into triangles in the same
diagonal. In the same way, another surface mesh – that must
exceed the surface of the glacier at any time – was generated
by adding a safe distance of 250m to the DEM surface
elevation of year 1880, when the glacier was thickest. An
unstructured mesh of tetrahedrons was generated between
the two surfaces using the open-source mesher Gmsh (see
Geuzaine and Remacle, 2009). To take into account the
shallowness of the glacier, the mesh was refined along
the vertical directional only. Final tetrahedrons were about
100m long and 30m high. The structured mesh was a large
block made up of 20m long cubes that entirely covered the
unstructured mesh. With the meshes described above, the
constant time-step of half a year proved to be optimal for
the proposed method and the size of the considered glacier.
All the computations were performed on an AMD Opteron
242 CPU with 4GB memory. The CPU time required for
performing a simulation over a period of ∼100 years ranged
between 1 and 2 days. Most of the CPU time was consumed
by thematrix-inversion steps for solving the Stokes equations;
the time required to run the mass-balance model was
negligibly small.

Mass-balance model
The mass-balance function, b, was obtained using a
distributed accumulation and temperature-index melt model
(Hock, 1999; Huss and others, 2008).
Below 3500ma.s.l., precipitation is assumed to increase

linearly with elevation (the rate is denoted Gp). A correction
factor, cprec, accounted for the gauge under-catch error
of precipitation, and a threshold temperature of 1.5◦C
distinguished snow from rainfall (Hock, 1999). The spatial
variation in accumulation over the glacier surface is
substantially influenced by the preferential deposition of
snow and snow redistribution. These effects were taken
into account using a spatial snow distribution multiplier,
Dsn = Dsn(x, y ), derived from terrain characteristics (Huss
and others, 2008). Dsn also includes lateral precipitation
gradients corresponding to the large-scale precipitation
patterns obtained from a gridded precipitation dataset
(PRISM; Schwarb and others, 2001). Snow accumulation
Ac = Ac(x, y , t ) at gridcell x, y and day t was calculated
using the daily measured precipitation, Pws = Pws(t ), at a
nearby weather station:

Ac =
{
Pwscprec(z − zws)GpDsn if T < 1.5◦C,

0 else,
(9)

where z = z(x, y ) is the elevation of the glacier surface at
gridcell x, y , zws is the altitude of the weather station and
T = T (x, y , t ) is the daily mean air temperature extrapolated
to the elevation, z(x, y ), of each gridcell from the measured

temperature assuming a linear temperature decrease with
elevation.
Temperature-index models are based on a linear relation

between positive air temperature and the melt rate. Here
surface melt rates, M, were computed by

M =

{ [
fM + rice/snowI

]
T if T > 0◦C,

0 else,
(10)

where fM is a melt factor, rice/snow are radiation factors
for ice and snow, T = T (x, y , t ) is the air temperature
extrapolated to each gridcell and I = I(x, y , t ) is the clear-sky
direct radiation (obtained from a DEM) that accounts for the
effects of slope, aspect and topographic shading. Due to the
empirical character of temperature-index models, the site-
specific parameters, fM and rice/snow, have to be calibrated
using direct observations.
Optimal values for the three melt parameters, as well as the

accumulation parameters (Equation (9)), have been obtained
using a semi-automated calibration procedure with observed
decadal ice volume changes of Grosser Aletschgletscher
(1880–1999), and in situ measurements of accumulation
and ablation at up to two dozen sites annually on the
glacier surface over several decades (Huss and others, 2008).
Annual glacier surface mass balance is defined as the sum
of solid precipitation and snow- or ice melt at the end of the
hydrological year (1 October–30 September).

Definition of climate scenarios
For model runs over the next 90 years we applied three types
of climate scenario: (1) projected changes in air temperature
and precipitation, based on regional climate models within
the ENSEMBLES project (Van der Linden andMitchell, 2009);
(2) a simple linear temperature increase referring to the ‘two-
degree target’ defined in the context of a political goal as
the upper limit of global warming (Meinshausen and others,
2009); and (3) mean climatic conditions observed in different
periods in recent decades, fixed over the next 90 years.
This strategy allows glacier changes to be assessed based on
state-of-the-art climate projections that are, however, subject
to considerable uncertainty. Transient glacier response in
the next century was also evaluated using the well-defined
climate conditions of the past.
The ENSEMBLES project (Van der Linden and Mitchell,

2009) consists of model chains of general circulation models
(GCMs) coupled with regional climate models (RCMs). In
total, four different GCMs were used to drive ten RCMs,
providing a wide range of possible future changes in the
climate system. All model runs are based on the SRES A1B
emission scenario which assumes a future world of fast
economic growth, global population that will peak mid-
century and decline thereafter, and the rapid introduction
of new and more efficient technologies (Nakićenović and
Swart, 2000). The SRES A1B emission scenario also assumes
a balance across all sources of energy. In this study,
we use seasonally aggregated ‘delta change’ scenarios for
Swiss meteorological stations derived from the ENSEMBLES
dataset (Bosshard and others, 2011). Daily changes in air
temperature and precipitation relative to the period 1980–
2009 were generated for each of the ten RCMs for the 30 year
time frames 2021–50 and 2070–99 for the Aletschgletscher
region from Bosshard and others (2011). In order to obtain
transient changes over the 21st century, mean changes in the
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Table 1. Deviation of mean annual air temperature, ΔTY, summer
(June–August) temperature, ΔTS, and annual precipitation, ΔP , by
2100, from the period 1980–2009

Scenario RCM/Considered period ΔTY ΔTS ΔP
◦C ◦C %

ENSmed MPI ECHAM REMO +4.3 +5.5 +1
ENSmin SMHI BCM RCA +2.9 +3.7 −4
ENSmax ETHZ HadCM3Q0 CLM +4.8 +7.7 −10
2DEG — +2 +2 0
MP20 October 1988–September 2008 +0.4 +0.5 −1
MP30 October 1960–September 1990 −0.6 −0.8 −5
MY1978 October 1977–September 1978 −0.9 −1.9 +11
MY2003 October 2002–September 2003 +1.4 +3.9 −15

period were allocated to the years 2036 and 2085 (midpoints
of the periods) and interpolated (extrapolated) linearly.
We considered three individual model scenarios out

of the ten RCMs within the ENSEMBLES project. Air-
temperature changes given by MPI ECHAM REMO are near
the median of the ten RCMs in most seasons. SMHI BCM
RCA describes a lower limit of air-temperature changes, and
ETHZ HadCM3Q0 CLM provides an upper limit of expected
temperature changes for the A1B emission scenario. The
three RCMs considered were driven by different GCMs, and
are abbreviated as ENSmed, ENSmin and ENSmax in the
following text. Expected temperature changes in summer
are between +3.7◦C and +7.7◦C by 2100. Precipitation
changes show a nonuniform pattern (Table 1). For each
scenario, daily meteorological time series were generated
by applying expected seasonal changes in air temperature
and precipitation to detrended series recorded in randomly
chosen years between 1900 and 2000.
The scenarios from the ENSEMBLES project account for

a rise in CO2 emissions that would follow technological
development over the 21st century if there were no policy
success in limiting emissions. Nevertheless, if CO2 emissions
are halved by 2050 compared to 1990, global warming can
be stabilized below two degrees (Meinshausen and others,
2009). More than 100 countries have agreed the goal of a
global warming limit of 2◦C in order to limit the adverse
effects of climate change. Based on this ‘two-degree target’,
we define the simple scenario 2DEG, assuming a linear
increase in air temperature by 2◦C in all seasons by the year
2100 and no precipitation changes (Table 1).
By way of contrast to scenarios mimicking a changing

climate, we define four additional scenarios that do not
depend on any climate model that may be subject to
considerable uncertainty and controversy. These scenarios
are based on meteorological conditions from selected
periods in the past. This allows the calculation of glacier
extent in the (unlikely) case that the climate stabilizes on
the mean of a given period in the past decades. The mid-
1980s were characterized by a significant increase in air
temperature and a reduction in snowfall events (Begert
and others, 2005; Marty, 2008), which caused a significant
acceleration of glacier mass loss in the Alps (Huss and others,
2010). Thus, we consider periods before and after this shift to
analyse the response of Aletschgletscher to a prolongation of
these climatic conditions. More precisely, scenario MP20 is
generated by randomly picking annual meteorological series

Table 2.Optimal sliding coefficients, c, for several rate factors, A. For
the highest and lowest of the five measurement locations displayed
in Figure 1, measured and computed surface velocities, computed
basal velocities (ma−1) and sliding fraction (basal velocity divided
by surface velocity) are indicated for each parameterization. The
root mean square (rms) between measured and simulated surface
velocity is given

A (MPa−3 a−1) 60 80 100 120 150

c (MPa−3 m a−1) 56 900 37 000 23300 12500 0

Highest point Measured surface velocity: 199ma−1
Surface velocity 168 191 211 229 242
Basal velocity 83 75 59 39 0
Sliding fraction (%) 49 39 28 17 0

Lowest point Measured surface velocity: 114ma−1
Surface velocity 142 132 123 114 90
Basal velocity 106 87 67 46 0
Sliding fraction (%) 75 66 54 40 0

rms (m a−1) 25.4 19.1 18.8 22.6 31.3

in the 20 year meteorological period 1989–2008. Another
scenario (MP30) covers the conditions in the normal climatic
period 1961–90.
To evaluate the effects of extreme years in the past, we

consider two cases with strong deviations from the long-term
mean. Scenario MY1978 is obtained by driving the model
with air temperature and precipitation in the meteorological
year 1978 (October 1977–September 1978), which resulted
in the most positive annual mass balance of Aletschgletscher
of the entire last century. Scenario MY2003 is based on
the meteorological conditions during 2003 leading to an
extremely negative mass balance of Alpine glaciers due
to summer temperatures reaching an unprecedentedly high
level (Table 1).

RESULTS
Model calibration
Calibration of the rate factor, A, and the sliding coefficient, c,
was based on the time-averaged surface velocities observed
on the glacier tongue (Fig. 1). Since surface displacement had
been measured approximately over the period 1950–80, we
computed the stationary velocity fields for the years 1957
and 1980, for which DEMs were available, using different
couples of parameters. Computed velocities between 1957
and 1980 changed less than 10ma−1, and were averaged for
comparison. For several realistic rate factors, we determined
the sliding coefficient that minimized the root mean square
(rms) between computed and measured velocities (Table 2).
Among the combinations of coefficients given in Table 2,

we use in what follows, the one that minimizes the rms, i.e.
parameters (A, c) = (100, 23 300). Interestingly, this optimal
couple results in a balanced contribution of sliding and ice
deformation to surface velocities at the lowest point on the
glacier tongue, but the sliding contribution decreases to 28%
immediately below Konkordiaplatz (Table 2). Note that, if no
sliding is accounted for (i.e. c = 0), then A = 150MPa−3 a−1

is the optimal rate factor, which is significantly higher than
indicated by field studies (Gudmundsson, 1999). In that
case, the rms= 31.3ma−1 is maximal (Table 2). From
this experiment we conclude that sliding effects on the
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Fig. 2. Modelled glacier length and ice volume of Grosser
Aletschgletscher from 1880 to 1999. Length was calculated along
the central flowline (Fig. 1). Observed volumes and lengths were
obtained from DEMs and are indicated by crosses. Model results for
parameterizations (A, c) = (80, 37 000) and (A, c) = (100, 23 300)
are represented by dotted and solid lines, respectively.

glacier tongue need to be accounted for in order to correctly
reproduce the observed surface velocity field.
The coefficients of the mass-balance model are calibrated

according to observed ice volume changes, in situ point-
based seasonal mass-balance measurements and discharge
at the glacier snout (Huss and others, 2008). As a result,
accumulation parameters involved in Equation (9) are Gp =
3.5 × 10−4 and cprec = 1.25. Melt parameters involved
in Equation (10) are fine-tuned for each period between
two subsequent DEMs. For the period 1980–99, we obtain
fM = 1.78× 10−3 md−1 ◦C−1; rice and rsnow are set to 2.14
×10−5 and 1.60 ×10−5 m3W−1 d−1 ◦C−1, respectively.

20th-century retreat
Here we evaluate the performance of the model by
comparing the simulated changes in glacier surface elevation
with repeated DEMs throughout the 20th century. The
calculations were initiated employing the first accurate
DEM in 1880, and the evolution of Grosser Aletsch-
gletscher was simulated until 1999. The two smaller
glaciers (Oberaletschgletscher and Mittelaletschgletscher)
were excluded from this model run as no topographies for
model initialization in 1880 were available. The DEMs for
1929, 1957, 1980 and 1999 were used for validation.
Simulated and observed changes in ice volume agree

well (Fig. 2). However, when comparing glacier terminus
retreat along the central flowline (Fig. 1), the modelled
retreat rate is too high for the last 50 years (Fig. 2, solid
line). This disagreement can be attributed mainly to an
inaccurate description of basal sliding in the model, resulting
in a too-slow ice-flow regime at the glacier tongue. Thus,
glacier retreat is overestimated by ∼500m over the last five
decades. Longitudinal profiles of simulated glacier surface
elevation are compared with DEMs (Fig. 3). The model
slightly underestimates the surface elevation on the glacier
tongue and overestimates it in the accumulation area. The
model performance is assessed by evaluating the rms of
the difference between observed and modelled surface
elevation over the entire glacier. The rms values are 32, 34,
34 and 33m for the years 1926, 1957, 1980 and 1999.
Considering the size of Grosser Aletschgletscher and the
resolution of the structured grid (20m), these results are

Fig. 3. Observed and calculated surface elevation along a
longitudinal profile of Grosser Aletschgletscher in 1926 and 1999.

satisfying. The disagreements can be attributed mainly to
the description of basal sliding. Other factors potentially
explaining the disagreements are: (1) the ice-flow model
may not have described glacier dynamics correctly, (2) the
bedrock elevation may have been inaccurate in some regions
of the glacier and (3) uncertainties in the mass-balance
model.

Sensitivity to ice-flow parameters
The ice-flow parameters, A and c, were tuned to observed
surface velocities using two glacier geometries given by
DEMs. In order to evaluate the impact of this calibration
procedure on long-term glacier evolution, the model was
run over the 20th century also using the parameterization
(A, c) = (80, 37 000) that fits measurements almost as well
as the optimal couple (A, c) = (100, 23 300) (Table 2).
Figure 2 indicates that the ice volumes over the 20th century
agreed well for both parameterizations. The difference is
<2% by 1999. Glacier length, however, is better reproduced
by (A, c) = (100, 23 300), even if the difference between
the two parameterizations remains small (100–500m). This
additional experiment indicates that the calibration of the
flow parameters does not significantly affect global glacier
evolution over a long time period. This confirms our
parameter choice, (A, c) = (100, 23 300), used for the
prognostic runs.
Model runs for the period 1880–1999 yield an rms of

22.9m between computed and measured velocities in 1959
and 1980. This is only slightly more than the misfit obtained
for the calibration procedure with stationary computed
velocities in individual years (rms=18.8m).
Finally, we evaluated the influence of the sliding threshold

altitude parameter, zl, by performing additional model runs
with zl = 2700 and 3000m, instead of zl = 2400m.
Assuming A = 100MPa−3 a−1 fixed, the parameter c was
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Fig. 4. (a) Deviation of mean annual air temperature, ΔTY, from that
of 1980–2009. (b, c) Simulated time evolution of (b) glacier length
along the central flowline of Grosser Aletschgletscher and (c) the
total ice volume.

re-calibrated for each zl. The minimal rms was always
significantly larger than the one obtained for zl = 2400m
(rms = 18.9, 25.1 and 28.2 m, when zl = 2400, 2700
and 3000m, respectively). Additionally, transient model runs
over the 20th century with zl = 2700 and 3000m did
not accurately reproduce the observed glacier retreat. This
indicates that zl = 2400m is the optimal choice.

Glacier change in the 21st century
Here we analyse the response of Grosser Aletschgletscher
to projected future climate change. Eight climate scenarios
were used (Table 1). The calculations were initiated with
the glacier surface geometry of 1999, and the model was
run in transient mode until 2100. From 1999 to 2008,
measured temperature and precipitation were used. The
spatio-temporal evolution of the entire glacier cluster around
Grosser Aletschgletscher was simulated; most importantly,
two other large valley glaciers, Oberaletschgletscher and
Mittelaletschgletscher, were included in the modelling.
Surface and bedrock topography are also available for these
glaciers (Farinotti and others, 2009). Considering all glaciers

Table 3.Glacier length along the central flowline of Aletschgletscher
and total ice volume for scenarios ENSmed, MP20 and MY2003

1999 2020 2040 2060 2080 2100

Length (km)
ENSmed 21.4 21.1 19.2 15.6 11.5 7.6
MP20 21.4 21.1 19.4 17.4 15.8 15.2
MY2003 21.4 21.0 17.8 12.8 8.6 1.4

Volume (km3)
ENSmed 18.2 14.7 11.2 7.4 3.9 1.8
MP20 18.2 15.1 12.9 11.5 11.3 10.6
MY2003 18.2 12.4 6.8 3.3 1.9 1.4

in the cluster for simulations of future retreat increased the
initial ice volume by 3 km3 over the volume of Grosser
Aletschgletscher alone. The results of all simulations are
presented in three figures and one table. The time evolution
of the Grosser Aletschgletscher length and global ice volume
are displayed in Figure 4, including yearly temperature
changes for each scenario. Table 3 provides glacier lengths
and volumes for some years, according to three specific
scenarios. Figure 5 shows profiles of the glacier along the
central flowline in different years, and Figure 6 provides
snapshots of glacier geometry in the last year of the
simulation, 2100.
With the expected atmospheric warming over the 21st

century, glaciers in the Aletsch region will be subject to a
strong retreat. According to the median scenario, ENSmed,
the glacier cluster will lose 90% of its total ice volume by
2100, and 88% when considering Grosser Aletschgletscher
alone. The model shows an almost linear retreat, resulting
in complete disintegration of the tongue of Grosser Aletsch-
gletscher (Figs 4–6; Table 3). By 2100, only a small ice patch
may be left at the Konkordiaplatz that is currently covered
with >800m of glacier ice. Given this climatic evolution,
Aletschgletscher will still exist above ∼3300ma.s.l., but will
be split into several individual smaller glaciers. The model
predicts a complete disappearance of the other smaller
glaciers in the Aletsch region (Fig. 6).
Our results indicate that the largest glacier in the European

Alps may disintegrate completely over the next century,
according to a likely change in temperature and precipitation
provided by state-of-the-art climate models. The fast retreat is
enhanced by the elevation feedback. With mass loss, glacier
surface elevation continuously decreases. The glacier surface
at Konkordiaplatz, for example, is currently at 2700m a.s.l.
(Fig. 1) and not far from the long-term ELA. It thus currently
experiences relatively little ice melt per year. The model
results, however, indicate that the glacier surface elevation
at Konkordiaplatz will decrease by >700m over the 21st
century. The remnants of ice will be below 2000ma.s.l.
(Fig. 5), an elevation where large melt rates can occur that
will be further enhanced by future warmer temperatures. In
addition, the basal overdeepening near Konkordiaplatz may
result in the formation of proglacial lakes, leading to a further
acceleration of glacier retreat due to calving.
Scenario ENSmax refers to an upper limit of climatic

evolution given by the ENSEMBLES project (Table 1).
According to this scenario we expect complete melting of all
ice in the Aletsch region, except for a small accumulation
basin with large ice thickness at present (Fig. 6). A
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considerable retreat is, however, also expected for scenario
ENSmin, representing the lower limit of the ENSEMBLES
RCM results. The tongue of Grosser Aletschgletscher is
expected to recede by ∼10km, but will continue to exist
(Fig. 4). We expect ice volume to decrease by 76% by the
year 2100. Differences between the results of ENSmin and
ENSmax span the range of uncertainty in climate model
results based on the A1B emission scenario.
A linear increase in air temperature to the ‘two-degree

target’ (scenario 2DEG) results in a decrease in ice volume by
66% and a retreat of the tongue by 9 km (Fig. 4). This simula-
tion shows that, even if CO2 emissions and global warming
can be limited to a certain level, the ice volume in the Aletsch
region will be strongly reduced over the 21st century.
The assumption of a stabilization of climatic conditions

to selected periods in the past (scenarios MP20 and MP30;
Table 1) leads to steady-state glacier geometries after several
decades (Figs 4 and 5). With scenario MP30 the shape of
Grosser Aletschgletscher does not change significantly. This
indicates that the present geometry of Aletschgletscher would
be stable in the climate of the period 1961–90. However, the
model predicts a substantial retreat of Oberaletschgletscher,
the second largest glacier in the region, under these
conditions (Fig. 6).
According to scenario MP20 (referring to the period

1989–2008), the tongue of Aletschgletscher would retreat
by ∼6 km before stabilizing and the ice volume would
be reduced by 7.4 km3 (41%). This shows that the current
size of the glacier is in a state of strong imbalance under
current climatic conditions. Thus, Aletschgletscher would
continue its retreat started 150 years ago even if the climate
were to be stabilized immediately at the level of the last
two decades.

The extreme meteorological conditions of summer 2003
are often interpreted as a precursor to conditions in the
coming decades (e.g. Schär and others, 2004). In the case of
Aletschgletscher, scenario MY2003 results in glacier wastage
over the 21st century that is similar to scenario ENSmax.
After ∼80 years Aletschgletscher would stabilize at <10%
of its current ice volume (Fig. 6) in response to ELAs at
∼3400ma.s.l. on Aletschgletscher, as in 2003.
Application of the meteorological conditions for 1978

(scenario MY1978), however, results in significant growth
of the glacier (Figs 4 and 5). Aletschgletscher would expand
so rapidly that it overflows the given model domain. This
shows the high variability of mass-balance forcing on glacier
evolution: conditions in individual years – occurring in
recent decades – if prevailing over a century would lead to
either a complete melting of Aletschgletscher, or an advance
beyond the maximum extent during the Little Ice Age.

Influence of supraglacial debris on future glacier
retreat
The rate of future glacier retreat is affected by a number
of back-coupling mechanisms either enhancing or delaying
glacier wastage. Oerlemans and others (2009) showed that
decreasing surface albedo on Alpine glacier tongues leads
to faster ablation. In addition, subglacial cavitation and the
formation of proglacial lakes (Frey and others, 2010) may
further increase the rate of terminus retreat. One important
feedback effect reducing glacier melt is the observed
increasing debris coverage of an Alpine glacier tongue due
to its retreat (Huss and others, 2007; Jackson and Fountain,
2007; Kellerer-Pirklbauer and others, 2008). Supraglacial
debris is known to significantly reduce the melting of bare
ice, due to its insulating properties (e.g. Kayastha and others,
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Initial state (1999) Scenario ENSmed Scenario ENSmin

Scenario ENSmax Scenario 2DEG Scenario MP20

Scenario MP30 Scenario MY1978 Scenario MY2003

Fig. 6. Simulated extent of Grosser Aletschgletscher (and smaller glaciers in the cluster) in 2100 according to different scenarios (Table 1).
The first snapshot displays the extent in 1999, taken as the model initialization.

2000). Simulation of the consequences of dynamic changes
in the debris coverage on future glacier wastage has not yet
been carried out in impact studies, due to the complexity of
the processes involved (Anderson, 2000). Here we present a
simple model for estimating the retarding effect of dynamic
changes in supraglacial debris on glacier retreat.
Whereas only 4% of the surface area of Grosser

Aletschgletscher is currently debris-covered, the tongues of
Oberaletschgletscher and Mittelaletschgletscher are almost
completely protected by supraglacial debris. These differ-
ences explain the substantial retreat of Oberaletschgletscher
in prognostic runs for most climatic scenarios (Fig. 6)
compared with Grosser Aletschgletscher, since debris as a
factor limiting the rate of ice melt was not taken into account.
The current spatial extent of the debris coverage for all
three glaciers was mapped based on aerial photographs.
Information about the thickness and other properties of the
supraglacial debris is not available.
With glacier retreat, medial moraines tend to spread out

laterally, due to intensified melting outside the englacial
debris cover and continuous accumulation at the glacier

surface (Anderson, 2000). The outward propagation of debris
depends on the englacial debris concentration and the
ablation rate. Furthermore, supraglacial debris is expected
to thicken when ice flux on the glacier tongues stagnates
and is no longer able to evacuate the debris. Additional
debris can also be supplied by rockfall deposits in the bare-
ice area. Jackson and Fountain (2007) have shown that melt
decreases exponentially with the thickness of the debris layer.
In practice, the thickness of debris, as well as the englacial
debris concentration, is difficult to estimate without direct
measurements.
For our debris-evolution model, we assume the thickness

of debris is constant in time. This is a conservative
assumption which refers to a lower limit of the possible
melt reduction by debris. Thickening debris is expected to
enhance the insulating effect. Supraglacial meltwater streams
and emerging ice cliffs can, however, also locally reduce
debris thickness (Lukas and others, 2005). Melt, M, over
debris-covered surfaces is computed using Equation (10),
but M is multiplied by a factor fdeb = 0.6 over debris-
covered surfaces (Huss and others, 2007). The value for fdeb
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Fig. 7. Analysis of changes in debris coverage on the tongue of
Oberaletschgletscher. (a) Siegfried map (1880), (b) aerial photo
(2005, Swisstopo). Both panels are to the same scale. The glacier
boundary is indicated. Numbers (1, 2, 3) indicate locations where
lateral propagation of the medial moraines has been determined by
measuring the width of bare-ice sections between the moraines.

is based on comparison of measured ablation rates of debris-
covered and bare-ice surfaces on a comparable Alpine
glacier (Unteraargletscher, Switzerland). In the Appendix,
we propose a simple model to compute the time evolution
of the debris-covered area. The model requires the initial
debris distribution in space and the speed of the debris-
front propagation in the outward normal direction (C in
Equation (A2)) as input. Since debris dispersion increases
with the ablation rate (Anderson, 2000; Jackson and
Fountain, 2007), we set C proportional to the negative mass
balance, b−, i.e. C = r · b−, where b− equals −b if b is
negative and zero otherwise.
To qualitatively evaluate the assumptions of the debris-

evolution model, and to obtain a rough estimate of realistic
values for the speed of the debris-front propagation, C , we
compare the debris coverage in the Aletsch region in 1880
with today. As an example, Figure 7 shows the changes
in debris coverage on the tongue of Oberaletschgletscher
based on the Siegfried map (1880; scale 1 : 25 000) and
current aerial photographs. The lateral propagation speed,
C , of medial moraines was determined perpendicular to
the flow direction by measuring the width of debris-free
strips between the moraines at several locations. Using
the negative mass balance, we deduced values of r for
about 24 locations. For Grosser Aletschgletscher over the
last century, the parameter r is close to 0.1. Significantly

higher values were found for Oberaletschgletscher (r =0.25–
0.4) and Mittelaletschgletscher (r =0.45–0.55). We attribute
the differences in r to the varying importance of ice flux
for these glacier tongues, a factor which was not included
in our debris model. Glaciers with substantial ice flux can
evacuate most of the newly appeared debris towards the
glacier terminus, resulting in a small r , as for Grosser
Aletschgletscher. Conversely, if the ice flux tends to stagnate,
as currently observed for the tongue of Oberaletschgletscher,
supraglacial debris is not evacuated; it thickens and spreads
faster, resulting in a higher r .
As it proved difficult to estimate parameter r and other

constants in the debris model, because of the many
unknowns showing high spatial variability, we chose to carry
out a sensitivity analysis, rather than to present forecasts of
future debris evolution. Three values of r were used: r = 0.2,
0.5 and 1, representing slow, moderate and rapid debris
propagation in space. Although r = 1 is above the parameter
values inferred for the last century, particularly for Grosser
Aletschgletscher, this scenario was tested because it may be
representative of a stagnant ice flow, likely to occur in a
continuingly warming climate. For each case, a simulation
under the median scenario ENSmed was performed and
compared with the reference simulation without debris.
Figure 8 shows the extent of the glacierized area and the
debris-covered sections for three snapshots, and Figure 9
shows the change in ice volume and glacier length for the
different experiments.
When including the effect of supraglacial debris on the

melting of bare ice, the glacier tongue can potentially survive
for a long time, almost without any dynamics. The quasi-
stagnation of the ice flow on the glacier tongue in the
case of strong debris coverage is also evident from the
simulated ice surface velocities that tend to zero. As our
model does not take into account the expected thickening
of debris, we may underestimate this effect. In the case of
rapid debris propagation (r = 1) the entire glacier tongue of
Grosser Aletschgletscher would be debris-covered by 2080
(Fig. 8). If the effect of supraglacial debris is neglected, it
would have disintegrated almost completely by that time.
Assuming slow debris propagation (r = 0.2), however, the
shape of the glacier tongue differs only slightly from the
no-debris case. Whereas debris coverage had only limited
importance for the mass balance of Grosser Aletschgletscher
over the past century, it was vital for Oberaletschgletscher.
If debris coverage is not accounted for, the entire tongue
would disappear by 2050 (Fig. 8). This is also evident
in Figure 6: Oberaletschgletscher retreats even if glacier-
friendly conditions prevail, as in 1978. If the effect of debris
coverage is included in the simulation of this glacier, the
retreat rate is significantly lower, even in the case of slow
debris propagation (Fig. 8).
For all experiments, the difference in ice volume compared

with the no-debris case is relatively small (Fig. 9). It increases
to ∼2 km3 by 2030 for r = 1. The simulated ice volumes
converged again towards 2100. The time evolution of the
glacier length was affected significantly by the presence
of a debris layer. When r = 1, simulated glacier length
differed by up to 5 km compared to debris-free conditions
(Fig. 9). The accelerated retreat of the terminus starts in
2025 if debris is not accounted for, but is delayed by more
than two decades when debris is accounted for. The model
results strongly depend on the choice of parameters that are
difficult to constrain. For a slow propagation of the debris

https://doi.org/10.3189/002214311798843359 Published online by Cambridge University Press

https://doi.org/10.3189/002214311798843359


Jouvet and others: Retreat of Grosser Aletschgletscher 1043

2020 2050 2080

Fig. 8. Time evolution of debris-covered area (black) and glacier
extent according to each experiment for three snapshots (2020,
2050, 2080) and scenario ENSmed. Top: Reference simulation
without debris coverage; centre: r = 0.2 (slow debris propagation);
bottom: r = 1 (rapid debris propagation). Coordinates refer to a
local reference system (lower left corner 634975/135475 in the
Swiss referential).

front, the effect is significant only over the first decades
of the study period. The differences from the reference
simulation, however, tend to increase in the case of fast
debris propagation, as a significant part of the shrinking
glacier surface area remains covered with debris (Fig. 8).

CONCLUSIONS
The past and future evolution of Grosser Aletschgletscher was
simulated using a combined 3-D ice-flow and mass-balance
model. Basal sliding was taken into account, resulting in
an improved calculation of the velocity field. The evolution
of the entire glacier cluster around Aletschgletscher and
two nearby glaciers, was simulated from 1999 to 2100
using different climate scenarios based on RCMs of the
ENSEMBLES project. In addition, an investigation was carried
out into glacier response to an air-temperature increase
referring to the political ‘two-degree target’, and steady
climatic forcings of several selected periods in the past,
extended over 100 years. The sensitivity of glacier retreat to
the presence and possible future expansion of supraglacial
debris was tested, based on a new model for spatio-temporal
evolution of the debris cover.
For Grosser Aletschgletscher, there was a significant de-

crease in glacier ice volume and length by the end of the 21st
century for most of the scenarios. According to the median
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RCM driven by the A1B emission scenario, the volume
of Aletschgletscher will decrease by 90% by 2100 and
the 15 km long glacier tongue will disintegrate completely.
Assuming a linear 2◦C increase in air temperature until 2100
leads to a retreat of the glacier tongue by∼10 km. The strong
imbalance of Grosser Aletschgletscher with the current
climate conditions results in a 41% volume loss, if climate
forcing is stabilized on the level of the last two decades.
Cooler and wetter conditions, as in 1978, however, would
cause the glacier to significantly advance over the maximum
of its Little Ice Age extent in a time interval of 100 years.
Taking into account the retarding effect of supraglacial debris
on future glacier evolution indicates that this variable, which
is often neglected in glacier modelling, can have a significant
impact on the rate of glacier terminus retreat.
This study shows that future climate change in the Alps

may lead to a dramatic retreat and an almost complete
disintegration of the largest glacier in central Europe. Due
to their long response times, the condition of large glaciers
is presently far from balance, and these glaciers will most
likely continue to retreat, even if overall air temperature
does not increase further. Although the uncertainties in
projections of future changes in meteorological variables
given by RCMs are significant, our study indicates that
Grosser Aletschgletscher will show a decrease in its current
ice volume by 70% or more with each of the ENSEMBLES
RCMs. Among the models considered in this paper, two have
been considerably simplified. First, the basal sliding model
does not account for the effects of subglacial meltwater and
therefore cannot reproduce the increase in sliding due to an
increase in runoff expected for a global warming scenario.
Second, the incompletely understood feedback effects of
glacier melt, such as the likely increase in supraglacial debris,
have a strong impact on the reliability of glacier retreat
modelling. We recommend that future research focuses
on these processes, as it is important to include them in
numerical models of glacier evolution.
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APPENDIX: A DEBRIS-EVOLUTION MODEL
We propose a simple model to describe the spatio-temporal
evolution of supraglacial debris. Let Ω(t ) and Γ(t ) be the
debris-covered area and its boundary at time t , and D (t , x, y )
be the signed distance function to the interface, Γ(t ), such
that D (t , x, y ) is positive in Ω(t ) and negative elsewhere. By
definition, the debris area boundary, Γ(t ), is the zero level
set of a function D = D (t , x, y ). Level set functions are often
used to describe a topologically changing domain (Osher
and Fedkiw, 2003) (e.g. a set of debris). Fix t and assume Ω(t )
is known, the signed distance is the stationary solution of

Ḋ + sign(D̃)(|∇D| − 1) = 0, (A1)

with initial condition D (0, x, y ) = D̃ (x, y ), where D̃ is
positive in Ω(t ) and negative elsewhere. The time evolution
of debris is given by

Ḋ + C |∇D| = 0, (A2)

with initial condition D0, which represents the initial debris
area. In Equation (A2) C denotes the speed of the debris
front in the outward normal direction. Both Equations (A1)
and (A2) are nonlinear Hamilton–Jacobi equations, and
are solved numerically using an upwind finite-difference
scheme (Osher and Fedkiw, 2003).
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