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CONVOLUTION WITH ODD KERNELS HAVING 
A TEMPERED SINGULARITY 

BY 

R. A. KERMAN 

ABSTRACT. Suppose b{t) decreases to 0 on [1, oo). Define the 
singular integral operator Ch at periodic / of period 1 in L (T), 
T = ( - 1 / 2 , 1/2), by 

{Chf)(x) = lim / f(x - y)b(\/\y\) cot irydy x e T. 

Then, for a large class of b one has the rearrangement inequality 

(W(o^[^/;/w 
fl ds] 

+ Jt f*(s)b(\/s)-\ / € L,(7> 

This inequality is used to construct a rearrangement invariant 
function space X corresponding to a given such space Y so that Cb 

maps Xinto Y. 

1. Introduction. The conjugate function operator C defined at periodic 
functions / of period 1 by 

(Cf)(x) = j im+ j f g W s 1 / 2 fix ~ y) cot mydy x^T= ( - 1 / 2 , 1/2), 

has been studied by many authors/ ^ For example, O'Neil and Weiss [11] 
proved the rearrangement inequality 

(LI) f0 (Cfr(s)ds ^K f0(P + Q)f*(s)ds 0 < t < 1. 

Here K > 0 is independent of the integrable function / ; /"* and {Cf)* are the 
nonincreasing rearrangements o f / a n d Cf on (0, 1); 

0g(u)du and (Qg)(s) = Js g(u)~. 

Received by the editors January 22, 1985, and, in revised form, August 17, 1987. 
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* % e have found it convenient to use the kernel cot-n-y on the interval T rather than the 
usual kernel coty/2 on (— AT, TT). Certain results usually proved for C on (— w, TT) are stated 
below on T. 
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Our purpose in this paper is to show (1.1) can be improved on if the 
singularity of the kernel cot my at 0 is tempered somewhat. Thus, we consider 
operators Cb given at / on T by 

(cjxx) = \m^ S.mymn f(x " yww )cot «ydy x G r> 
where the nonnegative function b defined on [1, oo) is, among other things, 
bounded and decreasing. These operators were introduced by O'Neil in [10]. 
Later they were used to illustrate a general extrapolation theorem in [7]. 

Now, one can do slightly better than (1.1) for C. 

Using (1.1) itself and the weak-type (1,1) inequality for C, it was shown in [1] 
that K > 0 exists with 

(1.3) (Cf)*(t) ^ K(P + Q)f*(t) 0 < t < 1, 

for all / which are integrable on T. When (Cf)* is replaced by the smaller 
function (Cbf)* on the left side of (1.3), one can reduce the bounding function 
on the right. Given certain assumptions on b, which are detailed below, we 
prove in Theorem 2.2 that 

(1.4) (<V)*(0 ^ K(Pb + Qh)f*(t) 0 < t < 1, 

where 

(Pbg)(t) = ^ p - f0 g(s)ds and (Qhg)(t) = j \ g(s)b(\/s)^. 

An inequality such as (1.4) was conjectured in [7]. 
As might be expected, it is crucial when proving (1.4) to have, for Cbf, a 

strengthened form of Kolmogorov's classical weak-type (1,1) estimate for Cf: 

| [x e T:\ (Cf)(x) | > X} | ^ | j T \f(x) \dx9 

K > 0 being independent of all integrable / and X > 0. This is obtained in 
Theorem 2.1. 

We now state the assumptions to be put on b(y) and give some of their 
consequences. The nonnegative function b(y) on [1, oo) is said to be slowly 
varying there if to each a > 0 there is &y0 > 1 so that yab(y) is increasing and 
y~ab(y) is decreasing on [y0, oo). Such a function is known to satisfy 

(1.5) lim ^ 1 = 1 
y-*oo b(y) 

for all c > 0. See [12, Ch. V, (2.4) ]. If b(y) is differentiable and -yb'(y), as 
well as b(y), is slowly varying, then 0 ^ — br is nonincreasing for large y which 
yields 
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bw = f y , 2 m d t + b(y/2) - (y/2Wyï+ ^ / 2 > > 
so 0 ë -yb\y)/b(y) â 2[b(y/2)/b(y) - 1], and hence, by (1.5), 

(1.6) lim y - ^ l = 0. 
y-^oo b(y) 

It was shown in [7] that when b(y) decreases to 0 on [1, oo) and is, together with 
—yb'(y), slowly varying there, one has 

(1.7) b(\/\y\ ) cot vy = (Ck)(y) + 0(k(y) ) 

on T9 where k(y) = —y~ b'(\/\y\). Since — yb\y) is slowly varying, k(y) is 
nonincreasing on (0, x0] for some x0 e (0, 1/2), and so there exists K > 0 such 
that 

(1.8) K~lk*(2y) ^ k(y) ^ Kk*(2y) 0 < y < 1/2. 

The operator of convolution with k will be denoted by Tk; that is, 

(Tj)(x)= jTk(x-y)f(y)dy. 

Suppose (j> is a nonnegative, integrable function on (0, 1) which lies between 
constant multiples of a nonincreasing one. The Lorentz space A(<|>) consists of 
all measurable f on T such that 

J o H/HA(*) - j o mm)* < ™. 

The functions <f> first considered by Lorentz in [8] were <j>p(t) = pt /p~ , 
1 ^ p < oo. Later, Calderôn introduced the notation L(p, 1) for A(<£ ) and, 
indeed, defined spaces L(p, q), also called Lorentz spaces, for other values of p 
and q. See [4]. An important fact concerning A(<|>) is that a sublinear operator T 
from A(<j>) to a Banach space J? satisfies 

\\Tf\\B â 2K | | / | | A W / e A(<J>) 

(1.9) if and only if 

| |7x £ | | s § K\\XE\\m 

for all measurable E a T. 

2. The rearrangement inequality. We begin with a theorem that includes in 
(2.1) the strengthened form of the weak-type (1,1) inequality mentioned in the 
introduction. The estimate (2.2) is a sort of dual to the weak-type (2, 2) result 
corresponding to (2.1). 

THEOREM 2.1. Let b(y) be a differentiable function on [I, oo) which decreases to 
0 and which, together with —yb\y), is slowly varying there. Then, there exists 
K > 0 so that for all f integrable on T 
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(2.1) u(Chf)*{u) ^ Kb(\/u) f0 f*(y)dy 

and 

(2.2) um(Chf)*(u) ïkK fQ f*(y)y-V2b(Vy)dy 

when 0 < u < 1.' (2) 

PROOF. According to (1.7) we need only prove (2.1) and (2.2) for Tkf and 
C(Tkf) in place of Cj. 

We first consider Tkf. By an inequality of F. Riesz, [5, p. 279] and (1.7), 

(2.3) (Tj)*(u) g P[(Tkf)*](u) = «T1 sup { (Tkf)(x)dx 
\E\ = u 

^ Ku~ sup 
\E\=u 

Tk. 

JTxt(x)(Tkf)
+{x)dx 

^KP[(Tkf
+)*](ul (see (1.8)) 

where / (t) =/*(2|/ | ), / G T. Accordng to [9, Lemma 1.5], the convolution, 
g * A, of the functions g, h G Ll(T) satisfies the inequality 

u~x Si(g *hns)ds - [u~l II s*^H[/o * * ( s H + / r ^*(J)**(J)*-
Combining this with (1.8), it is seen the right hand term in (2.3) is dominated by 
a constant multiple of 

u~]b(\/u) J"0f*(y)dy + fuf*(y)b(l/y)^, 

since 

/ , 

l 
k*(y)dy < oo, 

o 
k is nonincreasing near 0 and, by (1.6), k(y) ^ Ky~lb(l/y). The desired 
estimates for Tkf are now easily obtained using the fact that b(\/y)/ya, a > 0, 
decreases for y near zero. 

Inequality (2.2) for C(Tkf) amounts to the assertion that the operator C O Tk 

is continuous from the Lorentz space A(y~l/2b(\/y) ) to L(2, oo). But this has 
been shown to be true for Tk and C is known to preserve the class L(2, oo); 
see [1]. 

According to the estimate (1.3) and the inequality between the second and 
last terms in (2.3), 

Here, as in (2.8) below, the right side of (2.2) may be infinite, in which case there is nothing 
to prove. 
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\C(Tkf)nu) ^ K[P[(Tkf+)*](u) + Q[(Tkf)*](u)l 0 < u < 1. 

Moreover, 

0 (Tjrm ^ QP[ (Tkfr](u) 
â KQP[(Tkf

+)*](u) (by (2.3)). 

Use of the identity (QPg)(x) = (Pg)(x) + (Qg)(x) - (Pg)(l) now shows a 
constant times 

(2.4) P[ (Tkf
+)*](u) + Q[ (Tkf

+)*](u) 

to be an upper bound of [C(Tkf) ]*(w), 0 < w < 1. Only the second term in 
(2.4) has to be dealt with. Because of (1.9), we just have to prove K > 0 exists 
with 

W'j>-(2.5) -b(l/u)-1 Ju{TkXi_s/2^*{y)j- ^ K 

when 0 < s, u < 1. Now, (TkX(-s/2^2))*(y) e c l u a l s 

6(2/(5 + y) ) + 6(2/(5 - j ) ) 0 < j < s 

b(2/(s + y) ) - 6(2/(>> - J ) ) 5 < y < 1. 

For 5/2 < u < 2r, the left side of (2.5) is no bigger than a constant times 

/ (2.6) K l / s ) - ' / * 2 [6(2/(1 + >•)> + *(2/|i ~ y\ ) ] -

J 2s 
+ 6 ( 1 A ) - ' / ^ [6(2/(5 + y)) - b(2/(y - s))fi. 

This follows from b(y) ^ Kb(2y) and 6(1) < oo. For the same reason the first 
term in (2.6) is seen to be bounded. The second term is comparable to 

(2.7) 56(1/5)- ' f l -y-3b'(l/y)dy, ' 

as can be seen by applying the mean value theorem to the integrand and 
recalling that — yb'(y) is slowly varying. L'Hopital's rule, property (1.5) for 
—yb'(y), and (1.6) now yield the boundedness of (2.7). The argument used on 
the second term of (2.6) also shows (2.5) if u > 2s. 

When 0 < u < s/2, we break up the range of integration on the left side of 
(2.5) into the parts u < y < s/2 and s/2 < y < 1. Since yb(\/y)~l basically 
increases, 

"Hl/u)-1 fl2[TkX(_s/2j/2)ny)dj 

has its effective maximum value at s/2 and so we're back to the case 
s/2 < u < s. Finally, 
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u i fs/2 dv 
-b(\/u)-] / [b(2/(s +y)) + b(2/(s - y))]-
s J U y 

u~]/2b(l/u)\sl u Lb(\/uy 

which is a bounded function of u on 0 < u < s/2. 

THEOREM 2.2. Let b(y) be a differentiablefunction on[\, oo] which decreases to 
0 and which, together with —ybf(y), is slowly varying. Then, 

(2.8) (Cjnt) ^ K[Ph + o V ( 0 0 < r < 1, 

where K is a positive constant independent of integrable f on T. 

PROOF. The proof will be given in two stages. We first show K > 0 exists, 
independent o f / i n Ll(T), so that 

(2.9) j \ (Chf)*(u)du ^K j \ (Ph + Qb)f*(u)du 0 < * < 1 ; 

then that (2.9) implies (2.8). 
Because of (1.9), inequality (2.9) need only be obtained for characteristic 

functions of measurable sets. Suppose, then, x = XE> where E c T has 
Lebesgue measure s. 

For u > s, (2.1) reads 

(Qx)*(«) ^ K-b(\/u); 
u 

while for u < s, (2.2) implies 

(ChX)*(u) â Ku~m f0 y'xnb{\ly)dy g K^j^bil/s). 

Hence, 

(2.10) JQ (CbX)*(u)du ^K J0 min[-Z>(l/W), ^ b{\/s)]du. 

Now, when s < t, (2.10) gives 

/ o (ChXy(u)du ^ * [ / * {^j/2b(\/s)du + j \ S-b(l/u)du\ 

[ fl du 
^ K\sb(\/s) + s / ft(l/iO— 

L ^ s u 
However, 
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(Pb + Ô6);W") = 

(b(l/u) + J[ 

-b(l/u) 

b(\/y) 
dy_ 

y 
u < s 

u > s, 

which means 

(2.11) fn(P
h + Q ^ ^ d u 

= lS\b(l/u) + J b(l/y)—]du + / -b(l/u)du. 
J U [ J U y \ J S U 

Further, the right side of (2.11) is no less than 

fs (l du 
lb(\/u)du + s / b(\/u)—. 

Since b is slowly varying, 

JS
0b(\/u)du ^ A J 6 ( 1 / J ) 

and the proof of (2.9) for / = x is complete when s < t. 

The proof of (2.9) in case ^ ^ t can be reduced to the previous case using 
duality. Thus, 

(2.12) Jo (CbX)*(u)du = sup^ jf | (QxX*) |£& 

and (letting F+ = F n{CbX ^ 0}, F~ = F n {C6x < 0} ) 

j £ | (QxXx) l<& = X + (CbX)Wdx - X - (C*xXJC>fe 

= ~ JE{CbxF^){x)dx + JE (ChxF-)(x)dx 

= JE [Cb(xr- ~ XF+) ](x)dx 

= fo&b&F- ~XF+)nu)du. 

Since (x/r+ — X F + ) *
 =

 XF*>
 w e obtain, from (2.1) and (2.2), 

(2.13) j \ (CbX)*(u)du g / * [ C , ( X F - - XF+) nu)du 

(s \t lt\xn 1 
^ A' / A min«6( l /u ) , - b(l/t)\du 

So, (2.9) for 5 ^ f then follows from (2.13) and the fact that 

https://doi.org/10.4153/CMB-1988-001-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1988-001-6


10 R. A. KERMAN [March 

/ 0 (P" + 0")X(0,,)("¥" = f0 (P" + ô")X(o,o(")̂ -

Consider now a fixed / and t with / e Ll(T) and 0 < t < 1. Following 
Calderôn [4, p. 29], we define fx{x) = f(x) - f*(t) when / ( * ) > /* ( / ) , 
f}(x) = / ( x ) + /*( / ) when / (x ) < - / * ( / ) , and/ , (x) = 0 otherwise. If, further, 
fi = / - / i . then / , and / 2 are integrable, / * = / * + /2*, /ft*) = 0 when 
1 > 5 > f, and / 2 * ( J ) = / * ( 0 when 0 < s < t. Moreover 

(Cjnt) â {CbfxT(tl2) + (Chf2)*(t/2). 

By (2.1) and (1.5) 

{Chfx)*(t/D fk K^y± fQ f?(y)dy 

s Kmi fo [riy} _ m ¥y s K^n /; ^ ^ 
Again, from (2.9) 

(Chf2)*(t/2) ^ P(Cbf2)*(t/2) â Kt~x / f (Pfe + &)ft(u)du 

dy mt)rlf0[Hi/u) + fub(i/y)-y du + (ô7*xo 

^ ^(pft + eV*(0, 
since b(\/u) is nondecreasing a n d / * is nonincreasing. 

We now consider the question of how, being given a rearrangement invariant 
(r.i.) space Y, one can construct another such space X so that Cb\ X —» F. See 
Boyd [2] for the definition of an r.i. space Y and its upper index, a(Y), and 
lower index, fi(Y). 

THEOREM 2.2 and | | / + | | y = 11/11y guarantee that one need only consider the 
general problem for Pb -f Qb. This is done in 

THEOREM 2.3. Suppose b is a decreasing, slowly varying function on[\, oo). Let 
Y be an r.i. space with norm \\ \\Y. Then, the set X of all Lebesgue measurable 

functions f on T such that 

(2.14) \\[(Pb + Qb)f*] + \\y < co 

is a function space satisfying all the properties of an r.i. space except that it may 
not contain characteristic functions of measurable sets. This latter property will 
also hold if and only if K e Y, where 

K(t) = J Q k(s, t)ds with k(s, t) = min| 
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PROOF. Only the proof that K* £ Y implies XE G X f° r a ^ measurable 
E c T offers any problem. The method of Theorem 2.2 of [6] can be used to 
prove this once one observes k(s, t) is nonincreasing in each of s and t in 
(0, 1) and hence 

P 
I k(s, t)dt is nonincreasing in s. 

Under certain conditions there are simpler tests for membership in the space 
X constructed above. 

THEOREM 2.4. Assume b, X and Y are as in Theorem 2.3. Then the condition 

(2.15) | | Z > ( l / | / | ) / + ( 0 l l y < o o 

is necessary in order that f e X. Moreover, if 0 < /?(Y) = «( Y) < 1, then 
(2.15) is also sufficient to have f e X; in particular, XE G X for °U measur­
able E c T 

PROOF. The necessity of (2.15) follows from the simple inequality 

b{\/t)f*(t) ^ (Pbf*)(t\ 

Since b is slowly varying, we have, when/7 e (1, oo), 

( i V * ) ( 0 ^ Kpt~
x/P f[ns)sx/P-xds; 

(Qbf*)(t) ^ f] b(l/s)f*(s)j 

Thus, choosing/? < l/a(Y) will guarantee the sufficiency of (2.15), in view of 
[2], Theorem 1. 

REMARKS 2.5. 

1. Suppose b, X and Y are as in Theorem 2.3. The proof of Theorem 2.4 
shows that fi(Y) > 0 ensures || [Pbf*] + \\Y < oo is a necessary and sufficient 
condition for / e X. 

2. When Y is a Lorentz space, A(<|>), the requirement ft(Y) > 0 is equivalent 
to 

(2.16) j \ <t>(s) log t/sds ^K J0 <j>(s)ds 

by (1.8). In this case, the condition f o r / e Xamounts to 

P P ds 
J0f*(t)dt ]tb(l/sWs)- < o o 

We note that 

/
l ds P ds 

t b(l/s)<t>(s)- ^K J t <j>(s)-
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and that the latter function is integrable on (0, 1). Thus, when b satisfies the 
hypotheses of Theorem 2.3 and (2.16) holds for <j>, we have 

(2.17) Cb: A(<0 -> A(*), 

where 

P ds 

at) = j t b(\/sMs)-. 

Unlike Theorem 8 of [10], (2.17) doesn't require the additional restriction 
b(t]/2) ^ Kb(t) and so is true for, say, b(t) = exp( — y l °g et)-

3. Further refinements are possible. Thus, if Y = LP(T), 1 < p < oo, and 
0 ^ a ^ 1, Theorem 1 of [3] allows one to prove 

\Hv\t\ ya(cbf)
+(t) \\p ^ K\\b(\/\t\ ) ' -y+(o \\p. 
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