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RECURSIVE COLORINGS OF GRAPHS
JAMES H. SCHMERL

A graph G is an ordered pair G = (1, E) where E is a set of 2-element
subsets of 17. The set [”is the set of vertices, and E is the set of edges.
The vertices x and y are joined by an edge if {x, y} is an edge. If X is a set
(of colors) and x : 17— X, then we say that x is an X-coloring of G if
whenever two vertices x and y are joined by an edge, then x(x) # x(v).
A graph is X-colorable if there is an X-coloring of it. We will identify the
natural number » with the set {0, 1,...,n — 1}, and often refer to
n-colorings and to graphs being n-colorable.

A graph G = (V, E) is recursive if both 17 and E are recursive sets. An
X-coloring x of the graph G is recursive if x is a recursive function; and G
is said to be recursively X-colorable if such a recursive X-coloring exists.
Unfortunately, as shown by Bean [1], counter-examples abound unless
we make additional effectiveness assumptions about G.

The degree of a vertex x is the number of vertices to which it is joined;
it is denoted by deg(x). The graph G = (V, E) is locally finite if deg(x)
is finite for each vertex x. It is highly recursive if it is recursive and locally
finite and the function deg is recursive. (Bean also required that G be con-
nected, but this seems not to be important here.)

A study of the relationship between effectiveness and colorability was
undertaken by Bean [1]. He proved that for every integer n = 3 and
every connected, highly recursive graph G, if G is n-colorable then it is
recursively 2n-colorable. We improve upon this result in Theorem 1
below.

In the other direction, Bean produced an example of a connected,
highly recursive, n-colorable graph which is not recursively n-colorable.
(Such an example was anticipated by Manaster and Rosenstein [3].)
This left as unsettled what the possibilities are with regard to a highly
recursive, n-colorable graph being recursively m-colorable forn + 1 = m
< 2n — 1. This gap is eliminated in this paper. Specifically, we prove the
following two theorems.

THEOREM 1. If n = 2 and G s a highly recursive, n-colorable graph, then
G 1s recursively (2n — 1)-colorable.

THEOREM 2. If n = 2, then there is « highly recursive, n-colorable graph
which 1s not recursively (2n — 2)-colorable.
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Theorems 1 and 2 are proved in Sections 1 and 2, respectively. Some
additional comments are contained in § 3. In § 4 we make an improvement
of Theorem 2 by obtaining a graph which has even no (2n — 2)-coloring
in the Boolean algebra generated by the r.e. relations.

1. Proof of theorem 1. Let G = (1", E) be a highly recursive, n-color-
able graph. Let 1" = {«¢, : s < w} be a recursive enumeration of 1”. For
each s < w define 17, and V, so that:

1o = Vo = {ao};
TV.H—I = {x (i 1'33’(3’ /L [v,\' /\ {xvy} E E} U :U»\'Fl} U [vv\';
17x+1 = TY.\‘+1 - T,
Clearly 17 = U, 17,. Since G is highly recursive, it follows that each I,

is finite and that (I’ : s < w) is recursive. Let G, be the (induced) sub-
graph of G whose vertices are just those in I’,. For each s < wlet X, =
{0,1,...,n — 1} if siseven, and X, = {0} U {n,n +1,...,2n — 2|
if 5 is odd.

We now recursively define functions f,: 1"y, — 22 — 1 and
Fg: Vagy1 — X, such that each of the following conditions is satisfied
for each s < w:

(1) fyisa (2n — 1)-coloring of Ga,;
(2)  fo=Fonl Ty

(3)  F,is an X ,-coloring of Gay1;
(4)  F|Va = fi| Vo,

Having obtained such a sequence (f, : s < w), we easily see from (1) and
(2) that f = U, f, is a recursive (2n — 1)-coloring of G. Conditions (3)
and (4) are present only to maintain the recursion.

Stage s = 0. Let F, be the first n-coloring of Gy, and let fy = Fo| 1.
Stage s + 1. Suppose we already have f, and F| satisfying (3) and (4).
Let
Fore I"2s+3 - X.\-+1

be the first X -coloring of Gagy3. (Such an /¢, exists since G, and thus
also Gayys, is n-colorable.) Now define fy 1 : Voo — 21 — 1 as follows:

st(x) ifx €V,
Foa(x) if x € Vagpo,
Fop1(x) if x € Voorr and  Foa(x) 0,
Fox) ifx € Va1 and Fyai(x) = 0.
It is immediate that f; = f 1|V, and that Fo|Vegre = fopa| Vagse. Thus,
all that remains is to show that f ,, is a (2n — 1)-coloring of Gay, .

fs+1(x) =

https://doi.org/10.4153/CJM-1980-062-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-062-7

RECURSIVE COLORINGS 823

To see that fs11 is a (2n — 1)-coloring of Gy, s, suppose that x, y €
Va2 and that x and y are joined by an edge. Several cases need to be
considered, all of which are very straightforward.

Case 1. x,y € Vi, Then fo1(x) = fo(x) # fi(v) = fou1(y) by (1).
Case 2. x € Vagand y € Vagpr. If Fiii(y) # 0, then
fS+1<y) = Fs+1(y) ¢ X,

But fi1(x) = f,(x) € X,. Hence, f,41(x) # f,+1(¥). On the other hand,
if Fo1(y) =0, then fo1(y) = Fy(y). But x € Vs, since x and y are
joined by an edge. Hence,

fs+1(x> :fs(x) = Fs(x)
by (4), so that from (3) we get F(x) # F (y). Hence, fo11(x) # for1(y).

Case 3. x € Vagor and y € Vagpy. Proceed as in Case 2.

Case 4. x, vy € V. Since x and y are joined by an edge, I, (x) #
Fo1(y), so without loss of generality we can assume that 0 #
FS.“(x) C/ X\ If ]"~+1(y) # 0, then

Jorr(x) = Fopa(x) # Foa(y) = fa(y).
However, if I'¢,;1(y) = 0, then
fa1(y) = Fi(y) € X,
so that fo1(y) # fo1(x).
Case 5. x € Vogoand y € Voo If Fypi(y) 5 0, then
fon(®) = Fon(x) # Fia(y) = fira ().

If Fo;1(y) =0, then Fy i(x) # 0 since x and y are joined by an edge.
Thusyfs+1(x) = ](‘.H—l(x) G X.s'y hUth+l(y) = ]"S(y) E X\

Case 6. x € Vosprand y € Vayre. Proceed as in Case 5.
+ +

Case 7.,y € Vagpo. Then fo1(x) = Fo(x) # Fo1(v) = fon(9).
This completes the proof of Theorem 1.

2. Proof of theorem 2. We will first prove the theorem for n = 2.
Let X, ¥V C w be disjoint, recursively inseparable, recursively enumerable
sets. Let Z = XU Y, and let {(z;:7 < w) be a recursive, one to one
enumeration of Z arranged so that z; € X if and only if 7 is even. We
define a graph G = (V, E) as follows. Let

V=1{{s,nk)cw:Vi<n)e,#2) ANk<2U
{(2,7,2) € w?:2z = z;and 7 is even}.
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Let E, the set of edges, consist exactly of those pairs following which are
subsets of 17

(e, n, k), (z,n + 1, k)},
{{z,n, k), (z,m,2)},if 2 = 2, niseven, and k < 2,
{(z,n,0), (z,n, 1)},if 2 = 2, and = is odd.

The graph G is certainly highly recursive. It is also 2-colorable. A par-
ticular 2-coloring of G is the function x : 7" — 2 where x({(z, n, k)) =0
if and only if one of the following holds:

k = 0 and 7 is even;
k =1,z € X and #n is even;
=1,z ¢ X and # is odd.

However, G is not recursively 2-colorable. For, suppose x is a recursive
2-coloring of G. Then let

A =1{z<w:x(0,0)) = x((z0,1))}.

Then X € 4 and V"M 4 = @. But clearly 4 is recursive, thus con-
tradicting the recursive inseparability of X and V. This proves Theorem
2 in the case that n = 2.

From now on assume that » = 3. We are going to define a graph
G, = (V,, E,). The set 1", consists of those ordered pairs (7, j) where
0 = 1,7 < n Two vertices (7, j) and (r, s) are joined by an edge in E,
if and only if 7 # r and j # 5. (The graph G, is the complement of the line
graph of the complete bipartite graph X, ,.) The i-th row of G, is the set
{ (2, 7) : 0 £ j < n}, and the j-th column of G, is the set{ (¢,7) : 0 < 1 < n}.
Thus, two vertices are joined if, and only if, they are in different rows and
different columns. The graph G, is easily seen to be n-colorable: just color
the vertices in the i-th row with color 1.

Now let x be an X-coloring of G,. We say that x is row-oriented if for
each ¢ < n there are two distinct vertices ¥ and z in the ¢-th row such
that x(y) = x(z). Similarly, x is column-oriented if for every 7 < n there
are two distinct vertices y and z in the j-th column such that x(y) = x(2).

LemMaA 2.1, If x is a (2n — 2)-coloring of G, then x is etther row-oriented
or column-oriented, but not both.

Proof. Suppose that x is both row and column-oriented. For each 1 < n
let p; < 2n — 2 be such that there are two distinct vertices in the ¢-th
row which are colored with color p;. For each j < n let ¢; < 2n — 2 be
such that there are two distinct vertices in the j-th column which are
colored with color ¢;. Since x is a coloring, it follows that po, . .., pu_1,
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Qo - - -, ¢n—1 are pairwise distinct colors. But this contradicts there being
only 2n — 2 colors. Thus x is not both row and column-oriented.

Now suppose x is neither row-oriented nor column-oriented. Then
there are 7, j < 7 such that no two distinct vertices in the 7-th row have
the same color, and no two distinct vertices in the j-th column have the
same color. But then {x(r, s) : 7, s < n and either r = 2 or s = j} is a
set of 2n — 1 distinct colors, and this is impossible. Hence x is either
row-oriented or column-oriented.

LEmMMA 2.2. Suppose x1 and xs are (2n — 2)-colorings of G, such that
if1 # sand j # 7, then x1((1, 7)) # x2((r, 5)). Then x, is row-oriented if,
and only if, xs ts column-oriented.

Proof. By symmetry it will suffice to prove that x. is column-oriented
if x1 is row-oriented. So we will assume x; is row-oriented. Let x3 be the
(2n — 2)-coloring of G, such that x:((s, 7)) = x2((r, s)). Thus, x2 is
column-oriented if, and only if, x; is row-oriented, so that it suffices to
prove that x; is row-oriented.

Suppose x; is not row-oriented. Also x: is not column-oriented by
Lemma 2.1. Thus the same reasoning as in the second half of the proof of
Lemma 2.1 will produce 2n — 1 distinct colors, yielding a contradiction.

We are now prepared to construct the highly recursive, n-colorable
graph which is not recursively (2n — 2)-colorable. Let G = (V, E) be a
highly recursive, 2-colorable graph which is not recursively 2-colorable.
Such a graph was constructed at the beginning of this proof. We will
define a graph (G’, V). The set V' of vertices willbe V' X V,. lf u,v € 17
and (4, 7), (r, s) € V,, then there is an edge in E’ which joins the vertices
(u, (1,7)) and (v, (7, s)) if, and only if, one of the following holds:

(i) v = v, and (4, j), (7, s) are joined by an edge (of G,);
(i1) # and v are joined by an edge of 1, and 7 s and j # r.

Clearly, G’ is a highly recursive graph.
We first show that G’ is n-colorable. Let x be a 2-coloring of G. Now
define x’ : V' — % so that:

(iii) if x(u) = 0, then x'((«, (1, 7))) = 1;
Gv) if x(u) = 1, then x'((u, (4, 7))) = j.

It is easily seen that x’ is an n-coloring of G'.

Next we show that G’ is not recursively (2n — 2)-colorable. Let
x' V' —2n — 2 be any (2n — 2)-coloring of G’. For each u € V, let
Yo 1 V,— 2n — 2 be such that

(@, 7)) = x'((u, (4, 7))).
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It follows from (i) that ¢, is a (2n — 2)-coloring of G,, so that by Lemma
2.1 it is either row-oriented or column-oriented. Let x : V' — 2 be such
that x(#) = 0 if and only if ¢, is row-oriented. Then x is a 2-coloring of
V. For, suppose u#, v € 1”7 are joined by an edge. Let x1 = ¥, and x> = ¢,.
It follows from (ii) that x; and x. satisfy the hypothesis of Lemma 2.2.
Thus, it follows from that lemma that x(u) # x(v), so that x is a
2-coloring.

Finally, notice that x is recursive in x’, and this implies that x" is not
recursive since there are no recursive 2-colorings of G.

This completes the proof of Theorem 2.

3. Additional comments. The example in Theorem 2 can be trans-
formed into a connected one by a rather general procedure. Suppose
G = (V, E) is a highly recursive graph, and {a¢,: s < w} is a recursive
list of 1. Let {b;:7 < w} be a recursive set disjoint from V. Let
G' = (V', E') be the graph in which

= 17\U{by:s < wl,
E =EVU {{a, b} :s 21 =25+ 14,

Then G’ is a connected, highly recursive graph. If # = 3 and G is n-color-
able, then G’ is also n-colorable. To see this just color b, with the first
color which does not color either a, or a,,;. This procedure also shows that
if G is recursively n-colorable, then so is G'.

One way of guaranteeing that a recursive graph is highly recursive is
to have it be k-regular for some & < w. Recall that a graph is k-regular
if each vertex is joined to exactly k vertices. For sufficiently large k& we
can arrange for our examples to be k-regular.

An aspect of the graphs constructed in the proof of Theorem 2 is that
they are not just locally finite, but that deg is uniformly bounded. In the
case of our examples, the least such bound is 3(n — 1)2. It is rather easy
to see that if a highly recursive graph has such a bound, say k&, then G
can be ‘‘fattened” to a recursive, k-regular graph G'. Furthermore, if G
is n-colorable then so is G’, and if G is recursively n-colorable, then so
is G'.

Thus, we can ‘“fatten’” our examples to obtain (3(z — 1)2)-regular
ones. At the same time, it would be possible to turn them into connected
graphs, being a little more careful than we were with the procedure pre-
viously described, so as to obtain connected, (3(n — 1)2?)-regular graphs.
But we will not worry about that.

All this suggests the following question.

Question 3. If 2 < n < m £ 2n — 2, what is the least & for which
there is a recursive, k-regular, n-colorable graph which is not recursively
m-colorable?
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Form = 2n — 2 we know that £ < 3(m — 1)2 For m = n we obtain
from Bean’s example a recursive, (2n — 2)-regular, n-colorable graph
which is not recursively n-colorable. Thus £ < 2m — 2. This same bound
is obtainable from the example of Manaster and Rosenstein [3]. However,
it is not optimal as a simple modification of Bean’s example yields a

recursive ( {371 )— 1] )-regular, n-colorable graph which is not recursively

n-colorable. This results in an improvement whenever n > 4.

To construct this example, let G = (1, ££) be the recursive, 2-regular,
2-colorable graph which was constructed at the beginning of § 2. Now let
n = 3. We will define a graph G, = (V,, E,) as follows. Let

Ve, =1{p,i)c VXn:if p=1{(,mnk)andk = 2, theni < n/2}.

Suppose p = {z1, n1, k1), ¢ = {22, ns, k2) and (p, 1), (¢, 7) ¢ V,. Then
there is an edge in E, joining (p, 1) and {q, j) if and only if they are
distinct and one of the following holds:

1 =g

(2) zi =z, ki =k <2,m =n 4+ landi < n/2 < j;

2 z1 =20, ki =k <2,n=mn+landj < n/2 £ 1;

(3) 21 =29 k1 < ky =2, m

B') 21 =20, ks < ky =2, 1 =mnyand n/2 £ j;

(4) 21 = 322, {ky, ko) = {0, 1}, 1 = no, n/2 £ 4, 7, (51, n1, 2) ¢ V
and (z1, n1 + 1, k1) @ T

I

7y, and n/2 £ 1;

I

Clearly the graph G, is highly recursive. Also, if # = 2m then cach vertex
is joined to at most 3m — 1 vertices, and if n = 2m 4- 1, then each vertex
is joined to at most 3m + 1 vertices. In either case, each vertex is joined

2
To see that G, is n-colorable, let ¢ : 17— 2 be a 2-coloring of 1. Let
x : V, — n be such that if {(p, 7) € V,, where p = (z, m, k), then

1,ifk=0o0rk =2,

x({p, 1)) = 7, if k = Land ¢(p) = ¢((z, m, 0)),
n—1—1,if k = 1and ¢(p) # ¢((z, m, 0)).

.

to at most [ ] vertices.

Then x is an n-coloring of G,.
Now let x be any n-coloring of G,. For p = (z, m, k) and j < 2 set
I; = {x({{z,m, j), 1)) : 1 < n/2}.

Then define
0,if Iy = I, mis odd, and & < 2;
Y(p) = (0, 1f Iy # I, and m + k is even;
1, otherwise.
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Then ¢ is a 2-coloring of G and is recursive in x. Since there are no recur-
sive 2-colorings of G, then there are no recursive n-colorings of G,.

Then, by “fattening’’ this example we obtain a recursive ( [iyi—)——l] )

regular graph which is n-colorable but not recursively n-colorable.

Is the bound [?_n‘);l] optimal? For n < 4 we know that it is. For, in
a subsequent paper [4] we will show if # = m then the least k answering
Question 3 is > n.

Another way of improving Theorem 2 would be to increase the recur-
siveness of the graph to the point of having it decidable. Bean did just
that in his examples. It is not hard to verify that all the examples con-
structed in the proof of Theorem 2 actually are decidable, since they all
have effective elimination of quantifiers.

One final way we shall improve Theorem 2 is by constructing graphs
which not only do not have recursive colorings, but do not have colorings

which are in the Boolean algebra generated by the r.e. relations. This we
do in § 4.

4. An improvement. Let & be the Boolean algebra generated by the
r.e. subsets of w (or, where the context requires, by the r.e. binary rela-
tions on w). In this section we will make an improvement of Theorem 2
by considering colorings in & rather than just recursive colorings.

THEOREM 4. If n = 2, then there is « highly recursive, n-colorable graph
which has no (2n — 2)-coloring in X .

Proof. We will prove the Theorem only in the case # = 2. The construc-
tion in the proof of Theorem 2 can then be used to extend it to arbitrary
n > 2. The graph G = (V, E) which will be constructed is 2-regular and
contains no cycles. (Thatis, if xy, . . ., x,42 € 17 are such that x, is joined
to x ;1 for each ¢ < n 4 2, then xy and x,,» are not joined.) Such a graph
is 2-colorable.

At stage s of the construction we will define a graph G, = (V,, E,),
each of its vertices having degree 1 or 2, and each of its components
having exactly 2 vertices of degree 1. If s < { < w, then G| is a subgraph
of G,. The graph G = U {G, : s < w} will be the desired graph.

In component X of G, let p,(X) be the smaller vertex of degree 1 and
¢s(X) be the larger vertex of degree 1. Each graph G, is 2-colorable; in
fact, there is a unique 2-coloring ¢, : V', — 2 such that ¢ (p,(X)) =0
for each component X of G,. If A C w, then we will say that the com-
ponent X of G, splits A if there are «, b € A such that ¥ (a) # ¢,(b).

Let W, be the n-th r.e. set. Let {{x,, n,;) : r < w} be a recursive enum-
eration arranged so that

W, ={rx <w:3Is <wl(x,n,) = {x,n)}
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For each 7 < w, let
W, ={x <w:3s £ r({x;, ns) = (x,n))}.
Stage s = 0. Let V, = {0, 1} and E, = {{0, 1}}.

Stage s +1 =2y + 1. Let X, ...,X, be the components of G,
arranged so that p,(X,) < ... < p(X,). Let ao, by, a1, b1, ..., dys1,
bn+1 be the first 2z + 4 natural numbers not in V/,. Let

I/.H—l = I/rs U {(I'Or bUy ceey Qpg, [}n+1§v

E,H—l = E\U {{(l/i, pv(Xz)} ) é n}
U by (XY 11 = n Y {H{apg, bugal ).
Stage s + 1 = 2r + 2. Let n = #n,. If there do not exist components
X, Y of Gy such that X "W, #0= Y NW,”, n <min(X) <
min(Y), and X and Y do not split W,", then let Gyy1 = G, Otherwise,
select such X and Y so that min(X) and min(Y) are minimal. Let a, b
be the two least natural numbers not in V. If ¢, (p, (X)) = ¢,(p,(Y)),
then set
V3+1 = I/S U {a, I)},
ES+1 = ES v {{pv(X)v (l}v {(l, b}v {bv pY(Y)H
If ¢ (ps (X)) # ¥s(p:(Y)), then set
Ve = VU {a},
Es+1 = E.\‘ U {{Pé(X)y (L}, {(l, ps(y)}}
It is clear in either case that X and Y are subsets of the same component
Z of Gyy1, and that Z splits W,".
Clearly, G is recursive. Each vertex in G has degree 1 or 2, and if
x € Vs, then x has degree 2 in Gs,y1. Thus G is 2-regular and, conse-
quently, is highly recursive. Also, G has no cycles since none of the G, has
a cycle; therefore, G is 2-colorable.
Let ¥ be a 2-coloring of G. We will show that ¢ is not in Z.

Let £ be the collection of sets ] € w such that whenever E C w is
r.e. and either

(1) E M X < [ for all but finitely many components X of G,

or

(2) ENX NI =gforall but finitely many components X of G,

then

(3) E M X = @ for all but finitely many components X of G.

We prove two lemmas about .# which together imply that ¢ ¢ Z.
LEmMA 4.1. ~1(0) € S.
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To prove the lemma, let 7 = ¢~1(0) and £ = W, and without loss of
generality suppose [ and [ satisfy (1). Then there are components X and
Yof Gsuchthat LN X, ENYC I and n < min(X) < min(Y). It
follows from the construction of G (at even stages s) that either
ENX =por EMN Y = @. Thus, there is at most one component Z of
G such that min(Z) > nand E M Z # @. Hence, (3) holds, so the lemma
is proved.

LEMMmA 4.2. Z N 4 = 0.

To prove the lemma, it suffices to show that whenever [ ¢ .# and
B, C are r.e. sets such that C € B and I N (B — C) =@ then
IVB-C)d F. Letd=1U(B— C),andassume 4 ¢ .#.Since I ¢ ¥
but 4 € #, there is an r.e. set £ such that (2) holds and (3) fails. Since
ENCisre.and ENCMN A MNX = g for all but finitely many com-
ponents X of G, it follows that £ M C M X = @ for all but finitely many
components X. Since £ M Bisr.e. and E N BN X C A4 for all but
finitely many X, then Z M B M X = @ for all but finitely many X.
Therefore, E M A M X =@ for all but finitely many X. But since
A ¢ F, it follows that (3) holds, and thisis a contradiction, so the lemma
1s proved.

To complete the proof of the Theorem, simply note thatif ¢ € &, then
Y1(0) € #, which by Lemma 4.2 implies ¢~1(0) ¢ .#, and this con-
tradicts Lemma 4.1.

Since the class of 2-colorings of a recursive graph isa II,° class, Theorem
4 implies the existence of a non-empty IT;" class which is disjoint from & .
The existence of such a class had been shown some time ago by Specker
[5] and later, independently, by Jockusch [2]. Our proof of Theorem 4
makes use of ideas from Jockusch's proof.

A related question, raised by Bean and still unresolved, is this: If X
1s a I1,° class, is there an # < w and a recursive graph G such that the
class of n-colorings of G is degree-isomorphic to X?
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