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Abstract

We generalize the Cohen–Lenstra heuristics over function fields to étale group schemes
G (with the classical case of abelian groups corresponding to constant group schemes).
By using the results of Ellenberg–Venkatesh–Westerland, we make progress towards the
proof of these heuristics. Moreover, by keeping track of the image of the Weil-pairing
as an element of ∧2G(1), we formulate more refined heuristics which nicely explain the
deviation from the usual Cohen–Lenstra heuristics for abelian `-groups in cases where
` | q− 1; the nature of this failure was suggested already in the works of Malle, Garton,
Ellenberg–Venkatesh–Westerland, and others. On the purely large random matrix side,
we provide a natural model which has the correct moments, and we conjecture that
these moments uniquely determine a limiting probability measure.

1. Introduction

In [CL84], Cohen and Lenstra described natural probability measures mCL,u on the set of finite
abelian `-groups; the rank u-Cohen–Lenstra measure of every finite abelian `-group A is inversely
proportional to |A|u · |Aut(A)|. The prediction that the distribution of `-parts of class groups
of appropriate families of number fields is governed by mCL,u is known as the Cohen–Lenstra–
Martinet conjecture. Empirically, Cohen and Lenstra observed that mCL,u correctly predicts the
distribution of the `-part of class groups of quadratic fields K with rank(O×K) = u, for ` an odd
prime.1

For functions f defined on isomorphism classes of finite abelian `-groups which are absolutely
integrable with respect to mCL,u, define

En,u(f) := lim
X→∞

∑
deg(K/Q)=n,rank(O×K)=u,|disc(K)|<X f(Cl(K))∑

deg(K/Q)=n,|disc(K)|<X 1
,

assuming the above limit exists. Despite much work on the Cohen–Lenstra heuristics, the only
unconditional results known to date are:
• Davenport and Heilbronn’s determination of the average size of the 3-torsion subgroup of

Cl(K) for quadratic fields K [DH71]:

E2,u(#Surj(•,Z/3)) = ExpectationmCL,u
(#Surj(•,Z/3)),

the cases u = 0 and u = 1 corresponding to imaginary and real quadratic fields respectively.
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• Bhargava’s determination of the average size of the 2-torsion subgroup of Cl(K) for cubic
fields K [Bha05]:

E3,u(#Surj(•,Z/2)) = ExpectationmCL,u
(#Surj(•,Z/2)),

the cases u = 1 and u = 2 corresponding to cubic fields admitting one and three real
embeddings respectively.

Remarkable recent progress toward the Cohen–Lenstra conjecture has been made for class
groups of functions fields of curves over finite fields. In this case, using the methods of étale
cohomology and by proving results on homological stability, Ellenberg–Venkatesh–Westerland
have obtained unconditional results essentially proving that, for every finite abelian group `-group
A, the expectation E2,0(#Surj(•, A)) is very close to

ExpectationmCL,0
(#Surj(•, A)).

To get a handle in the function field case, one looks at all the geometric `-power torsion
points of the Jacobian as a module for the Frobenius operator, of which the class group becomes
one small piece. As such, one of our main goals in this paper is to generalize these heuristics in
the function field case by remembering the entire action of the Frobenius operator. A convenient
language for making this precise is that of étale group schemes.

1.1 Étale group schemes
Let X/Fq be a (smooth, projective, irreducible) curve over a finite field. The class group of X is
naturally J(X)(Fq) where J(X) is the Jacobian of X. One is then naturally led to ask: what is
the distribution of J(X)(Fq)[`∞] as X varies in some natural family?2

The group J(X)(Fq)[`∞] equals the kernel of 1−F acting on J(X)(Fq)[`∞], where F denotes
the Frobenius operator. The `-part of the class group is thus identified as the ‘1-eigenspace’ of the
Frobenius operator. However, there is no need to restrict attention to this particular eigenspace;
we could consider all eigenspaces at once. More generally, we consider monic polynomials P (x) ∈
Z`[x] for which P (0) is invertible and consider the kernel of P (F ). Notably, when we take
P (x) = 1− xm, we recover J(X)(Fqm)[`∞] together with the action of F .

Since the Jacobian is self-dual, all ‘KerP (F ) information’ is contained in the cokernel of
P (F ) on the Tate module of the Jacobian, and the latter is the object we actually study.3 This
cokernel is a module with the action of a Frobenius operator. Moreover, because the Frobenius
operator acts invertibly, the cokernel may be thought of as an étale group scheme, which is the
quotient of J(X)[`n] by P (F ), for any large enough n. By using the results of [EVW16] we obtain
information about the distribution of these group schemes.

1.2 Symplectic pairings and the Cohen–Lenstra–Martinet heuristics
In the case where the base number field contains roots of unity, Malle [Mal10] presented
computational evidence which cast doubt on the Cohen–Lenstra–Martinet heuristics. Malle
refined these heuristics, giving a different random model involving the symplectic group, and
there has been much evidence that Malle’s refinement is correct [Ach06, Gar15]. We present a

2 One often takes some Hurwitz scheme for the family X varies in, as an analogue of looking at number fields of
fixed degree. One could instead the study the statistics of the family of all curves of a fixed genus, but this seems
very difficult, and it is not clear what behavior to expect.
3 Note that one issue which arises now is that the kernel could be infinite, but this should arise very infrequently,
so that the distribution we obtain should be supported on finite modules.
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refined Cohen–Lenstra heuristic in all cases, which we believe nicely explains these discrepancies.
Our refinement involves not just the class group but also a certain naturally defined element of
its exterior square. Thus, we get a distribution not just on abelian groups G, but on pairs (G,ωG)
where ωG ∈ ∧2G. In the function field setting, this is done as follows.

The Weil-pairing on J(X)[`n] can be thought of as a global section of a certain naturally
defined group scheme ∧2J(X)[`n](1) which we define in § 4. This pushes forward, so we naturally
get a global section ω of ∧2(J(X)[`n]/(1− F ))(1).

If ` - q − 1 then ω is forced to be 0, and one expects the statistics of J(X)(Fq)[`∞], for X
varying through many natural families of curves of growing genus, to be governed by the usual
Cohen–Lenstra measure. If `|q − 1, however, ωX is an interesting invariant of the class group of
X. It becomes natural to contemplate (Cohen–Lenstra-like) probability distributions on pairs
(G,ω), where G is a finite abelian `-group and ω is an element of ∧2G(1)(Fq).4 In fact, it is
natural to combine this decoration with the generalization to arbitrary étale group schemes and
this is what we carry out.

1.3 Refined Cohen–Lenstra conjecture
1.3.1 Modelling the class group. Ideally, we would like to model the triples

(J(X)[`∞](Fq),Frobq,Weil pairing)

for X varying through geometric families of curves of growing genus. The groups J(X)[`∞](Fq)
are ‘too big’ to admit meaningful statistics; we instead isolate the pieces J(X)[`∞](Fqm) =
Ker(1 − Fm | J(X)[`∞](Fq)). These objects are smaller, and we expect that they are governed
by a natural limiting probability distribution in reasonable families of curves of growing genus.

Of course, there is no reason to single out 1 − Fm; we could instead look at the kernel of
P (F ) for any polynomial P (or more generally we could look at the kernels of certain ideals in
Z`[x]). While we do this in § 3, we keep things somewhat classical and focus in § 1.3.2 on the
special case P (F ) = 1− Fm.

1.3.2 A refined distribution. Consider the family Hg of hyperelliptic curves y2 = x2g+1 +
a2gx

2g + · · · + a0 of odd, genus g hyperelliptic curves. Let Em denote the collection of triples
(G,F, ω), satisfying:
• G is a finite abelian `-group;
• F is an automorphism of G of order m;
• ω ∈ ∧2G;
• Fω = qω.

The collection Em naturally has the structure of a category for which the notion of surjection
is sensible. See § 3 for details.

If J denotes the Jacobian of a curve X in the collection Hg(Fq), the triple

T (X) := (J(Fqm)`,Frobq,Weil pairing pushed forward to J(Fqm)`)

belongs to Em; see § 4 for a more precise description of the constituents of this triple.

Remark 1. If m is divisible by positive integers m1, . . . ,mk, then the distribution of T (X)
determines the joint distribution of the tuple

J(X)[`∞](Fqm1 ), . . . , J(X)[`∞](Fqmk ).

4 For constant group schemes G, elements of ∧2G(1)(Fq) are naturally identified with elements of ∧2G satisfying
ω = qω.

760

https://doi.org/10.1112/S0010437X19007036 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007036


Cohen–Lenstra for étale group schemes

Understanding the latter joint distribution was our initial motivation for the present paper.

Conjecture 1.1. There is a probability measure µm on Em for which the discrete probability
measures

1

|Hg(Fq)|
∑
X∈Hg

δT (X)

on Em weak ∗-converge to µm as g → ∞, i.e. the proportion of curves X ∈ Hg(Fq) for which
T (X) is isomorphic to T approaches µ(T ) as g →∞.

Furthermore, µm is characterized by the following property: for every T ∈ Em, the µm-
expected number of surjections to T equals 1.

In § 3, we give a putative construction of µm via random matrices in the style of Friedman
and Washington [FW89]. Furthermore in the case when ` - qm−1, we prove that our construction
indeed produces a probability measure satisfying the uniqueness property from Conjecture 1.1.
(see Theorem 3.2, and Conjecture 3.1).

1.4 Results
Our main result is as follows. See § 4 for precise definitions.

Theorem 1.1 (Corollary 4.7). Let ` be an odd prime. Let G be a finite étale group scheme
over Fq of order `n, and ωG ∈ (∧2G)(1)(Fq). For each g, let Avg(G,ωG, g, q) denote the average
number of surjections from Pic0(C)[`n] to G which push forward the Weil-paring to ωG, where
C varies over hyperelliptic curves of genus g.

Let δ±(q, ωG) be the lower and upper limits of Avg(G,ωG, g, q) as g →∞. Then as q →∞
and n stays fixed, δ+(q, ωG) and δ−(q, ωG) converge to 1.

Our proof of this theorem closely follows the strategy of [EVW16]. We represent the averages
in question in terms of points on a moduli space we construct. These moduli spaces turn out
to be twists of the moduli spaces that appear in the work of Ellenberg–Venkatesh–Westerland
[EVW16]. We can therefore directly apply their results on cohomology bounds, and the theorem
follows from the Lefschetz trace formula once we identify the number of connected components
of these moduli spaces.

In §§ 2 and 3 we develop foundational results on Cohen–Lenstra measures in the context of
our decorated étale group schemes. We obtain the strongest results in the case where ωG ∈ ∧2G(1)
is forced to be 0, which happens ‘generically’.

Theorem 1.2 (Theorem 3.2). Let P (x) ∈ Z`[x] be a monic polynomial, such that P (q) is
not divisible by `, and assume that ` is odd. Let R = Z`[x]/P (x). There exists a unique
probability measure µ, supported on finite R-modules, such that for any finite R-module M , the
expected number of surjections from a µ-random module to M is 1. Moreover, µ is supported
on precisely the modules of projective dimension 1, and assigns such a module M measure
µ(M) = c/#Aut(M) where c =

∏
kj

∏∞
i=1(1 − |kj |−i) and the product is over the finite residue

fields of R.

As a consequence of these theorems, we obtain in Proposition 3.4 similar results on limiting
measures for our decorated étale group schemes.

As a concrete application of our methods, we prove the following result on the independence
of the class group of a hyperelliptic curves and its quadratic twist.
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Theorem 1.3 (Proposition 5.1). Suppose ` - q2 − 1 and that ` 6= 2. Let ε > 0. Fix a finite set S

of finite abelian `-groups. For a curve C over Fq, denote by Cσ the quadratic twist of C.

There exists Q(S, ε)� 0 such that if q, g > Q(S, ε) and A,B ∈ S,∣∣∣∣Prob(Jac(C)(Fq)` ∼= A and Jac(Cσ)(Fq)` ∼= B)− cR
#AutZ`

(A)#AutZ`
(B)

∣∣∣∣ < ε,

where C varies over hyperelliptic curves of genus g, and cR is the normalizing constant from

Theorem 2.2. i.e. the class groups Jac(C)(Fq)` and Jac(Cσ)(Fq)` behave almost independently

for g sufficiently large.

1.5 Plan of the paper

• In § 2 we present a generalization of the usual Cohen–Lenstra measure to rings which are

finite over Z`.
• In § 3 we construct a random model for pairs (G,ω ∈ ∧2(G)(1)) where G is a module over a

ring Z`[F ]/P (F ). We conjecture that our model yields a unique measure with a ‘moments

equal 1’ property, and using our results in § 2 we prove this uniqueness in the case where

ω is forced to be 0; in other words, when we don’t have to keep track of any symplectic

structure, so we can revert to a linearized model.

• In § 4 we use the work of Ellenberg–Venkatesh–Westerland to prove results analogous to

theirs in the direction of Cohen–Lenstra for function fields, for our refined distributions.

• In § 5 we present some applications, notably to the independence of the `-part of the class

group of a hyperelliptic curve and its quadratic twist.

2. Large random matrices over rings

2.1 Summary

The purpose of this section is to generalize the Cohen–Lenstra measure for finite abelian `-groups

to the case of finite R-modules for certain rings R, finite over Z`. This measure has the nice

property that for every finite R-module M , the expected number of R-module surjections to M

is 1. The support of this measure is not full, but on the support the measure of M is proportional

to 1/#AutM .

2.2 The Cohen–Lenstra measure for R-modules

Let R be a finite, local Zp-algebra, with residue field FR such that Zp ⊂ R. Let SR be the set

of all finite R-modules and define a measure µR,N on SR as follows. Let φN : EndR(RN ) → SR
be defined by G → CokerG. Then µR,N is the pushforward of Haar measure under φN . Recall

that since R is a local ring all projective modules are free. Recall also that we say that a

module M ∈ SR has projective dimension 1 if it has a projective (free) resolution of length 1:

0 → F1 → F2 → M → 0. Call TR the set of modules M ∈ SR which occur in the image of φN
for some N . Note that if R is torsion free, TR coincides with the set of modules of projective

dimension 1.

We can give a simple homological criterion for a finite module M to occur in TR. Define

dM = dimFR
Tor1

R(M,FR)− dimFR
M ⊗R FR.

Lemma 2.1. For all finite modules M , dM > 0, and a module M occurs in TR if and only if

dM = 0.
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Proof. For all finite M , we can find a surjection RN → M . Thus, we have an exact sequence
0 → U → RN → M . Tensoring with FR and taking the associated long exact sequence, we see
that dimFR

Tor1
R(M,FR) − dimFR

M ⊗R FR = dimFR
(U ⊗R FR) − N . Since M [1/p] = 0, U has

R[1/p]-rank equal to N , and so a minimal generating set for U consists of at least N elements,
which means dimFR

(U ⊗R FR)−N > 0 by Nakayama’s lemma. This shows dM > 0.
Now, if M ∈ TR, then we can find an exact sequence 0 → K → RN → RN → M → 0 for

some R-module K. Thus we can take the U in the above paragraph to be RN/K, and thus be
generated by N elements. Thus, in this case, dM = 0.

Conversely, if dM = 0, then the U in the first paragraph must be generated by N elements
and so is a quotient of RN . Thus M ∈ TR.

Now, if R is torsion free, then as already mentioned TR coincides with the set of finite modules
of projective dimension 1, which is equivalent to Tor2

R(M,F ) = 0. 2

Remark 2. We point out that another natural construction of R-modules, at least in the case R =
Zp[F ]/(P (F )), is as follows: one can take a random map A ∈ End(Zdp), and consider CokerP (A)
as a module over R, with F acting as A. In fact, this more directly mirrors what occurs in
the geometric cases we consider, where Z2g

p occurs as a Tate module and A as the Frobenius
endomorphism. This turns out to be more difficult to study, which is why we focus on the model
we have presented. However, one can realize CokerP (A) in our context as the Cokernel of F −A
acting on Rd, since

Rd/(F −A) ∼= Zp[F ]d/(F −A,P (F )) = Zp[F ]d/(F −A,P (A)) = Zdp/(P (A)).

Theorem 2.2. The µR,N converge (in the weak-* topology) to a probability measure µR,
supported on TR, such that for M ∈ SR we have µR(M) = cR/|AutR(M)|, where cR =
limn→∞ (|GLn(FR)|/|Mn(FR)|) =

∏∞
i=1(1− |FR|−i).

Proof. Let M be an R-module. If M is not in TR then by definition M never occurs as the
cokernel of an endomorphism G and thus cannot be in the support of µR,N for any N . So
without loss of generality, suppose M ∈ TR.

Now let us compute µR,N (M)|AutR(M)|. Consider the space EndR(RN )×MN , with a choice
of Haar measure giving total measure |M |N . We can identify MN with Hom(RN ,M). Now
consider the subset X consisting of (G,φ) so that Im(G) = Kerφ. The set of all such G such
that CokerG ∼= M has measure µR,N (M), and for each such G there are AutR(M) choices of φ
certifying the isomorphism. Thus, the measure of X is µR,N (M)|AutR(M)|.

We now compute the measure of X in a different way, by fibering over φ instead. Now, since
M ∈ TR there is an exact sequence

Ra
g−→ Ra

f−→ M → 0

for some a. Let Cf be the kernel of f . Take N to be large relative to the above a. The number
of maps from RN to M is |M |N , and with probability tending to 1 as N →∞, a random such
map φ is a surjection. Moreover, with probability tending to 1 some subset of size a of the
co-ordinates induces the map f : Ra → M . Whenever this happens, we may make a unipotent
change of co-ordinates so that the other N − a co-ordinates all map to 0, and thus the kernel is
isomorphic to Cf⊕RN−a. Now the measure of all G whose image is contained in Kerφ is |M |−N .
We need to calculate the measure of the subset of those G that give a surjection. We thus need
to compute µhaar(Surj(RN , Cf ⊕RN−a))/µhaar(Hom(RN , Cf ⊕RN−a)). By Nakayama’s lemma,
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it is sufficient to tensor everything with the residue field FR of R, so we are reduced to showing
that Cf ⊗R FR ∼ FaR. Since Cf is a quotient of Ra it can be generated by at most a elements.
Moreover, as can be seen by tensoring with Qp, there can be no fewer than a elements in a
generating set for Cf . By Nakayama’s lemma again, we see that Cf ⊗R FR ∼ FaR as desired.

All that remains is to show that the µR is really a probability measure (i.e. there is no escape
of mass). Note that the above argument shows that µN,R(M) 6 1/|AutR(M)|. Since µR has L1-
norm at most 1, for any ε > 0 we can pick a co-finite set S ⊂ TR so that

∑
M∈S (1/|AutR(M)|) <

ε/2 and large enough N so that
∑

M 6∈S |µN,R(M)−µR(M)| < ε/2, from which it follows that µR
has L1-norm at least 1− ε. The result follows. 2

We can also compute the moments of the measure above. As expected by analogy to classical
Cohen–Lenstra heuristics, they are all equal to 1.

Proposition 2.3. For any finite module M0,∑
M∈SR

#Surj(M,M0)µR(M) = 1.

It is worth remarking that we do not insist in the above proposition that M0 ∈ TR.

Proof. Fix an N > 0. Then letting µhaar be the Haar measure on EndR(RN ) giving total measure
1, we see that∑

M∈SR

#Surj(M,M0)µR,N (M) =

∫
φ∈EndR(RN )

#Surj(Cokerφ,M0)dµhaar

=
∑

ψ∈Surj(RN ,M0)

µhaar(φ | Cokerφ ∈ Kerψ)

= #Surj(RN ,M0) · |M0|−N .

Now, as N →∞, #Sur(RN ,M0) ∼ |M0|N . Thus,

lim
N→∞

∑
M∈SR

#Surj(M,M0)µR,N (M) = 1.

By the proof of the theorem above, µR,N 6 c−1
R µR, so the sum converges absolutely, and the

result follows. 2

We expect that the moments actually determine our measure µR. We expect this unique
determination property to hold in all cases, though we cannot show it in the case that FR = F2.
Our proof is closely related to [EVW16, Lemma 7.2].

Lemma 2.4. Assume that FR 6= F2. If µ is any measure on SR such that the expected number
of surjections from a µ-random module to M0 is 1 for any finite M0, then µ = µR. The same
conclusion holds for µ being any function in L1(SR).

Proof. Consider the operator U on the infinite-dimensional Banach space L∞(SR) given by
UM,M ′ = #Surj(M,M ′)/#Aut(M). Now, the rows of U have sums c−1

R and so U is indeed an
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operator on L∞(SR). Moreover, the elements of U − 1 are positive and have row sums c−1
R − 1.

Now, to estimate cR, let q = |FR|−1 and note that by the Euler identity we have

cR =
∑
n∈Z

(−1)nq(3n2−n)/2 > 1− q

1− q
=

1− 2q

1− q
.

Since q 6 1
3 by assumption, we conclude that cR >

1
2 . Thus, the norm of U − 1 is less than 1 and

so U is invertible with inverse
∑∞

j=0(1− U)j .

Now, consider the L1-function µ. Since the moments to any M0 ∈ SR is 1, we must have
that µ(M0) 6 #Aut(M)−1. Thus the vector V with VM = µ(M)Aut(M) is in L∞(SR). Now the
condition on the moments of µ amounts to saying that UV = 1SR

. Thus, we must have that
V = U−11SR

, and so there is a unique such function µ, which must then be µR. 2

2.3 Remarks on identities
We give an example of an R with torsion where TR is larger than the set of modules with
projective dimension 1. Consider R = Zp[x]/(px, x2). Take M = R/pR. Clearly M occurs in TR.
On the other hand, if M had projective dimension 1 then pR would be forced to be projective,
and thus free since R is local. However, pR is annihilated by x, and thus cannot be free. In fact,
M fits into the exact sequence 0 → Fp → R → R → M . Since R is not a regular local ring, Fp
has infinite projective dimension, and thus M does as well.

For such rings R, if we instead considered the measure arising from the cokernel of a map
RN+d

→ RN we could conceivably get more and more modules M in the support, giving a range
of identities. They would be more and more complicated, however. For an R-module M , let
dM = dimFR

Tor1
R(M,FR)−dimFR

M ⊗R FR. Then we get (by a minor modification of the proof
above) the following identities:

∑
dM6d

∏d−dM
j=1 (1− |FR|−i)−1

|M |d|#AutR(M)|
= c−1

R .

In fact, we can derive a series of finite identities from the above. Consider again R =
Zp[x]/(px, x2). Then R maps to Zp, and it is easy to see from the construction that µR pushes
forward to µZp . Moreover, M maps to M/xM , and it is easy to show by row and column
operations and the fact that x is nilpotent that M is bounded in terms of dM and M/xM . Thus,
we conclude that for each p-group A, we have∑

dM=0,M/xM∼A

1

#AutR(M)
=

1

#AutZp(A)
.

Of course, one can generalize this to arbitrary local maps R → S (though perhaps one has
to be a bit careful if one wants the sum to remain finite). It is not clear to us, even for the above
identity, how to prove it by elementary means.

3. A random model for étale group schemes with a symplectic form

3.1 Étale group schemes and symplectic forms
Let q be a prime power and ` a prime not dividing q. Let P (x) ∈ Z`[x] be a monic polynomial
satisfying ` - P (0). Consider the collection EP of (isomorphism classes of) triples (G,FG, ωG)
where G is a finite abelian `-group, ωG ∈ ∧2G, and FG is an endomorphism of G for which
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P (FG) = 0, FG(ωG) = qωG. Note that since P (FG) = 0 and P (0) ∈ Z×` it follows that FG is an
automorphism.

The pair (G,FG) functorially corresponds to a finite étale group scheme G over Fq whose Fq
points are isomorphic to G with the Frobenius action corresponding to FG. We shall construct
in § 4 a natural group scheme ∧2G and its Tate twist ∧2G(1) = ∧2G ⊗ µ−1

`∞ , whose Fq points
naturally correspond to ∧2G (once one picks a section of µ`∞(Fq)), and the Frobenius action
is given by q−1FG. Thus, the set EP naturally corresponds to pairs (G, ω ∈ (∧2G ⊗ µ−1

`∞)(Fq))
where G is a finite étale `-group scheme over Fq. This is our motivation for studying E , as we are
interested in constructing probability distributions on finite étale group schemes, together with
a section of ∧2 ⊗ µ−1

`∞ .

3.2 Defining a measure

Let ω be a unimodular symplectic form on Z2g
p . We define GSp

(q)
2g to be the coset of Sp2g in

GSp2g whose elements scale ω by q. For each positive integer g, there is a map

GSp(q)(Z2g
` , ω) → E

F 7→ (Coker(P (F )), F modP (F ), ω modP (F ))

which gives rise to a probability measure µg on E by pushing forward the Haar probability
measure on GSp2g(Z`).

Theorem 3.1. Fix (H,FH , ωH) ∈ E . The µg-expected number of equivariant surjections
T : (G,FG) � (H,FH) for which T (ωG) = ωH is equal to 0 for g 6 g(H), and is equal to 1
for all g > g(H,ωH) where g(H,ωH) depends only on H.

Proof. By definition of µg, the expected number of such surjections equals the GSp
(q)
2g (Z`)-Haar

expected number of surjections T : Coker(P (F )) � H, for which F induces FH , and for which
T (ω) = ωH . Such surjections are equivalent to the following data:
• a surjection T : Z2g

` � H for which:

– T ◦ P (F ) = 0;

– TF = FHT ; and

– Tω = ωH .

The condition T ◦P (F ) = 0 is actually redundant; since P (FH) = 0, the second condition above
implies that

T ◦ P (F ) = P (FH) ◦ T = 0.

Suppose H is killed by multiplication by `n. Then the expected number of surjections equals

#{(T, F ) : T : (Z/`n)2g � H,F ∈ GSp(q)((Z/`n)2g, ω), T ◦ F = FH ◦ T, T (ω) = ωH}
#GSp

(q)
2g (Z/`n)

. (1)

By an analogue of Witt’s extension theorem [Mic06, Theorem 2.14], there is an integer g(H),
depending only on H, satisfying the following: the image of the mapping T 7→ T (ω) from
surjections to symplectic forms on H is surjective provided g > g(H). Furthermore, for every
g > g(H), every fiber forms a single orbit O under Sp(Z2g

` , ω) (where the symplectic group acts
by precomposition). Furthermore, suppose that TF = FHT and T (ω) = ωH . Then for every
g ∈ Sp(Z2g

` , ω)
(Tg)(g−1Fg) = TFg = FH(Tg)
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and

Tg(ω) = Tω = ωH .

Therefore, among the pairs (F, T ) enumerated in the numerator of (1), the fibers over every T
have the same size. Now assuming it exists, fix T0 satisfying T0(ω) = ωH (if no such T0 exists,
then the moment is clearly 0). Then

#{(T, F ) : T : (Z/`n)2g � H,F ∈ GSp(q)((Z/`n)2g, ω), TF = FHT, T (ω) = ωH}
#GSp

(q)
2g (Z/`n)

=
#{F ∈ GSp(q)((Z/`n)2g, ω) : T0F = FHT0}

#GSp
(q)
2g (Z/`n)

·#O

=
#{F ∈ GSp(q)((Z/`n)2g, ω) : T0F = FHT0}

#GSp
(q)
2g (Z/`n)

· #Sp((Z/`n)2g, ω)

#StabSp((Z/`n)2g ,ω)(T0)

=
#{F ∈ GSp(q)((Z/`n)2g, ω) : T0F = FHT0}

#{g ∈ Sp((Z/`n)2g, ω) : T0g = T0}
. (2)

The set in the numerator of (2) is either empty or is a torsor for the group in the denominator.

Thus we only need to show that a single such F exists.

Now, to show this, consider first any element F0 ∈ Sp((Z/`n)2g, ω). Then F−1
H T0F0 is a

surjection from ((Z/`n)2g, ω) to (H,ωH). Thus, by [Mic06, Theorem 2.14], there exists an element

g ∈ Sp((Z/`n)2g, ω) satisfying

F−1
H T0F0g = T0

and therefore T0F0g = FHT0. Thus we may take F = F0g, and this completes the proof. 2

3.3 The existence of a limit measure

In light of the results of the previous section, and analogous results for the Cohen–Lenstra

measure [EVW16], [Woo17, Theorem 8.2] we make the following conjecture, which roughly says

that the moments constitute enough information to recover the full measure in cases of interest.

Conjecture 3.1. The measures µg converge to a measure µ on E , such that the expected

number of surjections from a µ-random element to any element in E is 1. Moreover, this property

characterizes µ.

We devote the rest of this section to proving Conjecture 3.1 in a couple special cases. Most

notably, we can use the results of § 2 to prove the conjecture in the case where the symplectic

structure ‘doesn’t come up’. In that case we can use the much easier additive model in § 2 as

opposed to the model with symplectic matrices. We ‘get rid of’ the symplectic structure as

follows: if P (q) is not divisible by `, then since ωG is killed by both P (q) and a power of ` it is

forced to be 0, so E is equivalent to the category of finite Z`[x]/P (x) modules.

Theorem 3.2. In the notation above, assume that P (q) is not divisible by `, and assume that

` is odd. Then Conjecture 3.1 holds. Moreover, µ is supported on precisely the R = Z`[x]/P (x)

modules of projective dimension 1, and assigns such a module M measure µ(M) = c/#Aut(M)

where c =
∏
kj

∏∞
i=1(1− |kj |−i) and the product is over the finite residue fields of R.
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Proof. Assume first that R is a local ring. Then note that we have already constructed one
measure satisfying the above hypothesis on moments in Theorem 2.2, and Lemma 2.4 guarantees
that these moments specify a unique measure. Hence it is sufficient to show that the µg converge
to a measure with 1 expected surjection to each finite R module. Note that by Theorem 3.1 the µg
satisfy µg(M) 6 1/#AutM for any finite R-module M . Letting SR be the set of finite R-modules
as in § 2, there is an operator U on L∞(SR) given by UM,M ′ = #Surj(M,M ′)/#Aut(M). Now
the vector Vg ∈ L∞(SR) given by VM = µg(M)#Aut(M) has L∞ norm bounded by 1. Further,
by Theorem 3.1 the product UVg is a vector Wg consisting of 0 and 1 entries, whose entries each
eventually become 1 as g increases. Thus, we can write Vg = U−1(Wg). Since as in Lemma 2.4
the operator U−1 is bounded, it can be represented as an infinite matrix with rows in L1 with
uniformly bounded L1 norm. Since the Wg have L∞ norm bounded by 1 and each entry eventually
stabilizes, we can conclude that the µg converge to µ in the weak-* topology, as desired.

Now, even if R is not local, it is `-adically complete and R/` is artinian, so R is a product
of local rings R =

∏
j Rj . It follows that we can take µ =

∏
j µRj and this measure will have all

the correct moments, and the exact same proof as in the previous paragraph shows that the µg
converge to µ. Thus it only remains to show that µ is determined by its moments. Note here
that the exact same proof as in the local case won’t work, since the constant c (from the theorem
statement) could be less than 1

2 . Inducting on the number of local rings that R is a product of,
we may write R = R1 × R2 where R1 and R2 both have the property that the corresponding
measures µRi are determined by their moments. Now, suppose that m is any other measure with
the correct moments. For an R1-module M1 and an R2-module M0

2 we let

a(M1,M
0
2 ) :=

∑
M2

m(M1 ×M2)#Surj(M2,M
0
2 ).

Then it follows that for each M0
2 ,M

0
1 ,∑

M1

a(M1,M
0
2 )#Surj(M1,M

0
1 ) = 1.

Thus, by our induction assumption for R2 it follows that a(M1,M2) = µR1(M1). Now, by our
induction assumption for R1 we learn that

m(M1 ×M2) = µR1(M1)× µR2(M2) = µ(M1 ×M2)

as desired. 2

In the case where the symplectic structure is present, we do not even have a good conjecture
as to what the limiting measure in Conjecture 3.1 should be. It is natural to guess that it is
proportional to the inverse of the size of the automorphism group, where now one only takes
automorphisms if they preserve ωG, but this does not agree with computations of Garton [Gar15]!
We think it would be very interesting to at least develop a plausible heuristic.

3.4 Moments approximately 1 implies approximately Cohen–Lenstra measure
Fix a finite subset S′ ⊂ E . Let Confg denote the moduli space of g distinct, unordered unlabelled
points in A1. Let C → Confg(A1) denote the associated family of hyperelliptic curves. For x ∈
Confg(A1)(Fq), let Fx denote Frobenius acting on the `-adic Tate-module of Jac(Cx). For every
g, let νg be the discrete probability measure

νg =
1

#Confg(Fq)
∑

x∈Confg(Fq)

δCokerP (Fx).
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Building on the work of [EVW16], we will show in § 4 that for any δ > 0, there is some
Q(S′, δ), G(S′, δ)� 0 such that for all q > Q(S′, δ), provided g > G(S′, δ), then

Expectationνg(#Surj(•, A)) ∈ [1− δ, 1 + δ] for all A ∈ S′. (3)

Geometry gives us access to moments, and we would like to recover as much information
about the measures νg as we can from a large set of approximate moments as in (3).

Definition 1. Let R = Z`[x]/P (x). Let A be a finite R-module. An enlargement A′ of A is an
R-module admitting a surjection onto A whose kernel is a simple R-module. An s-enlargement
B of A is a finite R-module admitting a surjection onto A whose kernel has R-length equal to s.

Say that R has the few enlargements property if for every finite R-module A, the number of
isomorphism classes of s-enlargements of A is subexponential in s.

Lemma 3.3. If R is a product of maximal orders, then R satisfies the few enlargements property.

Proof. This follows exactly as in the argument from [EVW16, Lemma 8.4]. 2

Proposition 3.4. Suppose that ` does not divide P (q), and R = Z`[x]/P (x) has the few
enlargements property. Let ν be a probability measure on E . Fix a finite subset S ⊂ E . Fix
ε > 0. There exist δ > 0 and a finite subset S′ ⊂ E satisfying

Expectationν(#Surj(•, A′)) ∈ [1− δ, 1 + δ] for all A′ ∈ S′

=⇒ |ν(A)− µR(A)| < ε for all A ∈ S.

Proof. The hypothesis ` - P (q) ensures that the symplectic form equals 0. The argument
from [EVW16, Proposition 8.3] carries over verbatim to the present context. 2

4. Moments of étale group schemes via the Lefschetz trace formula

In this section we define moduli spaces over Fq, whose Fq-points correspond to surjections from
torsion sub-group schemes of Jacobians of hyperelliptic curves to étale group schemes G together
with a section of ∧2G(1), and prove Theorem 1.1. In particular, we identify the rationally defined
geometric components of the moduli spaces considered in [EVW16] with the set ∧2G(1)(Fq).

4.1 Multilinear algebra for étale group schemes
Let S be a scheme. Let G/S be a finite étale group scheme.

Proposition 4.1. Let G/S be a finite, commutative étale group scheme. There exists a finite
étale group scheme ∧2G/S and a morphism ι : G×S G → ∧2G satisfying the following universal
property.

(a) The morphism ι is biadditive, i.e. for all S-schemes T and all x, y, z ∈ G(T ),

ι(x+ y, z) = ι(x, z) + ι(y, z) and ι(z, x+ y) = ι(z, x) + ι(z, y).

(b) The morphism ι is alternating, i.e. for all S-schemes T and all v ∈ G(T ),

ι(v, v) = 0 ∈ (∧2G)(T ).

(c) The morphism ι is universal with respect to the properties (a), (b) if f : G ×S G → H is
a biadditive, alternating morphism to commutative group scheme H/S, there is a unique
S-group scheme morphism π for which f = π ◦ ι.
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Proof. Let AS denote the constant group scheme on the finite abelian group A. Let H/S be
another group scheme. A morphism AS → H of group schemes is determined by a collection of
sections sa ∈ H(S) indexed by a ∈ A satisfying sa+b = sa + sb for all a, b ∈ A. Let a ∈ A(S)
denote the constant section determined by a ∈ A. The morphism

AS ×AS → ∧2AS
(a, b) 7→ a ∧ b

is biadditive, alternating, and satisfies the desired universal property by the universal property
of ∧2 for abelian groups.

For more general finite étale group schemes G/S, the desired ∧2G may be constructed by
descent. Let {U• → S} be an étale cover trivializing the finite étale group scheme G. The
above already constructs ιU1 : GU1 ×U1 GU1 → ∧2GU1 and ιU2 : GU2 ×U2 GU2 → ∧2GU2 . Then
(∧2GU1)U1×SU2 and (∧2GU2)U1×SU2 both satisfy the universal property defining ∧2GU1×SU2 .

Thus, there is a unique isomorphism ιU1,U2 : (∧2GU1)U1×SU2

∼−→ (∧2GU2)U1×SU2 commuting with
the structure morphisms (ιU1)U2 and (ιU2)U1 . A second application of the universal property
shows that these isomorphisms satisfy the cocycle condition on triple overlaps. By étale descent,
{ιU• : GU•×U•GU• → ∧2GU•} descends to a biadditive, alternating morphism ι : G×SG→ ∧2G.

Let f : G ×S G → H be a biadditive, alternating map. By the universal property, every
fU• : GU•×U•GU• → HU• factors uniquely through ∧2GU•

π•−→ HU• . By the universal property of
∧2, the morphisms π• must agree on double overlaps: ιU1,U2 ◦ (π1)U1×SU2 = (π2)U1×SU2 . By étale
descent for morphisms, π• descends uniquely to a morphism π : ∧2G→H satisfying π◦ι = f . 2

A completely analogous argument allows one to make any tensorial construction for finite
étale group schemes. The key point is that universal properties from linear algebra induce descent
data that allow one to étale-localize the construction to the case of constant group schemes, for
which the construction is simple. We single out the following special case for later use.

Proposition 4.2. Let G1/S and G2/S be finite commutative étale group schemes. There exists
a finite commutative étale group scheme Hom(G1, G2)/S equipped with a morphism e : G1 ×S
Hom(G1, G2) → G2 satisfying the following universal property.

(a) The morphism e is biadditive, i.e. for all S-schemes T and all x, y ∈ G1(T ) and α, β ∈
Hom(G1, G2),

e(x+ y, α) = e(x, φ) + e(y, α) and e(x, α+ β) = e(x, α) + e(x, β).

(b) The morphism e is universal with respect to the property (a): if H/S is a commutative group
scheme and f : G1 ×S H → G2 is biadditive, there is a unique S-group scheme morphism
π : Hom(G1, G2) → H for which e = f ◦ (1, π).

Furthermore, Hom(G1, G2) represents the functor on S-schemes

T 7→ HomT -group schemes((G1)T , (G2)T ).

4.2 Generalities on moduli spaces
LetA→ V/S be a family of principally polarized, g-dimensional abelian varieties over S. Suppose
that ` is invertible on S. Let G/S be a finite étale group scheme annihilated by `n. We claim the
moduli problem

VG(T ) = {A ∈ V (T ), T -group morphism φ : AA[`n]� GT } for all T/S
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is representable. To see this, consider the finite étale group S-scheme Hom(A[`n], GV ), and
consider the subscheme Y of A[`n] × Hom(A[`n], GV ) mapping to the origin in GV . The group
scheme Y is finite étale over Hom(A[`n], GV ), so VG is just the subscheme over which Y is of
degree `2ng/|G|, which is a union of connected components of Hom(A[`n], GV ).

The morphism VG → V is thus finite étale.

4.2.1 The Weil pairing morphism to ∧2G ⊗ µ−1
`n . Let T be an S-scheme. Let A/T be a

principally polarized abelian T -scheme. Let ` be invertible on S. We may naturally regard the
Weil pairing w`n(A) : A[`n]×T A[`n] → µ`n/T as an element of Hom(∧2A[`n], µ`n)(T ).

Finite étale group schemes locally isomorphic to Z/`n
S

form an abelian group under tensor

product with identity Z/`n
S

and inverse H−1 := Hom(H,Z/`n
S

). We let Hm := H⊗m and

H−n := (H−1)⊗n.
Consider the multilinear map A[`n]4 → µ`n ⊗ µ`n given on sections by

(a, b, c, d) → w`n(a, c)⊗ w`n(b, d) · [w`n(b, c)⊗ w`n(a, d)]−1.

By the universal property for ∧2, this induces a pairing ∧2A[`n]×∧2A[`n] → µ2
`n . One can check

on the level of points that this pairing is perfect. Thus we can naturally identify ∧2A[`n] with
the Cartier dual of ∧2A[`n]⊗ µ−1

`n . It follows that we may naturally regard the Weil pairing w`n

as an element of (∧2A[`n]⊗ µ−1
`n )(T ). From now on we write H(m) for H ⊗ µ−m`n .

Lemma 4.3. Let A→ V/S be a family of g-dimensional principally polarized abelian varieties
over S. The morphism

VG
π−→ (∧2G)(1)

(A, φ) 7→ φ(w`n(A))

is functorial and hence algebraic. If g > c(G), where the constant c(G) depends only on G, the
morphism π is surjective on geometric points.

Proof. Let y ∈ (∧2G)(1) be a geometric point. Let A ∈ V (S) be an arbitrary abelian scheme.
Over the algebraically closed residue field k(y), the group schemes A[`n]k(y), µ`n andGk(y) become
constant, isomorphic to (Z/`n)2g,Z/`n and B = G(k(y)) respectively.

The Weil pairing ω ∈ (∧2A[`n](1))(k(y)) is non-degenerate. Surjections A[`n]k(y) → Gk(y) are
equivalent to surjections of finite abelian groups (Z/`n)2g = A[`n](k(y))� G(k(y)) = B.

Let ωB ∈ ∧2B correspond5 to the geometric point y ∈ ∧2G(1). By [Mic06, Proposition 2.14],
there is some constant c(G) such that if g > c(G), there exists some surjection φ : (Z/`n)2g � A
for which φ(ω) = ωA. The result follows. 2

4.3 Geometric monodromy and connected components
Proposition 4.4. Let k be a field. Let A → V/k be a family of g-dimensional principally
polarized abelian varieties with universal Weil pairing ω. Let G/k be a finite étale commutative
group scheme. Suppose that for every geometric point z ∈ V , the action of the geometric
monodromy group π1(V, z) = Gal(k(η)/k(η)) on A[`n](k(z)) ∼= (Z/`n)2g has image equal to
the full symplectic group Sp(A[`n](k(z)), ωk(z)). There is a constant c(G) such that if g > c(G),
the following hold:
• π : VG → (∧2G)(1) is surjective on geometric points;
• for every geometric point y ∈ (∧2G)(1), the fiber π−1(y) is connected.

5 This is a well-defined correspondence upon fixing a generator of µ`n .

771

https://doi.org/10.1112/S0010437X19007036 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007036


M. Lipnowski and J. Tsimerman

Proof. Let ω0 ∈ ∧2(Z/`n)2g be non-degenerate. Let A be a finite abelian `-group. Consider the
map

Φ : Surjections((Z/`n)2g, A) → ∧2A

T 7→ T (ω0).

By [Mic06, Proposition 2.14], there is a constant c(A) such that if g > c(A),Φ is surjective and
forms a single orbit under the symplectic group Sp((Z/`n)2g, ω0).

Set c(G) = c(B) where B = G(k) for any algebraic closure k/k. By Lemma 4.3, the map π is
surjective on geometric points. Let y ∈ π−1(y) be a geometric point. Let z = πG(y) ∈ V , where
πG : VG → V is the forgetful map.

Note that the fiber π−1
G (z) equals

Surjections(A[`n](k(z)), B) ∼= Surjections((Z/`n)2g, B);

the symbol ∼= means that there is an isomorphism A[`n](k(z)) → (Z/`n)2g which is equivariant
for the action of Sp(A[`n](k(z)), ωk(z)) on the left and of Sp((Z/`n)2g, ω0) on the right.

The points of π−1
G (z) lying over y, corresponding to ωB ∈ ∧2B, can be identified with

{T ∈ Surjections((Z/`n)2g, B) : T (ω0) = ωB}.

By the above remarks, our assumption that the image of π1(V, z) in Sp(A[`n](k(z)), ωk(z)) is
surjective implies that π1(V, z) acts transitively on π−1(z). It follows that VG is geometrically
connected. 2

Corollary 4.5. Let k be a finite field of characteristic p. Let `′ 6= `, p be a prime. Let G/k be
a finite étale group scheme. Same notation and hypotheses as in Proposition 4.4. Let c(G) be
the constant from Proposition 4.4 and assume that g > c(G). Let k/k be an algebraic closure.
The map π : VG → (∧2G)(1) induces a Gal(k/k)-equivariant isomorphism

H0
ét((∧2G(1))k,Q`′)

π∗−→ H0
ét((VG)k,Q`′).

In particular,
tr(Frobk/k|H

0
ét((VG)k,Q`′)) = #((∧2G)(1))(k).

Proof. Equivariance of π∗ under Gal(k/k) follows because π is defined over k. The map π∗

induces an isomorphism because π−1(y) is connected for every geometric point y ∈ ∧2G, by
Proposition 4.4. 2

4.4 Comparison between moduli spaces of abelian varieties with level structure and
Ellenberg–Venkatesh–Westerland moduli spaces of covers

Let S be any base. Let Confn/S be the moduli space of n distinct unlabelled points in A1/S. Let
C → Confn be the associated family of hyperelliptic curves over S. Let A → Confn/S denote
the relative Jacobian of C/Confn. There is an associated Torelli map J : C/Confn → A/Confn.

Let B be a finite abelian group of odd order. Let BConfn be the associated constant group
scheme. Let

πB : Confn,B → Confn

be the finite étale cover described in § 4.2. Let D := AConfn,B
and let φ : D[`n]/Confn,B �

B/Confn,B be the associated universal quotient. There is an associated finite étale cover over
Confn,B

D/Kerφ → D/D[`n] ∼= D = AConfn,B
,
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where the isomorphism ∼= from the second map is the inverse of the projection isomorphism

D ∼−→ D/D[`n]. Pulling back this finite étale cover by the Torelli map JConfn,B
: CConfn,B

→

AConfn,B
defines a finite étale cover C′ → CConfn,B

of Confn,B with abelian Galois group B. This

finite étale cover defines a morphism

Φ : Confn,B → Hnc
Bo〈±1〉,n/Confn,

where Hnc
Bo〈±1〉,n denotes the moduli space of B o 〈±1〉-covers of P1 ramified at ∞ and having

monodromy in the conjugacy class of involutions at n-finite punctures. This is the moduli

space considered by [EVW16]. We refer the reader to [EVW16] and [RW06] for details on the

algebraic construction of Hnc
Bo〈±1〉,n. In particular, we emphasize that both Confn,B/Confn and

Hnc
Bo〈±1〉,n/Confn are finite étale.

Proposition 4.6. Let S = Fq be an algebraic closure of the finite field Fq. The morphism

Φ : Confn,B/Confn → Hnc
Bo〈±1〉,n/Confn described above is an isomorphism.

Proof. Because Confn,B/Confn and Hnc
Bo〈±1〉,n/Confn are finite étale, the morphism Φ is

necessarily finite étale. By [EVW16, Proposition 8.7], Φ induces a bijection Confn,B(Fq)
Φ−→

Hnc
Bo〈±1〉,n(Fq). It follows that φ must have degree 1 and is thus an isomorphism. 2

Corollary 4.7. Assume now that ` is odd. Let G be a finite étale group scheme over Fq of

order `n, and ωG ∈ (∧2G)(1)(Fq). For each g, define

Avg(G,ωG, g, q) :=
#{φ ∈ Surj(Pic0(C)[`n], G), φ∗(ωC,`n) = ωG}

#Confg(Fq)

where ωC,`n is the weil-pairing.

Let δ±(q, ωG) be the lower and upper limits of Avg(G,ωG, g, q) as g →∞. Then as q →∞
and n stays fixed, δ+(q, ωG) and δ−(q, ωG) converge to 1.

Proof. First, note that Avg(G,ωG, g, q) · |Confg(Fq)| is simply equal to the number of points on

the subscheme Y of Confg,G which maps to ωG under the natural map to (∧2G)(1). By a result

of Yu [Yu97, Hal08], the monodromy condition in Lemma 4.4 is satisfied, so Y is geometrically

connected. Moreover, by the discussion above the `′-adic cohomology of Confg,G is the same

as that of Hnc
B,g where B = G(Fq) o Z/2Z and c is the conjugacy class of all involutions.

Thus, by [EVW16, Lemma 7.8] we see that for all i > 0, there is an integer C(`n) satisfying

dimH i(Confg,G,Q`′)6 C(`n)i+1. The same bound therefore holds on the cohomology of Y . Thus,

by the Lefschetz trace formula we get that for q > 2C(`n)2, #Y (Fq) = qn(1 +O(C(G, `n)/
√
q)).

The result follows since |Confg(Fq)| = qn − qn−1. 2

Remark 3. Note that if we stopped keeping track of ωG and only cared about étale group scheme,

the number of surjections to a group scheme G approaches #(∧2G)(1)(Fq). If G is a constant

group scheme B, this amounts to counting elements of ∧2B which are killed by q − 1. This is

consistent with the random model considered by Garton, and explains the failure of ordinary

Cohen–Lenstra heuristics to hold if q 6≡ 1 mod `.
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5. Applications

5.1 Joint distribution
Fix positive integers n1, . . . , nk. What is the joint distribution of the finite abelian `-groups
A(Fpn1 )`, . . . , A(Fpnk )` as A varies through a family Vg of g-dimensional principally polarized
abelian varieties?

5.1.1 Étale group schemes refine joint moments. Let n = lcm(n1, . . . , nk). Fix G1, G2, . . . ,
Gk finite abelian `-groups. Let Mn(A) denote the Z`[x]/(xn−1)-module A(Fpn)` with its natural
Frobenius action. Let SG1,...,G`

denote the set of isomorphism classes of Z`[x]/(xn − 1)-modules
M for which

M [xn1 − 1] ∼= G1, . . . ,M [xnk − 1] ∼= Gk.

Then

ProbA∈Vg(Fp)(A(Fpn1 )` ∼= G1, . . . , A(Fpnk )` ∼= Gk) =
∑

M∈SG1,...,Gk

ProbA∈Vg(Fp)(Mn(A) ∼= M).

So the distribution of A(Fpn)` as a Z`[x]/(xn − 1)-module is a strictly more refined statistic
than the joint distribution of A(Fpn1 ), . . . , A(Fpnk ).

5.2 Results for the universal family of hyperelliptic curves
In this subsection, we spell out the consequences of our main theorems for the universal family
of hyperelliptic curves in one special case. For x ∈ Confg(Fq), let Cx denote the associated
hyperelliptic curve and let Cσx denote its quadratic twist.

For the ring R = Z`[x]/(x2 − 1) and finite R-module M , let M± denote the ±1-eigenspaces
of multiplication by x.

Proposition 5.1. Suppose ` - q2−1 and that ` 6= 2. Let ε > 0. Fix a finite set S of finite abelian
`-groups. Let MA,B denote the unique R-module whose +1-eigenspace equals A and whose
−1-eigenspace equals B. There exists Q(S, ε)� 0 such that if q, g > Q(S, ε) and A,B ∈ S,∣∣∣∣Probx∈Confg(Fq)(Jac(Cx)(Fq)` ∼= A and Jac(Cσx )(Fq)` ∼= B)− cR

#AutR(MA,B)

∣∣∣∣ < ε,

where cR is the normalizing constant from Theorem 2.2.
That is, the class groups Jac(Cx)(Fq)` and Jac(Cσx )(Fq)` behave almost independently for g

sufficiently large.

Proof. Note that

Jac(Cx)(Fq)` ∼= A and Jac(Cσx )(Fq)` ∼= B ⇐⇒ Jac(Cx)(Fq2)` ∼= MA,B.

By Propositions 3.4 and 4.7, for q sufficiently large we have∣∣∣∣Prob(Jac(Cx)(Fq2)` ∼= MA,B)− cR
#AutR(MA,B)

∣∣∣∣ < ε.

Because R splits as a product,

cR
#AutR(MA,B)

=
cZ`

#AutZ`
(A)
· cZ`

#AutZ`
(B)

.

The result follows. 2
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