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Abstract

Firm-level variables that predict cross-sectional stock returns, such as price-to-earnings and
short interest, are often averaged and used to predict market returns. Using various samples of
cross-sectional predictors and accounting for the number of predictors and their interdepen-
dence, we find only weak evidence that cross-sectional predictors make good time-series
predictors, especially out-of-sample. The results suggest that cross-sectional predictors do
not generally contain systematic information.

I. Introduction

Is the market risk premium predictable? Financial research has strived to
answer this question going back to at least to Dow (1920), and a large number of
variables have been used to predict the time-series of stock returns. A growing
number of papers with time-series predictors begin with a cross-sectional predictor
and ask whether that cross-sectional variable can be aggregated and then used to
predict market returns. Such papers presume that cross-sectional predictors contain
systematic information. For example, Baker and Wurgler (2000) cite the extensive
market-timing literature, which relates equity issuance to returns in the cross-
section, and suggest “issuers try to time both their idiosyncratic return and the
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market return.”They find that an aggregated capital raising variable predicts market
returns. Similarly, Lewellen (2004) finds that aggregated price-to-fundamental
ratios based on dividends, book-to-market, and earnings predict market returns.
Robert Shiller’s famous CAPE ratio is based on the idea that aggregated price-to-
earnings ratios predict market returns. Hirshleifer, Hou, and Teoh (2009) aggregate
Sloan’s (1996) accrual anomaly and use it to predict the market. Baker andWurgler
(2007) incorporate several firm-level variables to create an investor sentiment index
and show that it predicts market returns.

Drawing on this large literature, we examine market return predictability from
cross-sectional variables through the lens of multiple hypothesis testing. After all,
there are many cross-sectional predictors that could be chosen in order to predict
market returns. Published papers present individual hypothesis tests for predictors that
were chosen.This article asks: do cross-sectional variables generally aggregate tomake
good time-series predictors? Using various samples of cross-sectional predictors and
incorporating amultiple hypothesis testing framework, we find that the answer is “no.”

We begin by creating a sample of time-series predictors constructed from
the population of cross-sectional predictors documented in the literature. We use
a sample of 140 cross-sectional predictors that is essentially the population of firm-
level characteristics that have demonstrated cross-sectional predictability in the
academic literature.1 Of these 140 predictors, 26 have already been aggregated and
used to predict market returns in a published study.2 These papers are well-cited,
having received over 12,000 Google Scholar citations in total.

It is impossible to know the true set of variables examined by researchers.
Statistically significant findings are more likely to be published, so the 26 variables
in the aforementioned papers represent a lower bound on the set of predictors
considered by researchers. We begin our analysis by examining this sample; we
then extend our analyses to examine other subsets motivated by economic theory,
as well as the entire sample of 140 predictors that could have been considered.
Our analyses thus examine the minimum and maximum number of cross-sectional
variables that could have been used to generate time-series variables.

We begin by taking each of the 140 firm-level predictors and calculating
monthly cross-sectional averages to get a single, monthly value. For each predictor,
we construct equal-weighted and value-weighted averages; the resulting database
has 280 different predictive variables (140 equal-weighted and 140 value-
weighted).3 To examine the market-level predictability of these variables, we
perform both in-sample and out-of-sample tests. Like other papers in the time-series
literature, our in-sample tests use the entire sample of data and estimate a single
parameter estimate from a time-series regression of the market risk premium on the
predictor. Our out-of-sample tests consist of expanding, rolling-window regressions

1This builds on the 97-predictor list used inMcLean and Pontiff (2016) and Engelberg,McLean, and
Pontiff (2018).

2Table IA.VI in the Supplementary Material lists these 26 cross-sectional predictors along with the
23 time-series papers that each was featured in.

3We follow existing practice when constructing aggregate predictors from cross-sectional data:
although some researchers consider equal-weights (e.g., Goyal and Santa-Clara (2003), Hirshleifer
et al. (2009)), value-weights are most common. For completeness, we present results with both types
of weighting.
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that use only information available at each point in time to examine whether a
predictor is useful for forecasting the market’s risk premium.

At first glance, it appears that many cross-sectional predictors are good mar-
ket-level predictors in-sample. When we examine the predictors already studied by
the existing literature, we find that 20% of them predict 1-year market returns in an
ordinary least squares (OLS) regression with coefficients that are significant at the
10% level or better, and 8% of them are significant at the 1% level.4 The strength
of this result is strongly related to the horizon of predictability: when considering
1-month market returns, the number of significant variables falls to 12% at the
10% level and 2% at the 1% level.

We then consider two predictor subgroups that can clearly be motivated by
economic theory. The first is a subsample of VALUATION predictors, which
are variables that are based on ratios of market prices to fundamentals. Many
VALUATION predictors have received attention in the market risk premium liter-
ature, including the dividend-to-price and earnings-to-price ratios. Moreover, since
virtually all VALUATION ratios should be a function of discount rates, theory
suggests that they should all work in a time-series setting (Lewellen (2004), Kelly
and Pruitt (2013)). We also form a subsample of OPINION predictors (e.g., insti-
tutional trading, analyst upgrades) which can be motivated with the sentiment
explanation of Baker and Wurgler (2006) or with the information explanation of
Seyhun (1988). However, despite the economic motivation for these subsamples,
we find only weak in-sample predictability for the VALUATION and OPINION
subcategories. In fact, the VALUATION and OPINION subcategories perform
worse than the sample of predictors from the existing literature, suggesting the
predictors in the existing literature are a special subset of all cross-sectional variables.

We also examine a third subsample, BEST_CROSS-SECTIONAL, which
consists of the 10 predictors with the highest cross-sectional t-statistics. A number
of papers have found evidence that cross-sectional return predictability is smaller in
recent periods (e.g.,McLean and Pontiff (2016), Green, Hand, and Zhang (2017)), so
it is possible that the weak performance of some of our predictors (like those in the
VALUATION and OPINION subsamples) results from weakness of the underlying
cross-sectional predictors. To account for this possibility, we examine a subset of
predictors formed from the cross-sectional variables with the best performance. Yet,
once again, for this subsample, we find only weak evidence of return predictability.

The 51 predictors from the existing literature that we discuss above represent
a lower bound on the set of variables actually considered. Harvey, Liu, and Zhu
(2016) note that there is a publication bias in Finance, because journals are less
likely to publish results that are not statistically significant. Chen (2021) notes that
selective reporting of results makes it difficult to know the true set of variables
considered, and this has implications for statistical inference.We therefore examine
all 280 possible predictors constructed from the 140 cross-sectional variables in the

4There are 51 variables since we create both equal-weighted and value-weighted predictors for each
of the 26 variables in the existing literature and one of the resulting 52 possible variables is dropped
because it is nonstationary. While we do not find that 51 out of 51 are significant, it is important to note
these are reanalyses, not replications, in the language of Welch (2019) because we do not use the same
sample or code used in the original papers.Moreover, we examine two versions of each predictor (equal-
weighted and value-weighted) while many of the original papers only examine one of these.
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literature – this set represents an upper bound on the cross-sectional predictors that
could have been used to make time-series predictors. Out of the 280 predictive
variables, 253 of them are stationary and exhibit sufficient time-series variation.5 Of
these 253 predictors, 43 (17%) predict 1-year market returns in an OLS regression
with coefficients that are significant at the 10% level or better, and 14 (6%) are
significant at the 1% level. Again, the strength of this result is strongly related to the
horizon of predictability: when considering 1-month market returns, only 27 of the
253 predictors (11%) are significant at the 10% level and 7 (3%) are significant at
the 1% level. We also find that several cross-sectional predictors (such as ASSET_
TURNOVER and Z_SCORE) are among the best performers for market predict-
ability, but have yet to be documented in this literature. For example, value-
weighted ASSET_TURNOVER, which has not been previously proposed as a
predictor of market risk premia, predicts the market risk premium with an R2 of
17.8% at the 1-year horizon.

Since we examine a large number of predictors, we expect that some variables
will appear significant by chance. Moreover, many of these variables are related
to each other so the tests we conduct are not independent. To address both the
number of tests we conduct as well as the dependency among the tests, we perform
the Romano and Wolf (2016) resampling-based stepdown procedure to compute
adjusted p-values that control the family-wise error rate while accounting for the
number of tests and dependence. Among methods that control the family-wise
error rate, the Romano and Wolf (2016) procedure is preferable to the well-known
Bonferroni (Dunn (1961)) or Holm (1979) tests because it considers the depen-
dence structure across multiple tests and thus has more power (Romano and Wolf
(2005), (2016)).6 Our paper is the first to apply this procedure to predicting the
equity market risk premium. In robustness tests, we also estimate adjusted p-values
while controlling the false discovery rate (Benjamini and Yekutieli (2001)). This
approach is less conservative than controlling the family-wise error rate (Romano
et al. (2008)).7 We reach the same conclusion with both approaches.

When we apply the Romano and Wolf (2016) stepdown procedure to the
51 predictors from the existing literature, we find weaker evidence that cross-
sectional predictors contain systematic information. While 10 are significant at the
1-year horizon using single hypothesis testing, only 3 are significant at the 1-year
horizon using the Romano andWolf procedure. The results suggest the predictors in

5We test each of the 280 predictors for a unit root using an Augmented Dickey–Fuller (1979) test. If
we fail to reject the null that a variable is nonstationary, we then calculate the first-difference. If we fail
to reject the null that the first-differenced variable is nonstationary, we drop the variable. We also drop
variables that aggregate to form a variable that does not exhibit time-series variation and we filter
variables that should not aggregate according to economic logic. See Section II for details.

6Romano, Shaikh, and Wolf (2008) examine simulation evidence for a variety of multiple testing
techniques and find that the Romano and Wolf (2005) procedure has good power, especially relative to
methods that do not account for the dependence of the individual test statistics. While some other
methods that control generalized error rates have even better power, this comes at the cost of having
higher false rejection rates. They state, “It appears that when the number of strategies is in the thousands,
controlling the [family-wise error rate] becomes too stringent.” Since we examine a maximum of
269 strategies, we focus on controlling the family-wise error rate.

7Romano et al. (2008) show that false discovery rate methods generally exhibit fewer false negatives
at the cost of allowing more false positives.
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the existing literature may be a result of selective testing and reporting. Of course,
it is not possible to know the true set of cross-sectional variables considered, and
Chen (2021) shows that accounting for this could raise or lower the bar for
statistical significance. To account for this, we then examine our other samples
using the Romano and Wolf procedure. For the VALUATION and OPINION
subsamples, as well as the BEST_CROSS-SECTIONAL subsample, we find
weak evidence of return predictability using multiple testing methods.

We then turn to our full sample of predictors. Using in-sample regressions,
when we examine the full set of 253 predictors and perform the Romano and Wolf
(2016) stepdown procedure we are unable to reject the null of no-predictability at
the 1% level for any predictor at any horizon. At the 1-month and 3-month horizons,
no variable is significant even at the 10% level. At the 12-month horizon only two
variables, Z_SCORE and ASSET_TURNOVER, have Romano andWolf p-values
that are less than 5%. When we examine more permissive p-values based on
controlling the false discovery rate, there are only a fewmore significant predictors.
We find that one predictor is significant at the 5% level at the 1-month horizon and
8 (out of 253) are significant at the 12-month horizon. In short, we find most of the
cross-sectional variables that were statistically significant when examined in iso-
lation are no longer significant when examined in the context of all cross-sectional
predictors. However, a few variables, like Z_SCORE and ASSET_TURNOVER,
do still show evidence of return predictability.

Goyal andWelch (2008) argue that out-of-sample regressions serve as a useful
diagnostic. Accordingly, we turn to out-of-sample forecasting regressions. Again,
we start with the predictors already examined in the literature, and then examine
other samples of predictors including the subgroups motivated by economic theory
and the set of all 140 cross-sectional variables that could have been considered. In
all samples, we find that things look even bleaker for cross-sectional predictors
when we consider out-of-sample tests. While 11 out of the 51 predictors from the
existing literature are significant at the 12-month horizon, none are significant at the
1-month horizon. Similarly, among the 253 stationary predictors, we examine out-
of-sample regressions. We find that 3% significantly predict market returns at the
1-month horizon and 17% predict market returns at the 12-month horizon (com-
pared with 11% and 17% in-sample). Moreover, once we adjust the individual
p-values using the Romano and Wolf (2016) stepdown procedure, we no longer
find evidence against the null at the 10% level for any predictor at any horizon.
For example, in our out-of-sample tests, ASSET_TURNOVER again appears to be
a strong predictor. It exhibits positive out-of-sample R2 values at every forecasting
horizon, with an impressive R2 of 17% at the 1-year horizon. However, the corre-
spondingRomano andWolf (2016) adjusted p-value is not statistically significant at
any of the usual levels. We find similar results when controlling the false discovery
rate. Taking all of the results together, our findings suggest that cross-sectional
predictors do not contain systematic information.

Our paper makes a number of contributions. First, we provide context for
existing papers that propose a particular cross-sectional predictor should be trans-
formed into a time-series one. Existing results in the literature that have econom-
ically large coefficients and impressive t-statistics could be the result of chance if
enough predictors are considered. Our findings show that cross-sectional predictors
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as a group do not make good time-series predictors. The literature’s elevation of
individual predictors should consider the economic motivation behind each pre-
dictor, and the results should be interpreted in light of our data mining critique.

Second, our results provide new insight into the nature of return predictability,
both in the cross-section and the time-series. By aggregating cross-sectional pre-
dictors into time-series variables, we are able to understand whether cross-sectional
variables contain information about the systematic components of returns. Our
results suggest they do not. This is surprising, asWen (2019) finds that asset growth
can be aggregated to predict market returns, and several studies (e.g., Hou, Xue, and
Zhang (2015)) find that factor models with an investment factor can explain many
cross-sectional anomalies. Taken together, these papers suggest that most anoma-
lies should aggregate to predict market returns, yet we find little evidence that
they do.

Finally, we contribute to the extensive equity return premium literature. While
Goyal and Welch (2008) show that 14 popular time-series variables do not signif-
icantly predict returns in out-of-sample tests, subsequent papers have documented
evidence of return predictability using firm-level variables aggregated across stocks
(e.g., Hirshleifer et al. (2009), Rapach, Ringgenberg, and Zhou (2016)). Our results
extend these findings by showing that several other cross-sectional predictors can
be aggregated to form good time-series predictors. However, we find that many of
these predictors are no longer significant after adjusting for multiple hypothesis
testing. Our findings emphasize the importance of considering the impact of data
snooping bias when examining time-series return predictability.

The remainder of this article proceeds as follows: Section II briefly describes
the existing literature and outlines the theoretical relation between cross-sectional
predictive variables and time-series return predictability. Section III describes
the data used in this study. Section IV characterizes our findings and Section V
concludes.

II. Background

Financial researchers have examined the predictability of stock returns for
over a century (e.g., Gibson (1906)) and a large literature has documented evidence
of predictability in the cross-section of stock returns. A separate literature has
examined the predictability of the equity risk-premium using time-series predictive
variables. To date, these two literatures have evolved relatively independently. We
connect these two literatures.

A. Time-Series Return Predictability

A number of papers find in-sample evidence of time-series return predictabil-
ity, but out-of-sample evidence is rare, suggesting thatmany predictors are the result
of data snooping (i.e., overfitting). For example, Bossaerts and Hillion (1999) use
model selection criteria from the statistics literature to choose candidate predictors,
which allows them to partially avoid data snooping biases, yet they find that the
resulting predictors are unable to forecast out-of-sample returns. Similarly, Goyal
and Welch (2008) examine 14 popular predictors from the existing literature and
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find that they fail to forecast the equity risk premium in out-of-sample tests. Cooper
and Gulen (2006) note that researchers have many different choices regarding the
specification of predictability tests, including the predictor variables, the estimation
periods, and the assets being forecasted. They perform specification searches across
these parameters and find that return predictability is highly sensitive to these
parameter choices. More recently, Bartsch, Dichtl, Drobetz, and Neuhierl (2021)
examine a wide variety of possible permutations of the predictors in Goyal and
Welch (2008) and the technical predictors in Neely, Rapach, Tu, and Zhou (2014)
and estimate that most out-of-sample performance for these variables is from data
snooping.

In light of the poor performance of many predictive variables in out-of-sample
tests, researchers have focused on developing methodologies that are robust to
data snooping concerns (see Harvey, Liu, and Saretto (2020)). Foster, Smith, and
Whaley (1997) develop a procedure to account for data snooping biases when
evaluating the fit of predictive regressions. White (2000) develops a reality check
bootstrap (RCB) to account for data snooping biases that result from specification
searches, and Sullivan, Timmermann, and White (1999) apply the RCB procedure
to a set of technical trading rules. While the White RCB procedure determines
whether the best predictor among a group is statistically significant after adjusting
for data snooping biases, Romano andWolf (2005), (2016) show how to adjust the
p-value for each individual predictor to account for data snooping biases.We are the
first to apply the Romano and Wolf stepdown procedure to a large set of predictive
variables derived from existing academic studies. In robustness checks, we also
examine adjusted p-values that control the false discovery rate (Benjamini and
Yekutieli (2001)) which is less conservative than the Romano and Wolf procedure.

B. Cross-Sectional Return Predictability

While the literature on time-series return predictability has generally found
that most predictors fail to perform in out-of-sample tests, a large literature finds
evidence of return predictability in the cross-section of stocks. More recently, a
number of papers reaffirm earlier studies that find return predictability in the
cross-section of stocks. For example, using quintile portfolios, McLean and Pontiff
(2016) find that 88% of firm-level predictors generate t-statistics greater than 1.5 in
the sample period used by the original study. Chen andZimmerman (2020) replicate
319 firm-level predictors and find that only 3 fail to reproduce the statistical
significance of the original study. Some studies question the breadth of predictabil-
ity and whether implementable portfolio strategies are possible. Hou et al. (2015)
use a sample of 452 anomalies and conclude that most fail to replicate. Chen and
Zimmerman reconcile their results with Hou et al. (2015) by noting that Hou et al.
eliminate microcap stocks from their sample (60% of CRSP), that many of Hou
et al.’s anomalies are not unique and are based on the same firm-level variable
measured over different horizons or intervals, and that many of Hou et al.’s anom-
alies are unique to their paper and were never significant to begin with. The fact that
Hou et al. find that eliminating microcaps weakens return-predictability is consis-
tent with many studies (see Barberis and Thaler (2003) or Pontiff (2006) for a
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thorough review) which find that anomalies are weaker in large stocks and strongest
in small stocks that are more costly to hold and trade (Pontiff (1996)).

There is though, an evolving discussion centered on the extent to which cross-
sectional predictability is the outcome of data mining and whether the literature has
overlooked multiple testing issues. Harvey et al. (2016) conclude that the majority
of findings in financial economics papers are likely false, and that t-statistic hurdles
should be raised to 3. McLean and Pontiff (2016) examine 97 anomalies and find
that at most 25% of anomaly returns can be explained by data mining. Linnainmaa
and Roberts (2018) conclude that the majority of accounting-based anomalies are
the outcome of data mining.

Yet other recent studies find that data mining is likely not the first-order cause
of anomaly returns. McLean and Pontiff (2016) find that anomaly returns are 50%
lower post-publication, an effect they attribute to both data mining and arbitrage
informed by the original publication. Importantly, they reject the null that anomaly
returns are zero post-publication. Jacobs and Muller (2020), find that anomaly
returns are, on average, significant outside of the US, and do not decline post-
publication as they do in the USA. Chen and Zimmerman (2020) find that publi-
cation bias only accounts for about 12% of anomaly returns. Chen (2021) argues
that it would take 10,000 researchers hundreds of years to produce the large
t-statistics reported in the anomaly literature.

Overall, the existence, and nature, of cross-sectional return predictability is an
important debate that has yet to be resolved. However, none of the existing studies
examine the relation between cross-sectional predictors and aggregate market
returns, which is the focus of our paper.

C. The Information in Cross-Sectional Variables

While there are extensive literatures on both time-series predictability and
cross-sectional predictability, with a few notable exceptions they have evolved
independently. Several papers show that firm-level anomalies aggregate to mar-
ket-wide predictors. As we mentioned earlier, to the best of our knowledge 26 pre-
dictors have been aggregated and used to predict market returns in a published
study. Table 1 lists these 26 cross-sectional predictors along with the 23 time-series
papers that each was featured in. Some examples include Pontiff and Schall (1998)
with book-to-market ratios, Campbell and Shiller (1988) with P/E ratios, and
Chordia, Roll, and Subrahmanyam (2002) with insider trading. More recently,
Hirshleifer et al. (2009) find that firm-level accruals and cash flow, when aggre-
gated across stocks, contain information about market returns, and Wen (2019)
shows that aggregate asset growth predicts market returns. Finally, Rapach et al.
(2016) show that firm-level short interest aggregates to form one of the strongest
known predictors of market returns.

D. The Information in Nonsystematic Predictors

In this article, our goal is to understand the relation between cross-sectional
return predictability and time-series return predictability.While it may seem natural
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that cross-sectional return predictors should aggregate to generate time-series return
predictors, it is possible to have one without the other.8 Specifically, cross-sectional
variables could predict returns because they forecast the systematic component of
returns or the nonsystematic component of returns. As such, cross-sectional return
predictors do not necessarily aggregate to form good time-series predictors. To see
this, define a variable XNonsyst

i,t as a nonsystematic predictor if it forecasts the
nonsystematic portion of stock returns for asset i on date t þ 1. Without loss of
generalization,9 we can express the return on asset i using the market model:

Ri,t =R f þβi Rm,t�R f

� �þ εi,t,(1)

where Ri,t is the return on stock i on date t, R f is the risk-free rate, Rm,t is the market
return, and εi,t is the portion of stock i’s return that is orthogonal to the market’s
return. We define a nonsystematic predictor as a variable XNonsyst

i,t�1 that satisfies
γ1 6¼ 0 in a linear regression of the form10:

cεi,t = γ0þ γ1X
Nonsyst
i,t�1 þωi,t,(2)

where cεi,t is the abnormal return from the market model (Sharpe (1964), Lintner
(1965)). In other words, a nonsystematic predictor, by definition, forecasts the
portion of asset i’s return that is not explained by aggregate market movements.
However, while XNonsyst

i,t�1 contains information about individual stock returns, it

TABLE 1

Summary Statistics

Table 1 displays summary statistics across all of the cross-sectional variables fromwhichwe construct time-series predictors.
To construct time-series predictors out of cross-sectional variables, we calculate the value-weighted and equal-weighted
meanacross all stocks on eachdate. The first rowdisplays statistics for variables already examined in the existing literature on
time-series return predictability (PREDICTORS_FROM_EXISTING_PAPERS), the second row shows statistics for all possible
variables derived from the cross-sectional literature (ALL_POSSIBLE), and the remaining rows examine subsamples formed
on the 10 most statistically significant cross-sectional predictors (BEST_CROSS-SECTIONAL) and two different groupings
from the categories in McLean and Pontiff (2016): i) OPINION and ii) VALUATION.We display themean andmedian values of
cross-sectional t-statics as well as the number of citations for each predictor from Google Scholar as of 2018.

Cross-Sectional t-Statistic Citations

Type N Mean Median Mean Median

PREDICTORS_FROM_EXISTING_PAPERS 26 4.26 3.26 3,312 1,531
ALL_POSSIBLE 140 3.03 2.71 1,432 517
BEST_CROSS-SECTIONAL 10 8.38 7.96 854 740
OPINION 22 2.97 2.48 798 689
VALUATION 15 3.14 2.88 2,262 273

8Indeed, several existing papers find that firm-level relations do not hold at the aggregate-level.
Kothari, Lewellen, and Warner (2006) document a negative relation between returns and earnings
surprise at the aggregate-level, in contrast to the positive relation documented at the firm-level. Similarly,
Hirshleifer et al. (2009) find that the relation between accruals and returns changes sign between firm-
level and aggregate-level analyses.

9In Section B of the Supplementary Material, we show the logic in this section generalizes to any
model with nonsystematic and systematic components including the Fama and French (1992) 3-factor
model and the Fama and French (2015) 5-factor model.

10For simplicity, we ignore the sign of the abnormal return and define an anomaly as any variable that
predicts abnormal returns in either direction.
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will not aggregate to generate market return predictability. To see this, average
equation (2) across assets all N stocks in the economy and multiply both sides
by mci,tPN

i
mci,t

, where mci,t is the market capitalization of stock i on date t:

mci,t
PN
i
mci,t

XN
i = 1

Ri,t�R f �βi Rm,t�R f

� �� �
= γ0þ γ1X

Nonsyst
t�1 ,(3)

where the bar above a variable denotes the value-weighted mean. It is simple
to show that the left-hand side of equation (3) is equal to zero. Thus, the value-
weighted variable XNonsyst

t�1 contains no information about aggregate market
returns.

E. The Information in Systematic Predictors

While nonsystematic predictors contain no information about aggregate
market returns, it is possible to have a variable that predicts information in the
cross-section that contains information about the aggregate risk-premium. Define
a variable X syst

i,t�1 as a systematic predictor if it forecasts the systematic portion of
stock returns for asset i on date t þ 1. Thus, define a systematic predictor as a
variable X syst

i,t�1 that satisfies γ1 6¼ 0 in a linear regression of the form:

βi Rm,t�R f

� �
= γ0þ γ1X

syst
i,t�1þωi,t:(4)

Because the market beta is 1, it is easy to show that the left-hand side of
equation (4) implies a direct linear relation between the predictor variable and the
market risk-premium. Notice also that this relation goes in both directions: if a time-
series predictor is constructed from individual assets, it must contain information
about the systematic portion of individual asset returns.11,12 This implication pro-
vides additional economic information to test the validity of proposed predictors. In
other words, when evaluating predictors constructed from individual characteris-
tics, we should focus on the subsample of individual characteristics that contain
information about individual asset returns. Accordingly, in the rest of the article, we
examine the aggregate information in a set of 140 predictors that have been
previously shown to contain information about individual asset returns (McLean
and Pontiff (2016)).

11In the market model (Sharpe (1964), Lintner (1965)), the systematic portion of stock returns
reflects compensation for bearing systematic risk. However, outside of the market model, a common
component of returns could exist that is not related to systematic risk (e.g., consumer sentiment). Similar
to the systematic portion of returns in the market model, such a variable could be related to the
cross-section of returns and, since it has a common component, it could aggregate to contain information
about the equity risk premium.

12Theoretically, it is possible that investors switch from gathering systematic information to gath-
ering idiosyncratic information depending on economic conditions as in Kacperczyk, Van Nieuwer-
burgh, and Veldkamp (2016). As a result, some variables could contain idiosyncratic information at
times, and systematic information at other times.
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III. Data

To examine the relation between cross-sectional anomaly variables and the
equity risk premium, we combine daily data from the Center for Research in
Security Prices (CRSP) and Compustat over the period 1926 through 2017.

We calculate the equity risk premium as the log return on the S&P 500 index
minus the log return on a 1-month Treasury bill as in Goyal andWelch (2008).13We
construct aggregate time-series variables for each of the 97 cross-sectional anom-
alies in McLean and Pontiff (2016) and we supplement this data set with 43 addi-
tional variables from the extant literature to arrive at 140 candidate predictors.14 As
we explain in Section I, we explore various subgroups within the 140. Table 1
contains summary statistics for the cross-sectional variables we use to form time-
series predictors. Of the 140 variables, 15 are classified as VALUATION predictors
and 22 are classified as OPINION predictors. BEST_CROSS-SECTIONAL. This
subcategory consists of the 10 predictors with the greatest cross-sectional t-statistic,
using the sample period in the original paper. By definition, the BEST_CROSS-
SECTIONAL predictors exhibit strong cross-sectional predictive power; indeed,
the mean cross-sectional t-statistic for these predictors is approximately 9. Predic-
tors from existing papers consist of the 26 cross-sectional variables that have been
used to predict market returns in a published study.

We construct two time-series predictors from each cross-sectional variable
based on the equal-weighted average and value-weighted average. Unlike with
cross-sectional estimation, consideration of stationarity is crucial in estimation of
the market risk premium (e.g., Campbell (1991), Hodrick (1992)). We test each
time-series predictor for a unit root using an Augmented Dickey–Fuller (1979) test.
Because some of the resulting time-series variables are nonstationary, we proceed
as follows: if we reject the null that the raw (untransformed) variable is nonsta-
tionary, we use it in our tests. If not, we calculate the first difference for each
variable; if we reject the null that it is nonstationary then we use it, otherwise the
variable is excluded.

Some of our cross-sectional predictors should (theoretically) aggregate to
form a variable that is constant across time (e.g., CAPM beta). Accordingly, after
constructing time-series versions of each variable, we apply a manual filter to drop
variables that should not aggregate to form an economically meaningful variable
and we also examine each variable’s time-series standard deviation and exclude
predictors that exhibit little to no time-series variation.15 Of our original 280 differ-
ent predictive variables (140 equal-weighted and 140 value-weighted variables),
253 survive the screening procedures discussed above. We use these 253 variables
in our main regressions.

To verify that the Romano andWolf (2016) adjusted p-values are not sensitive
to the set of variables we consider, we also examine three alternate sets of candidate
predictors: one that has more variables (269 variables) and two that have fewer

13We download this data from Amit Goyal’s website (http://www.hec.unil.ch/agoyal/).
14See the Supplementary Material for an overview of the construction of these 140 variables.
15We calculate a measure of variation for each variable as the ratio of its time-series standard

deviation to the absolute value of its time-series mean, and we drop variables with a ratio less than
0.06. See the Supplementary Material for a list of variables dropped using the manual filter.
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(137 and 51 variables, respectively). The first set expands the list of predictors to
269 variables by omitting the manual filter discussed above and adding stochastic
detrending as a way to avoid nonstationarity. Specifically, if we reject the null that
the raw (untransformed) variable is nonstationary, we use it in our tests. If not, we
calculate deviations from a linear trend model for each variable; if we reject the null
that it is nonstationary thenwe use it. If not, we calculate the first difference for each
variable; if we reject the null that it is nonstationary then we use it, otherwise we
drop the variable. For the linear trend, we estimate a model of the form:

xt = aþbtþut for t = 1,…,T ,(5)

for each predictor variable xt and time period t.We take the fitted residual, but, as our
detrended measure. By construction, but has a mean of zero and we normalize it to
have a standard deviation of 1.16 This set represents the maximum number of candi-
date variables possible;we use all of the candidate predictors that we canwithminimal
assumptions (i.e., they must have time-series variation and pass the unit root test).

One potential criticism is that there may be only a few potent predictor vari-
ables. In this view of the world, a large sample such as ours might be padded with
obviously unlikely candidates, and a multiple hypothesis test would have low
statistical power. To address this potential criticism, we consider two smaller sets
of predictors. One set contains 137 predictors and uses only the raw version of each
variable (i.e., it does not use first-differencing or stochastic detrending). This
selection reflects the notion that authors, referees, and editors avoid time-series
variables that require extra manipulation. For this set, we again apply the manual
filter to drop predictors that exhibit little to no time-series variation. The other set
represents the minimum number of candidate variables possible; we use only the
predictors that have already been examined in the existing time-series literature.
This set contains 51 variables and, by definition, contains variables that the liter-
ature views as reasonable candidate variables.

IV. Results

In this section, we examine whether cross-sectional predictors, in general,
contain information about the equity risk premium. We start by examining in-
sample tests that use the entire sample of data and estimate a single parameter
estimate from a time-series regression of the market risk premium on the predictor.
We then examine out-of-sample tests that use rolling regressions to test whether a
variable is useful for predicting the future equity risk premium, using only infor-
mation available at each date.

A. In-Sample Tests

As noted in Goyal andWelch (2008), “It is unreasonable to propose a model if
the [in-sample] performance is insignificant, regardless of its [out-of-sample]

16For our in-sample analyses, we estimate the linear trendmodel using all available data. For our out-
of-sample analyses, we estimate the trendmodel only using data available at each point in time to avoid a
look-ahead bias.
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performance.” As discussed in Section II, we start with 140 variables from the
existing literature and, using these, we form 268 candidate predictor variables. The
sample length for each predictive variable depends on data availability. Some
predictors have data available as far back as 1926, while other variables have
samples that start more recently. In our in-sample tests, the length of the time series
varies depending on data availability.

For each variable, we run predictive regression models of the form:

rt:tþh = αþβxtþ εt:tþh for t = 1,…,T �h,(6)

where rt:tþh = 1=hð Þ rtþ1þ⋯þ rtþhð Þ, rt is the continuously compounded S&P
500 return for month t from CRSP including dividends and excess of the monthly
risk-free rate from Goyal and Welch (2008), xt is the predictor variable, and h
denotes the forecast horizon. We examine four different forecast horizons: 1 month
ahead, 1 quarter ahead, one-half year ahead, and 1 year ahead (i.e., h= 1, 3, 6, or 12).
For each predictor at each forecast horizon, the regression is estimated using all
available data, leading to a single parameter estimate (β) that measures the predic-
tive ability of the candidate variable at that horizon.17

The results are shown in Figure 1 and Tables 2 and 3. In Figure 1, we provide
a visual display of the relation between cross-sectional predictors and their time-
series counterparts. For each predictor, the horizontal axis plots the cross-sectional
t-statistic, while the vertical axis plots the time-series t-statistic. Graph A displays
results for 1-month time-series regressions, while Graphs B–D display results for
3-month, 6-month, and 12-month regressions.18 If there is a direct mapping from
cross-sectional predictability to time-series predictability, then at a minimum, the
signs of the two results should be the same. This would imply that all of the results
should either be in quadrant I (the top right of each graph) or quadrant III (the
bottom left). While a number of results are in quadrants I and III, they represent
about 58% of all observations at the 12-month horizon. In other words, there are
a number of results in quadrant II (top left) and IV (bottom right) suggesting that
many time-series predictors have the opposite sign of their cross-sectional coun-
terpart. In each graph, we also plot a linear trendline; if time-series predictors have
the same t-statistics as their cross-sectional counterpart, the trendline should have a
45-degree slope increasing from the left of the figure to the right. In all graphs, the
line does slope up from left to right, indicating a relation between time-series and
cross-sectional predictors, but the line is flatter than 45°. However, the line does
become steeper as the forecasting horizon increases. At the 1-month horizon, the
Pearson correlation coefficient between the time-series and cross-sectional pre-
dictors is 0.175 while at the 12-month horizon the correlation rises to 0.289.

To formally examine the time-series information in cross-sectional predictors,
we next turn to the regression results. Table 2 provides a summary of the perfor-
mance of the candidate predictors, broken out by various subcategories. We report
the fraction of predictors that are statistically significant at the 10% level or better

17In untabulated results, we estimate equation (6) using the weighted least squares method of
Johnson (2019). This estimator does not affect our conclusions.

18We only display results for value-weighted time-series predictors in Figure 1, however, in unre-
ported results the results are similar for equal-weighted predictors.
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using 2-sided t-statistics computed using a stationary block bootstrap (Politis and
Romano (1994)) with 1,000 draws to account for the Stambaugh (1999) bias and the
fact that the model uses overlapping observations when h > 1 (Hodrick (1992),
Goetzmann and Jorion (1993), and Nelson and Kim (1993)).19

Panel A of Table 2 displays the results from the four different sets of
predictors: i) PREDICTORS_FROM_EXISTING_PAPERS examines only

FIGURE 1

In-Sample Relation Between Cross-Sectional and Time-Series Predictors

Figure 1 displays a plot of the relation between cross-sectional and time-series predictors. For each predictor, we plot the
t-statistic from a cross-sectional regression (shown on the horizontal axis) and the t-statistic from value-weighted in-sample
time-series regressions (shown on the vertical axis). Graph A examines 1-month time-series regressions, whereas Graphs
B–D examine 3-month, 6-month, and 12-month regressions, respectively. In each graph, the diagonal black line denotes a
linear trendline.

Graph A. 1 Month Graph B. 3 Month
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19Specifically, we resample the original data using a stationary block bootstrap with a mean block
size of 5, however our conclusions are robust to alternate block sizes of 10, 25, and 50. To avoid the
overlapping dependent variable issue, we aggregate the independent variable rather than the dependent
variable as suggested by Cochrane (1991) and Jegadeesh (1991); our general conclusions – about the
lack of statistically significant predictability after accounting for the number of tests run – do not change
under any of these alternate approaches.
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predictors that have already been examined in the time-series literature; ii)
RAW_PREDICTORS expands the list to include all predictors that are stationary
in raw form (i.e., before applying transformations like the first difference) and it
imposes filters to remove variables that should not aggregate and/or do not exhibit
time-series variation; iii) RAW_PREDICTORS þ FIRST_DIFF is similar to
ii) except it adds the first-difference transformation (i.e., if we fail to reject the null
that the raw variable is nonstationary, we then calculate the first difference and
include it if it passes the unit root test); iv) ALL_POSSIBLE_PREDICTORS
examines as many predictors as possible (i.e., we only require that they have
time-series variation and pass the unit root test). Across all four sets, we find
evidence of return predictability. In our main specification (RAW_PREDICTORS
þ FIRST_ DIFF), on average 13% are statistically significant at the 10% level or
better across the various forecasting horizons. This number generally increases as
the forecast horizon increases from 27 (11%) at the 1-month horizon to 43 (17%) at
the 12-month horizon. The numbers are similar for the other sets of predictors.
These results run counter to explanations that the results are hinged on the initial set
of variables being over- or under-aggressive.

TABLE 2

Summary of In-Sample Performance Using Unadjusted p-Values

Table 2 displays a count of the number of predictive variables that are statistically significant at the 10% level or better, as a
fraction of the total number of variables examined. We calculate statistical significance using bootstrap p-values. For each
anomaly, we estimate an in-sample predictive regression of the form:

r t :tþh = αþβxt þ εt :tþh fort =1,…,T �h,

where r t :tþh = 1=hð Þ r tþ1 þ⋯þ r tþhð Þ, rt is the continuously compounded S&P 500 return for month t from CRSP including
dividends and excess of the monthly risk-free rate from Goyal and Welch (2008), h indicates the forecast horizon in months,
and xt is one of the 140 predictor variables. To construct time-series predictors out of cross-sectional predictors, we calculate
the value-weighted and equal-weighted mean across all stocks on each date resulting in 280 possible predictors. In Panel A,
we consider four different definitions: i) PREDICTORS_FROM_EXISTING_PAPERS uses only those variables that are used in
the existing literature on time-series return predictability. ii) RAW_PREDICTORS examines every possible variable for which
we reject the null that the raw variable is nonstationary. iii) RAW_PREDICTORS þ FIRST_DIFF examines every possible
variable however if a variable is not stationary in raw form, we then examinewhether it is nonstationary in first-differenced form.
If we fail to reject the null that the first differenced variable is nonstationary, we drop the variable. iv) ALL_POSSIBLE_
PREDICTORS examines every possible variable. If we fail to reject the null that a variable is nonstationary, we calculate
deviations froma linear trendmodel. If we fail to reject the null that the linearly detrendedvariable is nonstationary, wecalculate
the first difference. If we fail to reject the null that the first differenced variable is nonstationary, we drop the variable. In Panel B,
we examine subsamples of the variables in RAW_PREDICTORSþ FIRST_DIFF formed on the 10 most statistically significant
cross-sectional predictors (BEST_CROSS-SECTIONAL), and two different groupings based on the categories in McLean
and Pontiff (2016): i) OPINION and ii) VALUATION. In Panel C, we examine EQUAL-WEIGHTED vs. VALUE-WEIGHTED_
PREDICTORS for the variables in RAW_PREDICTORS þ FIRST_DIFF.

Return Horizon (h)

Predictive Variable h = 1 h = 3 h = 6 h = 12

Panel A. Candidate Predictors (Number Significant/Total Examined)

PREDICTORS_FROM_EXISTING_PAPERS 6/51 7/51 6/51 10/51
RAW_PREDICTORS 19/137 21/137 30/137 37/137
RAW_PREDICTORS þ FIRST_DIFF 27/253 27/253 36/253 43/253
ALL_POSSIBLE_PREDICTORS 34/269 43/269 45/269 54/269

Panel B. By Subcategory (Number Significant/Total Examined)

BEST_CROSS-SECTIONAL 1/20 1/20 1/20 2/20
OPINION 4/38 3/38 2/38 3/38
VALUATION 0/24 0/24 2/24 6/24

Panel C. By Aggregation Method (Number Significant/Total Examined)

EQUAL-WEIGHTED_PREDICTORS 10/125 8/125 14/125 17/125
VALUE-WEIGHTED_PREDICTORS 17/128 19/128 22/128 26/128

1186 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109022000266  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109022000266


TABLE 3

Best In-Sample Predictive Regression Results Using Romano and Wolf p-Values

Table 3 reports the ordinary least squares estimate of β, p-values, and the R2 statistic from in-sample predictive regression models of the
form:

r t :tþh = αþβxt þ εt :tþh fort =1,…,T �h,

where r t :tþh = 1=hð Þ r tþ1 þ⋯þ r tþhð Þ, rt is the continuously compounded S&P 500 return for month t from CRSP including dividends and
excess of themonthly risk-free rate from Goyal andWelch (2008), h indicates the forecast horizon in months, and xt is the predictor variable
shown in columns 2 and 9. For each horizon, we run 253 regressions using the variables in the RAW_PREDICTORS þ FIRST_DIFF set of
predictors. Panel A displays results for the 1-month horizon, Panel B shows the 3-month horizon, Panel C shows the 6-month horizon, and
Panel D shows the 12-month horizon. Within each panel, predictors are sorted by their Romano andWolf p-value and then their unadjusted
p-value. We report all predictors that have unadjusted p-values less than 10% for a given horizon. Unadjusted p-values are shown in
columns 6 and 13 and Romano and Wolf (2016) adjusted p-values are shown in columns 7 and 14.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Rank Predictor
EW

or VW bβ (%)R2

Raw RW

Rank Predictor
EW

or VW bβ (%)R2

Raw RW

p-Value p-Value

Panel A. 1 Month Horizon

1 Z_SCORE VW �0.0056 1.6 0.00 0.83 15 AMIHUD’S_MEASURE EW 0.0026 0.4 0.03 1.00
2 ASSET_TURNOVER VW 0.0053 1.5 0.00 0.89 16 CASH_FLOW_VARIANCE EW 0.0034 0.6 0.07 1.00
3 Z_SCORE EW �0.0052 1.4 0.00 0.91 17 ΔREC. þ ACCRUAL EW �0.0046 1.1 0.03 1.00
4 LT_REVERSAL VW �0.0046 0.7 0.01 0.92 18 SPREADS EW 0.0026 0.4 0.06 1.00
5 ΔNC_OP._ASSETS VW �0.0036 0.7 0.03 0.98 19 CAPEX_GROWTH VW �0.0032 0.5 0.07 1.00
6 STOCK_SPLIT EW �0.0026 0.4 0.10 1.00 20 SEO VW �0.0042 0.9 0.01 1.00
7 ΔTAX_TO_ASSETS EW 0.0055 1.6 0.00 1.00 21 ASSET_GROWTH VW �0.0035 0.7 0.02 1.00
8 VOLUME/MV EW �0.0044 1.0 0.05 1.00 22 MOMENT_LT_REVERSAL VW 0.0025 0.2 0.06 1.00
9 COSKEWNESS EW 0.0036 0.7 0.04 1.00 23 SUSTAINABLE_GROWTH VW �0.0031 0.5 0.06 1.00
10 SECURE/TOTAL_

DEBT
VW 0.0040 0.9 0.03 1.00 24 COSKEWNESS VW 0.0037 0.8 0.07 1.00

11 SPINOFFS VW �0.0040 0.9 0.05 1.00 25 %OPERATING_ACCRUAL VW �0.0038 0.9 0.10 1.00
12 PENSION_FUNDING VW �0.0035 0.7 0.01 1.00 26 FORECAST_DISPERSION VW 0.0032 0.6 0.04 1.00
13 IPOS VW 0.0035 0.7 0.05 1.00 27 ΔREC. þ ACCRUAL VW �0.0049 1.3 0.05 1.00
14 TARGET_PRICE EW �0.0054 1.7 0.05 1.00

Panel B. 3 Month Horizon

1 Z_SCORE VW �0.0055 4.6 0.00 0.33 15 SPREADS VW 0.0028 1.2 0.06 0.99
2 ASSET_TURNOVER VW 0.0056 4.7 0.00 0.33 16 ABN._ANALYST_

INTENSE
EW �0.0026 1.0 0.01 1.00

3 LT_REVERSAL VW �0.0048 2.2 0.02 0.41 17 REVERSE_SPLIT EW �0.0020 0.6 0.08 1.00
4 Z_SCORE EW �0.0046 3.1 0.00 0.69 18 ΔTAX_TO_ASSETS EW 0.0044 2.9 0.00 1.00
5 SEO VW �0.0045 3.1 0.00 0.72 19 VOLUME VW �0.0020 0.4 0.09 1.00
6 TARGET_PRICE EW �0.0062 6.0 0.01 0.84 20 INVENTORY_GROWTH VW �0.0023 0.8 0.08 1.00
7 ΔNC_OP._ASSETS VW �0.0033 1.8 0.04 0.84 21 SECURE/TOTAL_DEBT VW 0.0021 0.7 0.08 1.00
8 ASSET_GROWTH VW �0.0036 2.1 0.01 0.85 22 DIVIDEND_OMISSION EW 0.0026 1.0 0.07 1.00
9 COSKEWNESS VW 0.0036 2.1 0.04 0.85 23 SPREADS EW 0.0024 0.9 0.05 1.00
10 %OPERATING_

ACCRUAL
VW �0.0045 3.4 0.05 0.93 24 REVERSE_SPLIT VW 0.0028 1.3 0.08 1.00

11 SUSTAINABLE_
GROWTH

VW �0.0033 1.7 0.03 0.95 25 ACCRUALS VW 0.0029 1.3 0.07 1.00

12 CASH_FLOW_
VARIANCE

EW 0.0033 1.7 0.06 0.99 26 SHARE_ISSUES_PW VW �0.0031 1.4 0.09 1.00

13 CAPEX_GROWTH VW �0.0032 1.6 0.06 0.99 27 MOMENT_LT_REVERSAL VW 0.0022 0.4 0.08 1.00
14 ΔREC. þ ACCRUAL VW �0.0037 2.1 0.06 0.99

Panel C. 6 Month Horizon

1 ASSET_TURNOVER VW 0.0059 9.7 0.00 0.07 19 VOLUME_TREND EW 0.0032 3.0 0.08 0.94
2 Z_SCORE VW �0.0057 9.1 0.00 0.10 20 SPREADS EW 0.0026 2.0 0.01 0.94
3 LT_REVERSAL VW �0.0049 4.6 0.00 0.13 21 REVERSE_SPLIT VW 0.0029 2.6 0.01 0.94
4 Z_SCORE EW �0.0044 5.2 0.00 0.46 22 MOMENT-REVERSE VW �0.0026 1.2 0.07 0.94
5 ASSET_GROWTH VW �0.0037 3.9 0.00 0.60 23 ΔSALES-ΔINVENTORY EW �0.0026 2.0 0.04 0.95
6 SPREADS VW 0.0035 3.7 0.00 0.61 24 SHARE_ISSUES_PW VW �0.0028 2.1 0.07 0.95
7 ΔNC_OP._ASSETS VW �0.0032 3.1 0.03 0.64 25 R&D/MV EW 0.0026 2.0 0.07 0.96
8 SUSTAINABLE_

GROWTh
VW �0.0036 3.8 0.01 0.64 26 CASH_FLOW_VARIANCE EW 0.0029 2.6 0.05 0.96

9 %OPERATING_
ACCRUAL

VW �0.0047 6.7 0.02 0.66 27 DIVIDEND_OMISSION EW 0.0021 1.3 0.09 0.99

10 SEO VW �0.0038 4.0 0.01 0.73 28 ORG._CAPITAL EW 0.0023 1.5 0.07 0.99
11 TARGET_PRICE EW �0.0052 7.0 0.01 0.90 29 PROFIT_MARGIN VW 0.0025 1.7 0.09 0.99
12 ΔTAX_TO_ASSETS EW 0.0048 6.0 0.00 0.92 30 ABN._ANALYST_

INTENSE
EW �0.0012 0.4 0.05 1.00

13 ΔCAPEX-
ΔIND_CAPEX

EW �0.0029 2.4 0.00 0.92 31 SHARE_ISSUES_DT EW �0.0021 1.2 0.05 1.00

14 CAPEX_GROWTH VW �0.0031 3.0 0.06 0.92 32 CASH_TO_ASSETS VW 0.0014 0.6 0.04 1.00
15 ACCRUALS VW 0.0029 2.4 0.03 0.92 33 ΔTAX_TO_ASSETS VW 0.0028 2.0 0.09 1.00
16 ΔCAPEX-

ΔIND_CAPEX
VW �0.0029 2.5 0.02 0.92 34 SHARE_ISSUES_DT VW �0.0017 0.8 0.06 1.00

17 PRICE VW �0.0028 1.4 0.09 0.92 35 ΔSALES-ΔSG&A EW 0.0019 1.0 0.09 1.00
18 COSKEWNESS VW 0.0027 2.2 0.06 0.93 36 CASH_FLOW_VARIANCE VW 0.0020 1.2 0.10 1.00

(continued on next page)

Engelberg, McLean, Pontiff, and Ringgenberg 1187

https://doi.org/10.1017/S0022109022000266  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109022000266


In Panel B of Table 2, we examine three subcategories of the 253 variables in
our main specification. The first two subcategories, VALUATION and OPINION,
are motivated by economic theory. The VALUATION subcategory is composed of
variables that are a function of discount rates, so theory suggests that they should be
related to returns in a time-series setting (Lewellen (2004), Kelly and Pruitt (2013)).
The OPINION subcategory of predictors consists of variables like institutional
trading and analyst upgrades, which can be motivated with the sentiment explana-
tion of Baker and Wurgler (2006) or with the information explanation of Seyhun
(1988). Finally, we examine a third subcategory, BEST_CROSS-SECTIONAL,
defined as the 10 most statistically significant anomalies in the cross-sectional
literature. Several papers find a reduction of cross-sectional return predictability
in recent periods (e.g., McLean and Pontiff (2016), Green et al. (2017)). If the
cross-sectional predictors we start with are only weakly related to returns in the
cross-section, then they may lead to weak performance in our time-series tests.
Accordingly, we examine a subcategory that focuses on the best performers in the
cross-sectional literature.

When we examine the three subcategories defined above, the results are
similar. Interestingly, the results are generally weaker for the VALUATION and
OPINION categories than for the entire set of predictors. Since valuation ratios may
be a function of discount rates, they are arguably the most likely cross-sectional
predictors to work in a time-series setting (Kelly and Pruitt (2013)). Indeed, several
different VALUATION predictors have been studied in the existing market risk
premium literature, notably the dividend-to-price and earnings-to-price ratios.

TABLE 3 (continued)

Best In-Sample Predictive Regression Results Using Romano and Wolf p-Values

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Rank Predictor
EW

or VW bβ (%)R2

Raw RW

Rank Predictor
EW

or VW bβ (%)R2

Raw RW

p-Value p-Value

Panel D. 12 Month Horizon

1 Z_SCORE VW �0.0058 18.5 0.00 0.02 23 ΔSALES-ΔINVENTORY EW �0.0022 2.8 0.03 0.95
2 ASSET_TURNOVER VW 0.0058 17.8 0.00 0.03 24 MOMENT-REVERSE VW �0.0022 1.7 0.06 0.95
3 LT_REVERSAL VW �0.0044 7.3 0.00 0.13 25 R&D/MV EW 0.0022 2.5 0.08 0.97
4 Z_SCORE EW �0.0043 9.8 0.00 0.28 26 CASH_FLOW_

VARIANCE
EW 0.0023 3.0 0.05 0.97

5 SUSTAINABLE_
GROWTH

VW �0.0039 8.3 0.00 0.30 27 REVERSE_SPLIT VW 0.0022 2.8 0.03 0.97

6 ΔNC_OP._ASSETS VW �0.0035 6.8 0.01 0.31 28 EXCHANGE_SWITCH VW �0.0019 2.1 0.04 0.97
7 ASSET_GROWTH VW �0.0037 7.7 0.00 0.36 29 COSKEWNESS VW 0.0019 2.1 0.06 0.97
8 SPREADS VW 0.0035 7.2 0.00 0.37 30 SHARE_ISSUES_DT EW �0.0018 1.8 0.03 0.99
9 PRICE VW �0.0036 4.1 0.02 0.45 31 E/P EW �0.0017 1.7 0.08 0.99
10 %OPERATING_ACCRUAL VW �0.0046 12.2 0.01 0.47 32 AMIHUD’S_MEASURE EW 0.0018 1.8 0.09 0.99
11 CAPEX_GROWTH VW �0.0034 7.1 0.02 0.63 33 HYBRID_COVAR.

_RISK
VW 0.0018 2.0 0.10 0.99

12 ΔCAPEX-ΔIND_CAPEX EW �0.0030 5.2 0.00 0.70 34 M/B_AND_ACCRUALS VW �0.0020 2.3 0.09 0.99
13 SPREADS EW 0.0027 4.2 0.00 0.77 35 STOCK_SPLIT EW �0.0017 1.8 0.08 1.00
14 ΔCAPEX-ΔIND_CAPEX VW �0.0028 4.6 0.00 0.77 36 ΔTAX_TO_ASSETS EW 0.0029 4.0 0.01 1.00
15 ORG._CAPITAL EW 0.0030 4.9 0.01 0.79 37 COSKEWNESS EW 0.0010 0.6 0.03 1.00
16 EMPLOYEE_GROWTH VW �0.0027 4.3 0.04 0.80 38 E/P VW 0.0008 0.4 0.04 1.00
17 VOLUME_TREND EW 0.0030 5.0 0.03 0.86 39 CF/MV VW 0.0007 0.3 0.06 1.00
18 LT_REVERSAL EW �0.0025 2.3 0.05 0.86 40 ΔSALES-ΔSG&A EW 0.0016 1.5 0.09 1.00
19 SHARE_ISSUES_PW VW �0.0027 4.0 0.06 0.87 41 Δ#INSTITUT.

_OWNERS
VW �0.0015 1.3 0.09 1.00

20 ΔASSET_TURN VW 0.0028 4.2 0.02 0.87 42 ΔPRICE_FORECAST VW �0.0011 0.5 0.10 1.00
21 TARGET_PRICE EW �0.0043 8.7 0.03 0.92 43 MOMENT_LT_

REVERSAL
VW 0.0015 0.8 0.03 1.00

22 SEO VW �0.0026 3.6 0.08 0.93
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Our results suggest these predictors are an exception, rather than the norm. Across
all horizons, only 8% of VALUATION predictors and 8% of OPINION predictors
are statistically significant, vs. 13% across all predictors.

Whenwe examine the results for the “best” cross-sectional variables, there is
some evidence of predictability, but again, the results are weaker than when we
examine all possible predictors. For the BEST_CROSS-SECTIONAL predictors
(those with the top 10 highest cross-sectional t-statistics), 10% are statistically
significant at the 1-year horizon. The results are generally consistent with the
idea that the best cross-sectional variables forecast returns because they contain
information about the systematic component of returns. As a result, these vari-
ables also aggregate to form good time-series predictors. However, the fact that
the subset of BEST_CROSS-SECTIONAL predictors is not stronger than the
entire set suggests that good cross-sectional predictors are not necessarily good
time-series predictors.

Finally, we examine the in-sample results broken out by the different
methodologies used to construct the aggregate predictor variables. Specifically,
in Panel C of Table 2, we present results for value- or equal-weighted average
predictors. The findings are largely consistent across the two methodologies:
across all predictors, 13% are statistically significant at the 1-month horizon when
value-weighted and 8% are statistically significant at the 1-month horizon when
equal-weighted. As the horizon extends, the value-weighted predictors appear to
perform slightly better, but the results are generally similar across the two groups.
For example, across all predictors, 20% are statistically significant at the annual
horizonwhen value-weighted vs. 14%when equal-weighted. On the surface, before
a deeper consideration ofmultiple hypothesis testing is considered, Table 2 suggests
that some cross-sectional anomaly variables predict the market risk premium.

B. Multiple Hypothesis Testing

The results in Table 2 examine as many as 269 different regression models, so
the results are subject to concerns about data snooping. Put differently, with
269 different regression models, some tests will likely be statistically significant
due to type I errors. Fortunately, a growing literature shows how to adjust p-values
to account for the number of models considered.

White (2000) develops a RCB to correct for data-snooping.While a number of
approaches exist to adjust p-values for the bias that results frommultiple hypothesis
testing, theWhite approach has several desirable properties. First, it uses a bootstrap
procedure to estimate the dependence structure of the p-values across all considered
models. In contrast, the Bonferroni, Dunn (1961) and Holm (1979) approaches
assume the worst-case dependence structure. This causes them to be overly con-
servative in that they do not reject the null hypothesis enough when the null is false.
Because it estimates the actual dependence structure, the White RCB has greater
power than the Bonferroni and Holm methods. Second, the White procedure is
particularly suited to the application of return predictability regressions because the
procedure uses a loss function that compares the performance of a predictor to a
benchmark model. Economic theory suggests the equity risk premium should be
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positive; as a result, a strategy that simply predicts positive returns all the time
would frequently be correct. Accordingly, the return predictability literature often
compares the forecast accuracy of a predictive variable to the so-called “prevailing
mean” model that uses the prevailing mean return as the forecast of next period’s
equity risk premium. The White RCB then uses a loss function that compares
the mean squared forecast error (MSFE) for each predictor to the MSFE from a
benchmark model that uses the prevailing mean return.

Despite these advantages, the White procedure does have a drawback: if the
null is rejected, it indicates that the best predictor examined is better than the
benchmark, but it does not reveal whether the other predictors are better. Put
differently, the White procedure does not test whether the second-best predictor,
or the kth best predictor, is better than the benchmark. Accordingly, Romano and
Wolf (2005), (2016) develop a step-down procedure that extends the White
procedure to calculate whether individual predictors are better than the bench-
mark.20 The resulting procedure controls the familywise error rate and provides
p-values for each individual predictor.

This is the first paper to use this procedure to evaluate the predictability of the
market risk premium. The closest related papers are Sullivan, Timmerman, and
White (1999) and Chordia, Goyal, and Saretto (2020). Sullivan, Timmerman, and
White (1999) apply the White procedure to examine the performance of technical
trading strategies in predicting the equity risk premium. Sullivan et al. find no
evidence that technical trading strategies generate portfolio performance that out-
performs a benchmark. More recently, Chordia et al. (2020) examine the perfor-
mance of trading strategies in the cross-section and they use several methods
to correct for multiple hypothesis testing bias, including the Romano and Wolf
(2005), (2016) procedure. They find that most strategies studied in the extant
literature are not significant after adjusting for multiple hypothesis testing. Our
paper unifies these two literatures by providing the first evidence on the perfor-
mance of time-series predictors formed from cross-sectional variables.

To further explore the robustness of our findings, in the Supplementary
Material we also examine p-values calculated using the Benjamini and Yekutieli
(2001) procedure, which controls the false discovery rate while allowing for
arbitrary dependence. On average, false discovery rate methods have better power
to reject false null hypotheses, but this comes at a cost: they are more likely to
reject true null hypotheses. In other words, the Benjamini and Yekutieli (2001)
procedure is less conservative than the Romano and Wolf (2016) procedure as it
allows for more false positives.21 Nonetheless, in all analyses our main conclu-
sions are unchanged when we use the Benjamini and Yekutieli (2001) procedure
in place of the Romano and Wolf (2016) procedure.

20See Romano and Wolf (2016) for a detailed discussion of the procedure and see Section C of the
SupplementaryMaterial for a detailed overview of our implementation of the procedure.We thankAllan
Timmermann for helpful conversations about the White (2000) and Romano and Wolf (2005) pro-
cedures.

21Specifically, the Romano and Wolf (2016) procedure controls the probability of having any false
positives while the Benjamini and Yekutieli (2001) procedure controls the expected proportion of false
positives, so it allows for more false positives as you consider more predictors.
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C. In-Sample Results Adjusted for Multiple Hypothesis Testing

Table 3 reports detailed estimates for individual predictors that are statistically
significant before adjusting for multiple testing. For brevity, we present results for
only our main specification, which examines 253 candidate predictors, however the
results are similar for other specifications. The table presents coefficient estimates,
R2 values, and both raw and Romano and Wolf (2016) adjusted p-values. Here
we reach the main conclusion of the paper: most of the cross-sectional variables
that appear to be statistically significant when examined in isolation are no
longer statistically significant when examined in the context of all cross-sectional
predictors.

For example, at the 1-month and 3-month horizons, none of the predictors
remain significant at the 10% level when computing Romano and Wolf (2016)
adjusted p-values compared to 27 when computing individual p-values (Table 2).
At the 6-month horizon, there are 2 predictors that are significant at the 10% level
(compared to 36 in Table 2) and at the 12-month horizon there are 2 predictors
significant at the 10% level (compared to 43 in Table 2). Moreover, the predictors
with remarkable statistical significance when examined in isolation, no longer
appear to be so stellar when examined among the set of 253 predictors.

In terms of economic significance, a number of predictors are noteworthy.
Z_SCORE and ASSET_TURNOVER, with R2 values of 4.6% and 4.7% shown in
column 5 of Panel B in Table 2, are among the best predictors at the 3-month
horizon.Moreover, several other predictors haveR2 values exceeding 3% including
%OPERATING_ACCRUAL and TARGET_PRICE. Although these R2 values
might seem small in absolute magnitude, Zhou (2010) notes that R2 values from
predictive regressions are typically small in absolute magnitude as stock returns are
difficult to forecast. Accordingly, Zhou (2010) builds on the insights of Ross (2005)
to construct a mathematical bound on the maximum R2 that can exist under no
arbitrage conditions. Using consumption growth rates as a state variable, Zhou’s
bounds imply a maximum R2 at the monthly horizon of between 0.079% and
0.177%22 and Huang and Zhou (2017) show that the quarterly R2 is bound by at
most 3.74%, depending on the specification, and in most cases it is less than 3%. In
light of this, the return predictability of some Table 3 predictors is economically
large.23

In addition, we note that many of the best predictors at the 3-month horizon are
also good predictors at the 6-month and 12-month horizons. At the 12-month
horizon, a number of the predictors have impressive R2 values of 10% or greater

22The bounds developed in Zhou (2010) depend on the choice of a state variable. We do not take a
stance on state variables in this article, we simply note that the R2 values we document appear
economically meaningful relative to the example bounds presented in Zhou (2010).

23We also construct predictors based on sets of cross-sectional predictors using principal component
analysis (PCA). PCA requires nonmissing observations for each predictor; as a result, we are not able to
utilize the entire set of predictors until 1999. In untabulated results, the first principal component
extracted from all equal-weighted predictors and value-weighted predictors exhibits strong return
predictability over the period 1999–2017, before adjusting for multiple testing. However, if we estimate
the PCA using the set of variables with data starting in 1980, the evidence becomesmixed; we find weak
evidence of return predictability for value-weighted predictors, but no evidence of return predictability
for equal-weighted predictors. We thank Bryan Kelly for this suggestion.
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including Z_SCORE, ASSET_TURNOVER, and %OPERATING_ACCRUAL.
For example, Z_SCORE exhibits a remarkable R2 of 18.5% at the 12-month
horizon. However, despite some impressive results for individual predictors, after
applying the Romano and Wolf (2005), (2016) procedure only Z_SCORE and
ASSET_TURNOVER are statistically significant.

Table 4 summarizes the results after applying the Romano and Wolf (2005),
(2016) procedure. In Panel A, our main specification (RAW_PREDICTORS þ
FIRST_DIFF) exhibits 0, 0, 2, and 2 statistically significant predictors at the
1- month, 3- month, 6- month, and 12-month horizons. One possible critique is
that these results include predictors that should not have been included, and this
causes a failure to reject a false null hypothesis (a type II error). To address this
concern, we also present results for a variety of different sets of predictors and
subsamples. In our main specification we use only the raw or first-differenced
version of each variable, yet some existing papers in the time-series return
predictability literature examine stochastically detrended variables. Accordingly,
in Panel A, we examine all possible predictors which add predictors that
require stochastic detrending. Consistent with Rapach et al. (2016) we find that

TABLE 4

Summary of In-Sample Performance Using Romano and Wolf p-Values

Table 4 displays a count of the number of predictive variables that are statistically significant at the 10% level or better, as a
fraction of the total number of variables examined. We calculate statistical significance using Romano and Wolf adjusted
p-values. For each anomaly, we estimate an in-sample predictive regression of the form:

r t :tþh = αþβxt þ εt :tþh fort =1,…,T �h,

where r t :tþh = 1=hð Þ r tþ1 þ⋯þ r tþhð Þ, rt is the continuously compounded S&P 500 return for month t from CRSP including
dividends and excess of the monthly risk-free rate from Goyal and Welch (2008), h indicates the forecast horizon in months,
and xt is one of the 140 predictor variables. To construct time-series predictors out of cross-sectional predictors, we calculate
the value-weighted and equal-weighted mean across all stocks on each date resulting in 280 possible predictors. In Panel A,
we consider four different definitions: i) PREDICTORS_FROM_EXISTING_PAPERS uses only those variables that are used in
the existing literature on time-series return predictability. ii) RAW_PREDICTORS examines every possible variable for which
we reject the null that the raw variable is nonstationary. iii) RAW_PREDICTORS þ FIRST_DIFF examines every possible
variable however if a variable is not stationary in raw form, we then examinewhether it is nonstationary in first-differenced form.
If we fail to reject the null that the first differenced variable is nonstationary, we drop the variable. iv) ALL_POSSIBLE_
PREDICTORS examines every possible variable. If we fail to reject the null that a variable is nonstationary, we calculate
deviations froma linear trendmodel. If we fail to reject the null that the linearly detrendedvariable is nonstationary, wecalculate
the first-difference. If we fail to reject the null that the first differenced variable is nonstationary, wedrop the variable. In Panel B,
we examine subsamples of the variables in RAW_PREDICTORSþ FIRST_DIFF formed on the 10 most statistically significant
cross-sectional predictors (BEST_CROSS-SECTIONAL), and two different groupings based on the categories in McLean
and Pontiff (2016): i) OPINION and ii) VALUATION. In Panel C, we examine EQUAL-WEIGHTED vs. VALUE-WEIGHTED_
PREDICTORS for the variables in RAW_PREDICTORS þ FIRST_DIFF

Return Horizon (h)

Predictive Variable h = 1 h = 3 h = 6 h = 12

Panel A. Candidate Predictors (Number Significant/Total Examined)

PREDICTORS_FROM_EXISTING_PAPERS 0/51 0/51 1/51 3/51
RAW_PREDICTORS 0/137 0/137 2/137 2/137
RAW_PREDICTORS þ FIRST_DIFF 0/253 0/253 2/253 2/253
ALL_POSSIBLE_PREDICTORS 0/269 0/269 1/269 3/269

Panel B. By Subcategory (Number Significant/Total Examined)

BEST_CROSS-SECTIONAL 0/20 0/20 1/20 1/20
OPINION 0/38 0/38 0/38 0/38
VALUATION 0/24 0/24 0/24 1/24

Panel C. By Aggregation Method (Number Significant/Total Examined)

EQUAL-WEIGHTED_PREDICTORS 0/125 0/125 0/125 0/125
VALUE-WEIGHTED_PREDICTORS 0/128 0/128 3/128 2/128
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detrended short interest is one of the best predictors at the 3-month, 6-month, and
12-month horizons.24 However, after applying the Romano and Wolf procedure,
we find that none of the 269 predictors are statistically significant at the 1-month
and 3-month horizons and only 3 of the variables are statistically significant at the
12-month horizon.

Similarly, we examine two other sets of predictors (RAW_PREDICTORS and
PREDICTORS_FROM_EXISTING_PAPERS) and find little evidence of return
predictability. In sum, the three alternate sets of predictors in Panel A of Table 4
provide bounds on the possible set of variables to consider. At a minimum,
we know the profession has examined the 51 variables in the PREDICTORS_
FROM_EXISTING_PAPERS so these variables have to be included in a multiple
testing framework. At a maximum, the 269 predictors in ALL_POSSIBLE_
PREDICTORS represent all the cross-sectional variables that could possibly be
examined. The fact that our results are unchanged across these two extremes
shows that our conclusions are not sensitive to the number of variables considered.
Moreover, whenwe examine the results by subcategory in Panel B, the results again
show zero statistically significant predictors at the 1-month horizon and between
0 and 1 statistically significant predictors at the 12-month horizon.

Finally, Table IA.I of the Supplementary Material summarizes the results after
applying the Benjamini and Yekutieli (2001) procedure. As expected, there are
more statistically significant predictors in Table IA.I of the SupplementaryMaterial
than Table 4, but the overall conclusion is similar. Even though the Benjamini
and Yekutieli (2001) procedure is more permissive than the Romano and Wolf
(2016) procedure, there are relatively few predictors that remain significant. For
example, when we examine predictors from existing papers, we find no evidence of
predictability at the 1-month and 3-month horizons, and only 3 of the 60 predictors
are significant at the 6-month horizon and 4 of the 60 predictors are significant at
the 12-month horizon. Overall, across a wide variety of samples and methodolo-
gies, our conclusion remains unchanged: there is only weak in-sample evidence
that cross-sectional predictors contain information about the systematic portion
of returns.

D. Out-of-Sample Tests

A number of papers note that in-sample tests may overstate predictability due
to the use of information that was not known ex ante (e.g., Cooper, Gutierrez, and
Marcum (2005), Goyal and Welch (2008)). Accordingly, in this section, we revisit
each of our tests using out-of-sample forecasting regressions. We again run predic-
tive regressions of the form:

rt:tþh = αtþβtxtþ εt:tþh for t = 1,…,T �h,(7)

where rt:tþh = 1=hð Þ rtþ1þ⋯þ rtþhð Þ, rt is the excess return on the S&P500, and xt
is the predictor variable. However, now we estimate the model separately for each

24Detailed in-sample results for the set of all possible predictors are shown in Table IA.III of the
Supplementary Material and out-of-sample results are shown in Table IA.IV of the Supplementary
Material.
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time period, using only information that was available at each date. As such, we
estimate new parameter estimates for αt and βt at each point in time. If the relation
between the predictor variable and the equity risk premium is stable over time, then
this out-of-sample approach should produce the same results as the in-sample
analysis discussed in Section IV.A. If the relation between the predictor variable
and the equity risk premium is not stable, the out-of-sample tests may lead to a
different conclusion.

As previously discussed, the sample length for each predictive variable
depends on data availability. For the out-of-sample tests, we use the first 10 years
of data to train the model before we make our first forecast. As before, we start by
summarizing the results across all specifications. Table 5 provides a summary of
the performance of the candidate predictors. To make inferences, we calculate
the out-of-sample R2

OS statistic defined as in Campbell and Thompson (2008).25

To calculate the out-of-sample R2
OS, we use the prevailing mean equity risk

TABLE 5

Summary of Out-of-Sample Performance Using Unadjusted p-Values

Table 5 displays a count of the number of predictive variables that are statistically significant at the 10% level or better, as a
fraction of the total number of variables examined. We calculate statistical significance using bootstrap p-values. For each
anomaly, we estimate an out-of-sample predictive regression of the form:

r t :tþh = αþβxt þ εt :tþh fort =1,…,T �h,

where r t :tþh = 1=hð Þ r tþ1 þ⋯þ r tþhð Þ, rt is the continuously compounded S&P 500 return for month t from CRSP including
dividends and excess of the monthly risk-free rate from Goyal and Welch (2008), h indicates the forecast horizon in months,
and xt is one of the 140 predictor variables. We estimate expanding rolling window regressions using only information
available on each date. To construct time-series predictors out of cross-sectional predictors, we calculate the value-
weighted and equal-weighted mean across all stocks on each date resulting in 280 possible predictors. In Panel A, we
consider four different definitions: i) PREDICTORS_FROM_EXISTING_PAPERS uses only those variables that are used in the
existing literature on time-series return predictability. ii) RAW_PREDICTORS examines every possible variable for which we
reject the null that the raw variable is nonstationary. iii) RAW_PREDICTORS þ FIRST_DIFF examines every possible variable
however if a variable is not stationary in raw form, we then examine whether it is nonstationary in first-differenced form. If we fail
to reject the null that the first differenced variable is nonstationary, we drop the variable. iv) ALL_POSSIBLE_PREDICTORS
examines every possible variable. If we fail to reject the null that a variable is nonstationary, we calculate deviations from a
linear trend model. If we fail to reject the null that the linearly detrended variable is nonstationary, we calculate the first-
difference. If we fail to reject the null that the first differenced variable is nonstationary, we drop the variable. In Panel B, we
examine subsamples of the variables in RAW_PREDICTORSþ FIRST_DIFF formed on the 10 most statistically significant
cross-sectional predictors (BEST_CROSS-SECTIONAL), and two different groupings based on the categories in McLean
and Pontiff (2016): i) OPINION and ii) VALUATION. In Panel C, we examine EQUAL-WEIGHTED vs. VALUE-WEIGHTED_
PREDICTORS for the variables in RAW_PREDICTORS þ FIRST_DIFF

Return Horizon (h)

Predictive Variable h = 1 h = 3 h = 6 h = 12

Panel A. Candidate Predictors (Number Significant/Total Examined)

PREDICTORS_FROM_EXISTING_PAPERS 0/51 5/51 9/51 11/51
RAW_PREDICTORS 4/137 24/137 32/137 36/137
RAW_PREDICTORS þ FIRST_DIFF 7/253 30/253 39/253 44/253
ALL_POSSIBLE_PREDICTORS 7/269 32/269 41/269 45/269

Panel B. By Subcategory (Number Significant/Total Examined)

BEST_CROSS-SECTIONAL 0/20 2/20 3/20 3/20
OPINION 1/38 3/38 1/38 0/38
VALUATION 0/24 0/24 0/24 1/24

Panel C. By Aggregation Method (Number Significant/Total Examined)

EQUAL-WEIGHTED_PREDICTORS 3/125 10/125 16/125 17/125
VALUE-WEIGHTED_PREDICTORS 4/128 20/128 23/128 27/128

25We use the unconstrained out-of-sample R2 from Campbell and Thompson (2008) (i.e., we do not
impose any sign restrictions).
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premium, at each date, as our benchmark model and we use the Clark and West
(2007) statistic to assess statistical significance.26 Panel A summarizes statistical
significance across the four different sets of predictors: i) PREDICTORS_FROM_
EXISTING_PAPERS, ii) RAW_PREDICTORS, iii) RAW_PREDICTORS þ
FIRST_DIFF, and iv) ALL_POSSIBLE_PREDICTORS. Recall that in Table 2,
the in-sample evidence was strongest at the annual horizons, however even at the
1-month horizon approximately 11% of the RAW_PREDICTORS þ FIRST_
DIFF predictors were statistically significant at the 10% level or better. In con-
trast, the out-of-sample evidence is weaker. At the 1-month horizon, less than 3%
of the variables are statistically significant.

In Panel B of Table 5, we examine three subcategories of the 253 variables in
ourmain specification (BEST_CROSS-SECTIONAL,OPINION, andVALUATION)
and the results do not look much better. Again, the VALUATION and OPINION
subcategories appear to be worse than the full sample of predictors, despite the
economic motivation for VALUATION predictors and their popularity in the extant
literature.Moreover, while the BEST_CROSS-SECTIONAL category continues to
show some evidence of predictability at longer horizons, none of the predictors is
significant at the 1-month horizon.

The remaining panels of Table 5 examine the out-of-sample results broken out
by the different methodologies used to construct the aggregate predictor variables.
Specifically, Panel C examines the results when we calculate the aggregate predic-
tor using a value-weighted average or an equal-weighted average, respectively.
Again, the results look similar regardless of the methodology used to construct the
predictors. Only 4 of 128 value-weighted predictors are significant at the 1-month
horizon and only 3 of 125 equal-weighted predictors are significant. Overall, the
results show that cross-sectional variables contain some systematic information at
longer horizons, but not at short horizons. Taken together, it is tempting to conclude
that some cross-sectional predictors can be used to form aggregate predictors,
suggesting they contain information about the systematic component of returns.
However, our out-of-sample analyses consider more than 253 different specifica-
tions. In the next section, we revisit our results after accounting for the number of
hypotheses tested.

E. Multiple Hypothesis Testing

As before, we ask whether our out-of-sample tests show evidence of return
predictability after accounting for possible data snooping biases. To do this, we again
use theRomano andWolf (2016) procedure.27 The procedure follows a similar process
to the in-sample procedure, except we estimate rolling regressions and compare the

26Formally, we test the null hypothesis that the mean square forecast error (MSFE) from the
baseline model is less than or equal to the MSFE from the predictive model vs. the alternative
hypothesis that the MSFE from the benchmark model is greater than the MSFE from the predictive
model (H0 :R2

OS ≤ 0against HA :R2
OS > 0

�
).

27The Romano and Wolf procedure expands the White (2000) RCB to adjust p-values for each
individual predictor. White (2000) shows this procedure is valid for both in-sample and out-of-sample
tests and Sullivan et al. (1999) apply theWhite (2000) procedure to out-of-sample forecasting regressions.
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prediction from these regressions to a rolling average market risk premium. Section B
of the Supplementary Material provides a detailed overview of the procedure.

F. Out-of-Sample Results Adjusted for Multiple Hypothesis Testing

Table 6 displays detailed estimates for individual predictors that are statis-
tically significant before adjusting for multiple testing. The table presents the
time-series mean of each coefficient estimate, the Campbell and Thompson
(2008) out-of-sample R2, and both raw and Romano and Wolf (2016) adjusted
p-values. Interestingly, the out-of-sample R2 values in Table 6 highlight many of
the same predictors that performed well in Table 3 in the in-sample analyses.
Analogous to Table 3, we report the time-series mean of the betas from these
regressions in addition to the out-of-sample R2

OS statistic. Indeed, Z_SCORE and
ASSET_TURNOVER have out-of-sample R2 values that are positive and

TABLE 6

Best Out-of-Sample Predictive Regression Results Using Romano and Wolf p-Values

Table 6 reports the mean of the ordinary least squares estimate of β, p-values, and the Campbell and Thompson (2008)R2
OS statistic from

out-of-sample predictive regression models of the form:

r t :tþh = αþβxt þ εt :tþh fort =1,…,T �h,

where r t :tþh = 1=hð Þ r tþ1 þ⋯þ r tþhð Þ, rt is the continuously compounded S&P 500 return for month t from CRSP including dividends and
excess of the monthly risk-free rate from Goyal and Welch (2008), h indicates the forecast horizon in months, and xt is the predictor
variable in the first column. bβ (column 4) is the time-series mean of the coefficient estimates for each predictor. The Campbell and
ThompsonR2

OS statistic (columns 5 and 12) is calculated as 1minus the proportional reduction in mean squared forecast error (MSFE) at
the h-month horizon for a predictive regression forecast of the S&P 500 log excess return based on the predictor variable in the first
column vis-a-vis the prevailing mean benchmark forecast. For each horizon, we run 253 out-of-sample regressions using the variables in
the RAW_PREDICTORS þ FIRST_DIFF set of predictors. Panel A displays results for the 1-month horizon, Panel B shows the 3-month
horizon, Panel C shows the 6-month horizon, and Panel D shows the 12-month horizon. Within each panel, predictors are sorted by their
Romano and Wolf p-value and then their unadjusted p-value. We report all predictors that have unadjusted p-values less than 10% for
a given horizon. Unadjusted p-values are shown in columns 6 and 13 and Romano and Wolf (2016) adjusted p-values are shown in
columns 7 and 14.

Rank Predictor
EW

or VW bβ (%)R2

Raw RW

Rank Predictor
EW

or VW bβ (%)R2

Raw RW

p-Value p-Value

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Panel A. 1 Month Horizon

1 ASSET_TURNOVER VW 0.0070 0.3 0.04 1.00
2 ΔREC þ ACCRUAL VW �0.0029 1.1 0.04 1.00
3 Z_SCORE EW �0.0043 0.5 0.04 1.00
4 Z_SCORE VW �0.0049 0.7 0.05 1.00
5 ΔTAX_TO_ASSETS EW 0.0065 �0.9 0.06 1.00
6 PENSION_

FUNDING
VW �0.0043 �0.4 0.08 1.00

7 COSKEWNESS EW 0.0045 0.0 0.09 1.00

Panel B. 3 Month Horizon

1 IDIO_RISK VW �0.0015 1.11 0.00 0.99 16 Z_SCORE EW �0.0039 1.43 0.04 1.00
2 VOLUME EW �0.0005 0.57 0.00 1.00 17 EXCHANGE_SWITCH VW �0.0034 �0.91 0.04 1.00
3 ASSET_TURNOVER VW 0.0073 3.83 0.00 1.00 18 Δ#INSTITUT._OWNERS VW 0.0036 �13.43 0.04 1.00
4 ST_REVERSAL EW �0.0002 0.39 0.00 1.00 19 CASH_FLOW_VARIANCE VW 0.0042 �0.03 0.05 1.00
5 ST_REVERSAL VW �0.0007 0.30 0.00 1.00 20 LT_REVERSAL VW �0.0066 �0.61 0.05 1.00
6 Z_SCORE VW �0.0048 3.25 0.01 1.00 21 CASH_FLOW_VARIANCE EW 0.0020 1.09 0.05 1.00
7 LAG_MOMENT VW �0.0013 0.79 0.01 1.00 22 AGE EW 0.0163 �106.82 0.07 1.00
8 MAX VW �0.0014 1.15 0.01 1.00 23 MOMENT_LT_REVERSAL VW 0.0021 0.34 0.08 1.00
9 ABN._ANALYST_

INTENSE
EW �0.0073 �0.11 0.02 1.00 24 AGE VW 0.0019 �0.07 0.08 1.00

10 LAG_MOMENT EW �0.0010 0.61 0.02 1.00 25 REVERSE_SPLIT VW 0.0048 �0.10 0.08 1.00
11 ΔNC_OP._ASSETS VW �0.0013 1.63 0.02 1.00 26 ΔTAX_TO_ASSETS EW 0.0051 2.18 0.08 1.00
12 PRICE VW �0.0040 0.97 0.02 1.00 27 ΔREC. þ ACCRUAL VW �0.0030 1.45 0.09 1.00
13 VOLUME VW �0.0018 0.69 0.03 1.00 28 CAPEX_GROWTH VW �0.0024 1.29 0.09 1.00
14 SIZE EW 0.0000 0.30 0.03 1.00 29 MAX EW �0.0001 0.36 0.09 1.00
15 COSKEWNESS VW 0.0055 1.43 0.03 1.00 30 MOMENT-REVERSE VW �0.0009 0.50 0.10 1.00

(continued on next page)
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economically meaningful at the 3-month, 6-month, and 12-month horizons. Once
again, ASSET_TURNOVER exhibits impressive results with an out-of-sample
R2 value of 17.5% at the 12-month horizon. Because the out-of-sample R2

OS
statistic measures the proportional reduction in MSFE that results from using
the predictor (relative to the benchmark model), its magnitude is also useful
for interpreting the economic significance of these findings. For the variables
listed above, the out-of-sample R2

OS statistic suggests economically large return
predictability.

TABLE 6 (continued)

Best Out-of-Sample Predictive Regression Results Using Romano and Wolf p-Values

Rank Predictor
EW

or VW bβ (%)R2

Raw RW

Rank Predictor
EW

or VW bβ (%)R2

Raw RW

p-Value p-Value

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Panel C. 6 Month Horizon

1 ST_REVERSAL EW 0.0000 0.28 0.00 0.92 21 CASH_FLOW_VARIANCE EW 0.0018 2.39 0.03 0.86
2 VOLUME EW �0.0003 0.90 0.00 1.00 22 LT_REVERSAL EW �0.0028 1.45 0.03 1.00
3 IDIO_RISK VW �0.0020 1.56 0.00 0.98 23 EXCHANGE_SWITCH VW �0.0041 �1.94 0.04 1.00
4 SIZE VW 0.0004 0.39 0.00 1.00 24 REVERSE_SPLIT VW 0.0043 �1.32 0.04 1.00
5 ST_REVERSAL VW 0.0003 0.34 0.00 1.00 25 SPREADS VW 0.0080 �2.32 0.04 1.00
6 ASSET_TURNOVER VW 0.0075 9.63 0.00 1.00 26 IDIO_RISK EW �0.0001 1.31 0.04 1.00
7 MOMENT_LT_

REVERSAL
VW 0.0008 1.18 0.00 1.00 27 MOMENT-REVERSE EW �0.0011 1.19 0.04 1.00

8 VOLUME VW �0.0017 0.69 0.00 1.00 28 AGE VW 0.0019 �0.10 0.05 1.00
9 MOMENT-

REVERSE
VW �0.0024 2.19 0.00 1.00 29 COSKEWNESS VW 0.0046 1.42 0.05 1.00

10 PRICE VW �0.0036 1.88 0.01 1.00 30 DIVIDENDS EW 0.0000 1.01 0.06 1.00
11 MAX EW �0.0014 0.80 0.01 1.00 31 Z_SCORE EW �0.0041 1.91 0.06 1.00
12 MAX VW �0.0024 1.46 0.01 1.00 32 ΔCAPEX-ΔIND_CAPEX VW �0.0037 0.02 0.06 1.00
13 SIZE EW 0.0005 0.23 0.01 1.00 33 PRICE EW �0.0023 0.48 0.06 1.00
14 Z_SCORE VW �0.0050 7.37 0.01 0.95 34 DIVIDENDS VW 0.0000 0.97 0.06 1.00
15 LAG_MOMENT VW �0.0015 1.94 0.01 1.00 35 ΔCAPEX-ΔIND_CAPEX EW �0.0038 �0.07 0.06 1.00
16 LT_REVERSAL VW �0.0064 1.15 0.01 1.00 36 CAPEX_GROWTH VW �0.0026 3.07 0.07 1.00
17 SPREADS EW 0.0120 �1.61 0.02 1.00 37 ΔSALES-ΔINVENTORY EW �0.0042 �4.29 0.08 1.00
18 ΔNC_OP._ASSETS VW �0.0009 3.32 0.02 1.00 38 ASSET_GROWTH VW 0.0003 0.97 0.09 1.00
19 LAG_MOMENT EW �0.0012 1.57 0.02 1.00 39 ABN._ANALYST_

INTENSE
EW �0.0043 �0.66 0.09 1.00

20 CASH_FLOW_
VARIANCE

VW 0.0057 0.26 0.03 1.00

Panel D. 12 Month Horizon

1 VOLUME EW 0.0000 0.25 0.00 0.95 23 MAX EW �0.0003 �0.31 0.03 1.00
2 VOLUME VW �0.0002 0.15 0.00 0.99 24 DIVIDENDS EW 0.0000 1.69 0.03 1.00
3 LAG_MOMENT VW �0.0020 4.36 0.00 1.00 25 DIVIDENDS VW 0.0000 1.68 0.03 1.00
4 SIZE VW 0.0009 �0.19 0.00 1.00 26 Z_SCORE VW �0.0053 15.01 0.03 0.91
5 MOMENT_LT_

REVERSAL
EW 0.0009 3.85 0.00 0.98 27 ΔNC_OP._ASSETS VW �0.0008 7.35 0.03 1.00

6 MOMENT_LT_
REVERSAL

VW 0.0013 4.00 0.00 0.94 28 AGE VW 0.0021 �1.17 0.03 1.00

7 REVERSE_SPLIT VW 0.0028 �2.50 0.00 1.00 29 EXCHANGE_SWITCH VW �0.0040 �2.26 0.04 1.00
8 LAG_MOMENT EW �0.0011 2.90 0.00 1.00 30 MOMENT-REVERSE EW �0.0006 1.06 0.05 1.00
9 PRICE VW �0.0047 2.99 0.00 1.00 31 SUSTAINABLE_GROWTH VW �0.0021 2.31 0.05 1.00
10 MOMENT-

REVERSE
VW �0.0020 2.70 0.00 1.00 32 ΔCAPEX-ΔIND_CAPEX EW �0.0025 2.46 0.05 1.00

11 SPREADS EW 0.0096 1.51 0.00 1.00 33 ΔCAPEX-ΔIND_CAPEX VW �0.0030 0.41 0.07 1.00
12 MAX VW �0.0013 1.08 0.00 1.00 34 CASH_FLOW_VARIANCE VW 0.0062 �0.76 0.07 1.00
13 ASSET_TURNOVER VW 0.0079 17.46 0.00 1.00 35 ORG._CAPITAL EW 0.0027 4.62 0.07 1.00
14 ST_REVERSAL VW 0.0011 �0.95 0.01 1.00 36 VOLUME/MV VW �0.0012 0.02 0.09 1.00
15 ST_REVERSAL EW 0.0010 �1.01 0.01 1.00 37 PRICE EW �0.0030 �0.83 0.09 1.00
16 SPREADS VW 0.0067 1.58 0.01 1.00 38 VOLUME_TREND EW 0.0031 2.61 0.09 1.00
17 SIZE EW 0.0010 �1.30 0.01 1.00 39 MOMENTUM EW 0.0007 �1.55 0.09 1.00
18 LT_REVERSAL VW �0.0052 6.09 0.01 1.00 40 ASSET_GROWTH VW 0.0001 3.07 0.09 1.00
19 LT_REVERSAL EW �0.0025 3.61 0.01 1.00 41 ΔSALES-ΔINVENTORY EW �0.0024 �4.57 0.09 1.00
20 IDIO_RISK VW 0.0005 �0.84 0.01 1.00 42 COSKEWNESS VW 0.0039 0.18 0.09 1.00
21 CAPEX_GROWTH VW �0.0034 7.55 0.02 1.00 43 %OPERATING_ACCRUAL VW �0.0046 9.75 0.10 1.00
22 CASH_FLOW_

VARIANCE
EW 0.0013 4.44 0.02 0.75 44 IPOS VW �0.0018 �1.26 0.10 1.00
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However, many of these conclusions change after adjusting for multiple
testing. Table 7 summarizes the results. We fail to reject the null of no predictability
at all forecasting horizons for all predictors using the Romano and Wolf (2016)
stepdown procedure. In Panel A, the results are consistent across all of the alternate
samples (PREDICTORS_FROM_EXISTING_PAPERS, RAW_PREDICTORS,
RAW_PREDICTORS þ FIRST_DIFF, and ALL_POSSIBLE_PREDICTORS).
As a result, our conclusions are not sensitive to the number of variables considered
in the Romano and Wolf calculation. In Panels B and C, we again find no
predictability. The conclusions are not significantly different when we examine
false discovery rates, shown in Table IA.II of the Supplementary Material. At
the 1-month and 3-month horizons, none of the predictors are significant in any of
the samples. At longer horizons, we find limited evidence of predictability. For
example, at the 12-month horizon, we find that 2 out of the predictors from the
existing literature remain significant. Overall, the results in this section echo
the conclusions of Section IV.B. Many predictors exhibit strong out-of-sample
t-statistics. However, once multiple hypothesis testing is considered, the results

TABLE 7

Summary of Out-of-Sample Performance Using Romano and Wolf p-Values

Table 7 displays a count of the number of predictive variables that are statistically significant at the 10% level or better, as a
fraction of the total number of variables examined. We calculate statistical significance using Romano and Wolf adjusted p-
values. For each anomaly, we estimate an out-of-sample predictive regression of the form:

r t :tþh = αþβxt þ εt :tþh fort =1,…,T �h,

where r t :tþh = 1=hð Þ r tþ1 þ⋯þ r tþhð Þ, rt is the continuously compounded S&P 500 return for month t from CRSP including
dividends and excess of the monthly risk-free rate from Goyal and Welch (2008), h indicates the forecast horizon in months,
and xt is one of the 140 predictor variables. We estimate expanding rolling window regressions using only information
available on each date. To construct time-series predictors out of cross-sectional predictors, we calculate the value-
weighted and equal-weighted mean across all stocks on each date resulting in 280 possible predictors. In Panel A, we
consider four different definitions: i) PREDICTORS_FROM_EXISTING_PAPERS uses only those variables that are used in the
existing literature on time-series return predictability. ii) RAW_PREDICTORS examines every possible variable for which we
reject the null that the raw variable is nonstationary. iii) RAW_PREDICTORS þ FIRST_DIFF examines every possible variable
however if a variable is not stationary in raw form, we then examine whether it is nonstationary in first-differenced form. If we fail
to reject the null that the first differenced variable is nonstationary, we drop the variable. iv) ALL_POSSIBLE_PREDICTORS
examines every possible variable. If we fail to reject the null that a variable is nonstationary, we calculate deviations from a
linear trend model. If we fail to reject the null that the linearly detrended variable is nonstationary, we calculate the first-
difference. If we fail to reject the null that the first differenced variable is nonstationary, we drop the variable. In Panel B, we
examine subsamples of the variables in RAW_PREDICTORS þ FIRST_DIFF formed on the 10 most statistically significant
cross-sectional predictors (BEST_CROSS-SECTIONAL), and two different groupings based on the categories inMcLean and
Pontiff (2016): i) OPINION and ii) VALUATION. In Panel C, we examine EQUAL-WEIGHTED vs. VALUE-WEIGHTED_
PREDICTORS for the variables in RAW_PREDICTORS þ FIRST_DIFF

Return Horizon (h)

Predictive Variable h = 1 h = 3 h = 6 h = 12

Panel A. Candidate Predictors (Number Significant/Total Examined)

PREDICTORS_FROM_EXISTING_PAPERS 0/51 0/51 0/51 0/51
RAW_PREDICTORS 0/137 0/137 0/137 0/137
RAW_PREDICTORS þ FIRST_DIFF 0/253 0/253 0/253 0/253
ALL_POSSIBLE_PREDICTORS 0/269 0/269 0/269 0/269

Panel B. By Subcategory (Number Significant/Total Examined)

BEST_CROSS-SECTIONAL 0/20 0/20 0/20 0/20
OPINION 0/38 0/38 0/38 0/38
VALUATION 0/24 0/24 0/24 0/24

Panel C. By Aggregation Method (Number Significant/Total Examined)

EQUAL-WEIGHTED_PREDICTORS 0/125 0/125 0/125 0/125
VALUE-WEIGHTED_PREDICTORS 0/128 0/128 0/128 0/128
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are weaker and we find little evidence that cross-sectional predictors contain
systematic information.

V. Conclusion

There is a large literature examining the cross-sectional determinants of stock
returns. Similarly, many time-series variables have been proposed as predictors
of the equity risk premium. While these literatures have evolved largely indepen-
dently, at least 26papers have proposed certain cross-sectional variables as candidates
for time-series predictability. Using various samples of cross-sectional predictors
and accounting for the number of predictors and their interdependence, we examine
the link between cross-sectional and time-series predictability. Our analyses pro-
vide new information on the nature of return predictability.

We find plenty of evidence that, in isolation, certain cross-sectional variables
make great time-series predictors. Some of these variables, like Z_SCORE and
ASSET_TURNOVER, have never been proposed as time-series variables. How-
ever, these results largely disappear once we account for the data snooping bias
arising from the plethora of predictive variables considered. Moreover, when we
examine out-of-sample forecasting regressions, we continue to find little evidence
of return predictability.

If each of our 140 cross-sectional predictors were examined by different
econometricians, it is likely that several articles would be written discussing the
powerful in-sample time-series information in cross-sectional variables. Claims
of predictability in these articles would likely be bolstered by out-of-sample Goyal
and Welch (2008) tests. Indeed, several such articles exist. In this article, we take
a different approach. Once we consider the set of all existing cross-sectional vari-
ables documented in the extant literature, the difference in conclusions is stark. The
evidence no longer suggests that cross-sectional variables contain information
about the systematic component of returns.

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109022000266.
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