
Econometric Theory, 32, 2016, 1–29.
doi:10.1017/S026646661400070X

NONPARAMETRIC
TRANSFORMATION REGRESSION
WITH NONSTATIONARY DATA

OLIVER LINTON
University of Cambridge

QIYING WANG
University of Sydney

We examine a kernel regression estimator for time series that takes account of the
error correlation structure as proposed by Xiao et al. (2003, Journal of the Amer-
ican Statistical Association 98, 980–992). We show that this method continues to
improve estimation in the case where the regressor is a unit root or a near unit root
process.

1. INTRODUCTION

This paper is concerned with estimation of a nonstationary nonparametric cointe-
grating regression. The theory of linear cointegration is extensive and originates
with the work of Engle and Granger (1987) (see also Stock, 1987; Johansen,
1988; Phillips, 1991). Wang and Phillips (2009a, 2009b, 2011) recently consid-
ered the nonparametric cointegrating regression. They analyze the behavior of
the standard kernel estimator of the cointegrating relation/nonparametric regres-
sion when the covariate is nonstationary. They showed that under self (random)
normalization, the estimator is asymptotically normal. See also Phillips and
Park (1998), Karlsen and Tjøstheim (2001), Karlsen, Myklebust, and Tjøstheim
(2007), Schienle (2008), and Cai, Li, and Park (2009).

We extend this work by investigating an improved estimator in the case where
there is autocorrelation in the error term. Standard kernel regression smoothers do
not take account of the correlation structure in the covariate xt or the error process
ut and estimate the regression function in the same way as if these processes were
independent. Furthermore, the variance of such estimators is proportional to the
short-run variance of ut , σ 2

u = var(ut ), and does not depend on the regressor or er-
ror autocovariance functions γx ( j) = cov(xt , xt− j ), γu( j) = cov(ut ,ut− j ), j �= 0.
Although the time series properties do not affect the asymptotic variance of the
usual nonparametric estimators, the error structure can be used to construct a more
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efficient estimator. Xiao, Linton, Carroll, and Mammen (2003) proposed a more
efficient estimator of the regression function based on a prewhitening transforma-
tion. The transform implicitly takes account of the autocorrelation structure. They
obtained an improvement in terms of variance over the usual kernel smoothers.
Linton and Mammen (2008) proposed a type of iterated version of this procedure
and showed that it attains higher efficiency. Both these contributions assumed that
the covariate process was stationary and weakly dependent. We consider here the
case where xt is nonstationary: of the unit root or close to unit root type. We allow
the error process to have some short term memory, which is certainly common-
place in the linear cointegration literature. We show that the Xiao et al. (2003)
procedure can improve efficiency even in this case and one still obtains asymp-
totic normality for the self-normalized estimator, which allows standard inference
methods to be applied. In order to establish our results we require a new strong
approximation result and use this to establish the L2 convergence rate of the usual
kernel estimator.

2. THE MODEL AND MAIN RESULTS

Consider a nonlinear cointegrating regression model

yt = m(xt )+ut , t = 1,2, . . . ,n, (2.1)

where ut = ρut−1 + εt with |ρ| < 1 and xt is a nonstationary regressor. The con-
ventional kernel estimator of m(x) is defined as

m̂(x) =
∑n

s=1 ys K [(xs − x)/h]∑n
s=1 K [(xs − x)/h]

,

where K (·) is a nonnegative real function and the bandwidth parameter h ≡ hn → 0
as n → ∞. Applying the Cochrane–Orcutt transformation to (2.1), we obtain

yt −ρyt−1 +ρm(xt−1) = m(xt )+ εt . (2.2)

It is expected that a two-step estimator of m(x) by using (2.2) may achieve effi-
ciency improvements over the usual estimator m̂(x) that uses (2.1). The strategy
to provide the two-step estimator is as follows:

Step 1: Construct an estimator of ρ by

ρ̂ =
∑n

s=2 ûs ûs−1∑n
s=2 û2

s−1

,

where ût = yt − m̂(xt ).

Step 2: Construct an estimator of m(x), say m̂1(x), by using (2.2) and the
kernel method, but replace the unknown quantity m(x) in (2.2) by m̂(x).

We now have a two-step estimator m̂1(x) of m(x), defined as follows:

m̂1(x) =
∑n

t=1

[
yt − ρ̂yt−1 + ρ̂m̂(xt−1)

]
K [(xt − x)/h]∑n

t=1 K [(xt − x)/h]
.
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To establish our claim that m̂1(x) achieves efficiency improvements over the usual
estimator m̂(x), we make the following assumptions.

Assumption 2.1. xt = λ xt−1 + ξt , (x0 ≡ 0), where λ = 1 + τ/n with τ ≤ 0
being a constant and {ξj , j ≥ 1} is a linear process defined by

ξj =
∞∑

k=0

φk νj−k, (2.3)

where φ0 �= 0, φ ≡∑∞
k=0 φk �= 0, and

∑∞
k=0 |φk | < ∞, and {νj ,−∞ < j < ∞}

is a sequence of i.i.d. (independent and identically distributed) random variables
with Eν0 = 0, Eν2

0 = 1, E |ν0|2+δ < ∞ for some δ > 0; the characteristic function
ϕ(t) of ν0 satisfies

∫∞
−∞(1+|t |) |ϕ(t)|dt < ∞.

Assumption 2.2. ut = ρut−1 + εt with |ρ| < 1 and ε0 = u0 = 0, where Fn,t =
σ(ε0,ε1, . . . ,εt , x1, . . . , xn) and {εt ,Fn,t }n

t=1 forms a martingale difference se-
quence satisfying, as n → ∞ first, and then m → ∞,

max
m≤t≤n

|E(ε2
t |Fn,t−1)−σ 2| → 0, a.s.,

where σ 2 is a given constant, and sup1≤t≤n,n≥1 E(|εt |q |Fn,t−1) < ∞ a.s. (almost
surely) for some q > 2.

Assumption 2.3. (a)
∫∞
−∞ K (s)ds = 1 and K (·) has a compact support; (b) For

any x, y ∈ R, |K (x)− K (y)| ≤ C |x − y|, where C is a positive constant; (c) For
p ≥ 2,∫

y p K (y)dy �= 0,

∫
yi K (y)dy = 0, i = 1,2, . . . , p −1.

Assumption 2.4. (a) There exist a 0 < β ≤ 1 and α ≥ 0 such that

|m(x + y)−m(x)| ≤ C (1+|x |α) |y|β,

for any x ∈ R and |y| sufficiently small, where C is a positive constant; (b) For
given fixed x , m(x) has continuous p + 1 derivatives in a small neighborhood of
x , where p ≥ 2 is defined as in Assumption 2.3(c).

We have the following main results.

THEOREM 2.1. Suppose that Assumptions 2.1, 2.2, 2.3(a), and 2.4(a) hold.
Then, we have

( n∑
t=1

K [(xt − x)/h]
)1/2[

m̂(x)−m(x)
] →D N (0,σ 2

1 ), (2.4)
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for any h satisfying nh2 → ∞ and nh2+4β → 0, where σ 2
1 = (1 − ρ2)−1σ 2∫∞

−∞ K 2(s)dt. If in addition Assumptions 2.3(c) and 2.4(b) hold, then(
n∑

t=1

K [(xt − x)/h]

)1/2[
m̂(x)−m(x)− h pm(p)(x)

p!

∫ ∞

−∞
y p K (y)dy

]
→D N (0,σ 2

1 ), (2.5)

for any h satisfying nh2 → ∞ and nh2+4p = O(1).

THEOREM 2.2. Suppose that Assumptions 2.1, 2.2, 2.3(a) and (b), 2.4(a), and∑∞
i=0 i |φi | < ∞ hold. Then, we have

ρ̂ −ρ = OP
{
nα/2hβ + (nh2)−1/4}, (2.6)

and with σ 2
2 = σ 2

∫∞
−∞ K 2(s)dt,(

n∑
t=1

K [(xt − x)/h]

)1/2 [
m̂1(x)−m(x)

]→D N (0,σ 2
2 ), (2.7)

for any h satisfying that nh2+4β → 0, nαh2β → 0, and n1−ε0 h2 → ∞ for some
ε0 > 0. If in addition Assumptions 2.3(c) and 2.4(b) hold, then(

n∑
t=1

K [(xt − x)/h]

)1/2[
m̂1(x)−m(x)− h pm(p)(x)

p!

∫ ∞

−∞
y p K (y)dy

]
→D N (0,σ 2

2 ), (2.8)

for any h satisfying that nh2+4p = O(1), nαh2β → 0, and n1−ε0 h2 → ∞ for some
ε0 > 0.

Remark 1. Theorem 2.1 generalizes certain related results in previous articles.
See, for instance, Wang and Phillips (2009a, 2011), where the authors investigated
the asymptotics under ρ = 0 and τ = 0. As noted in previous works, the condi-
tions on m(x) to establish our results are quite weak, in particular, a wide range
of regression functions m(x) are included in Assumption 2.4(a), like m(x) = 1/
(1+ θ |x |β), m(x) = (a +bex )/(1+ ex ), and m(x) = θ1 + θ2x +·· ·+ θk xk−1.

If we are only interested in the asymptotics of m̂(x), recent research has shown
that the information set Fn,t = σ(ε0,ε1, . . . ,εt , x1, . . . , xn) given in Assumption
2.2 can be reduced toFt = σ(ε0,ε1, . . . ,εt , x1, . . . , xt ), a more natural condition in
the framework of cointegration. We refer to Wang and Phillips (2009a) and Wang
(2014) for current developments. However, due to the involvement of x1, . . . , xn in
the definition of m̂1(x), it is difficult to weaken this restriction for the asymptotics
of m̂1(x), which is provided in Theorem 2.2. Theorem 2.1 of this paper is only
stated to make a comparison with Theorem 2.2, which does not provide a general
result in this direction.
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Remark 2. As |ρ| < 1, Theorem 2.2 confirms the claim that m̂1(x) achieves
efficiency improvements over the usual estimator m̂(x) under certain additional
conditions on m(x) and the bandwidth h. Among these additional conditions, the
requirement on the bandwidth h (that is, nαh2β → 0 and n1−ε0 h2 → ∞, where
ε0 can be sufficiently small) implies that 0 ≤ α < β, which in turn requires that
the rate at which m(x) diverges to ∞ in the tail is not faster than |x |1+β . In com-
parison with Theorem 2.1, this is a little bit restrictive but it is reasonable, due to
the fact that the consistency result (2.6) heavily depends on the following uniform
convergence

1

n

n∑
t=1

[
m̂(xt )−m(xt )

]2 = OP (rn), (2.9)

where 0 < rn → 0 is a sequence of constants. As xt ∼ √
t under our model, it

is natural for the restriction on the tail of m(x) to enable (2.9). The result (2.9)
is a consequence of Theorem 3.1 in the next section, which provides a strong
approximation result on the convergence to a local time process.

One referee argued that the condition nαh2β → 0 can be weakened if the local
linear estimator m̃(x) is used in the definition of m̂1(x) instead of m̂(x). Since
this improvement requires new limit theorems, we leave the topic for future work.

Remark 3. Consider model (2.1) with AR(k) errors, i.e., ut is assumed to be
strictly stationary satisfying

ut = ρ1ut−1 +ρ2ut−2 +·· ·+ρkut−k + εt , (2.10)

where max1≤ j≤k |ρj | < 1. In this situation, similar to (2.2), we have

yt −
k∑

j=1

ρj [yt− j −m(xt− j )] = m(xt )+ εt ,

and, as in Step 2, we may construct a two-step estimator m̂2(x) of m(x) as

m̂2(x) =
∑n

t=1

{
yt −∑k

j=1 ρ̂j [yt− j − m̂(xt− j )]
}

K [(xt − x)/h]∑n
t=1 K [(xt − x)/h]

,

where (ρ̂1, . . . , ρ̂k)
ᵀ

is a Least Squares (LS) estimator of ût on ût−1, ût−2, . . . ,
ût−k, where ût = yt − m̂(xt ).

If εj , j ∈ Z , are assumed to be i.i.d. random variables with Eε0 = 0 and
Eε2

0 = σ 2 and εj are independent of xt , (2.4) and (2.5) hold true except that σ 2
1 is

replaced by

σ ∗2
1 = (σ 2 +ρ

ᵀ
γ )

∫ ∞

−∞
K 2(s)dt,
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where ρ = (ρ1, . . . ,ρk)
ᵀ

and γ = (γ1, . . . ,γk)
ᵀ

with γj = cov(u1,u1+ j ),1 ≤ j ≤ k.
Furthermore, (2.7) and (2.8) hold for m̂1(x) being replaced by m̂2(x). Since we
generally have ρ

ᵀ
γ > 0, m̂2(x) achieves efficiency improvements over m̂(x) un-

der model (2.1) with AR(k) errors (2.10). The proof of this claim is similar to
Theorems 2.1 and 2.2, but involves some complicated calculations. The details
are hence omitted.

3. STRONG APPROXIMATION TO LOCAL TIME

This section investigates the strong approximation to a local time process, which
provides a technical tool in the development of the uniform convergence such as
(2.9) for the kernel estimator m̂(x). As the conditions imposed are different, this
section can be read separately.

Let xk,n,1 ≤ k ≤ n,n ≥ 1 be a triangular array, constructed from some under-
lying nonstationary time series and assume that there is a continuous limiting
Gaussian process G(t),0 ≤ t ≤ 1, to which x[nt],n converges weakly, where [a]
denotes the integer part of a. In many applications, we let xk,n = d−1

n xk, where
xk is a nonstationary time series, such as a unit root or long memory process,
and dn is an appropriate standardization factor. This section is concerned with the
limiting behavior of the statistic Sn(t), defined by

Sn(t) = cn

n

n∑
k=1

g[cn (xk,n − x[nt],n)], t ∈ [0,1], (3.1)

where cn is a certain sequence of positive constants and g is a real integrable
function on R. As noticed in the last section and previous research (see, e.g.,
Wang and Phillips, 2012), this kind of statistic appears in the inference for the
unknown regression function m(x) and its limiting behavior plays a key role in
related research fields.

The aim of this section is to provide a strong approximation result for the target
statistic. To achieve our aim, we make use of the following assumptions.

Assumption 3.1. supx |x |γ |g(x)| < ∞ for some γ > 1,
∫∞
−∞ |g(x)|dx < ∞,

and |g(x)− g(y)| ≤ C |x − y|, whenever |x − y| is sufficiently small on R.

Assumption 3.2. On a rich probability space, there exists a continuous semi-
martingale G(t) having a local time LG(t,s) 1 such that, for some ξ > 0,

|LG(1,s)− LG(1, t)| ≤ C |s − t |ξ a.s., (3.2)

and a sequence of stochastic processes Gn(t) such that {Gn(t); 0 ≤ t ≤ 1} =D

{G(t); 0 ≤ t ≤ 1} for each n ≥ 1 and

sup
0≤t≤1

|x[nt],n − Gn(t)| = oa.s.(n
−δ0)

for some 0 < δ0 < 1.
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Assumption 3.3. For all 0 ≤ j < k ≤ n,n ≥ 1, there exist a sequence of σ -fields
Fk,n (define F0,n = σ{φ,�}, the trivial σ -field) such that:

(i) xj,n are adapted to Fj,n and, conditional on Fj,n , [n/(k − j)]d(xk,n − xj,n),
where 0 < d < 1, has a density hk, j,n(x) satisfying that hk, j,n(x) is uni-
formly bounded by a constant K and

(ii) supu∈R
∣∣hk, j,n(u + t) − hk, j,n(u)

∣∣ ≤ C min{|t |,1}, whenever n and k − j
are sufficiently large and t ∈ R.

Assumption 3.4. There is an ε0 > 0 such that n−ε0cn → ∞ and n−1+ε0 cn → 0.

The following is our main result.

THEOREM 3.1. Suppose that Assumptions 3.1–3.4 hold. Then, on the same
probability space as in Assumption 3.2, for any l > 0, we have

sup
0≤t≤1

|Sn(t)− τ Lnt | = oP(log−l n), (3.3)

where τ = ∫∞
−∞ g(t)dt and Lnt = limε→0

1
2ε

∫ 1
0 I (|Gn(s)− Gn(t)| ≤ ε)ds.

The rate obtained in (3.3) may not be optimal. We conjecture that the optimal
rate should have the form n−δ1 , where δ1 > 0 is related to δ0 > 0 given in As-
sumption 3.2. We are not able to establish the optimal rate due to the technical
difficulty. However, by noting {Lnt ; 0 ≤ t ≤ 1} =D {LG(1,G(t)); 0 ≤ t ≤ 1} due
to {Gn(t); 0 ≤ t ≤ 1} =D {G(t); 0 ≤ t ≤ 1}, the result (3.3) is enough in many ap-
plications. To illustrate, we have the following theorem which provides the lower
bound of Sn(t) over t ∈ [0,1]. As a consequence, we establish the result (2.9)
when xt satisfies Assumption 2.1.

THEOREM 3.2. Let xt be defined as in Assumption 2.1 with
∑∞

k=0 k|φk | < ∞.
Let Assumptions 2.3(a) and (b) hold. Then, for any η > 0, there exist M1 > 0 and
n0 > 0 such that

P

(
inf

s=1,2,...,n

n∑
t=1

K [(xt − xs)/h] ≥ √
nh/M1

)
≥ 1−η, (3.4)

for all n ≥ n0 and h satisfying that h → 0 and n1−ε0 h2 → ∞ for some ε0 > 0.
Consequently, we have

Vn := 1

n

n∑
t=1

[
m̂(xt )−m(xt )

]2 = OP
{
nαh2β + (nh2)−1/2}, (3.5)

that is, (2.9) holds true if in addition nαh2β → 0.
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4. EXTENSION

We next propose another estimator that potentially can improve efficiency further,
following the method of Linton and Mammen (2008). Note that we can write

m(x) = 1

1+ρ2
E
[
Z−

t (ρ)−ρZ+
t+1(ρ)|xt = x

]
,

where: Z−
t (ρ) = yt − ρyt−1 + ρm(xt−1) and Z+

t (ρ) = yt − ρyt−1 − m(xt ). Let
m̂(.), ρ̂ be initial consistent estimators of m(.) and ρ, and let ŷt = Ẑ−

t (ρ̂) −
ρ̂ Ẑ+

t+1(ρ̂), where: Ẑ−
t (ρ) = yt − ρ̂yt−1 + ρ̂m̂(xt−1) and Ẑ+

t (ρ) = yt − ρ̂yt−1 −
m̂(xt ). Then let

m̂e f f (x) = 1

1+ ρ̂2

∑n−1
s=1 ŷs K [(xs − x)/h]∑n−1

s=1 K [(xs − x)/h]
.

We claim that the following result holds. The proof is similar to earlier results and
is omitted.

THEOREM 4.1. Suppose in addition to Assumptions 2.1, 2.2, 2.3(a) and (b),
and 2.4(a), that

∑∞
i=0 i |φi | < ∞ holds. Then, for any h satisfying nh2+4β → 0,

nαh2β → 0 and n1−ε0 h2 → ∞ for some ε0 > 0, we have(
n∑

t=1

K [(xt − x)/h]

)1/2 [
m̂e f f (x)−m(x)

]→D N (0,σ 2
3 ),

where σ 2
3 = (1+ρ2)−1

∫∞
−∞ K 2(s)dt.

We have σ 2
3 ≤ σ 2

2 ≤ σ 2
1 , and so m̂e f f (x) is more efficient (according to asymp-

totic variance) than m̂2(x), which itself is more efficient than m̂(x).

5. MONTE CARLO SIMULATION

We investigate the performance of our procedure on simulated data. We chose a
similar design to Wang and Phillips (2009b) except that we focus on error auto-
correlation rather than contemporaneous endogeneity. We suppose that

yt = m(xt )+σut , ut = ρ0ut−1 + εt

with m(x) = x and m(x) = sin(x), where xt = xt−1 + ηt , with ηt ∼ N (0,1),
σ = 0.2, and εt ∼ N (0,1); the two errors are mutually independent. We used
the Epanechnikov kernel K (u) = 0.75(1 − u2)1(|u| ≤ 1) with the bandwidth
h = n−bc. We examine a range of values of ρ0 ∈ {−1,−0.9, . . . ,0.9,0.95,1}
(although we only show the results for nonnegative values of ρ0) and the
bandwidth constant bc ∈ (10/18,1/2,1/3,1/5,1/10}. We consider n = 500,
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TABLE 1. n = 500 and m(x) = x

m̂2 m̂1

ρ/bc 10/18 1/2 1/3 1/5 1/6 1/10 10/18 1/2 1/3 1/5 1/6 1/10

0.00 0.1613 0.1311 0.0621 0.0343 0.0302 0.0257 0.1613 0.1311 0.0621 0.0343 0.0302 0.0257
0.10 0.1615 0.1313 0.0622 0.0344 0.0304 0.0260 0.1615 0.1313 0.0623 0.0345 0.0304 0.0260
0.20 0.1619 0.1317 0.0626 0.0347 0.0307 0.0263 0.1620 0.1319 0.0628 0.0349 0.0308 0.0263
0.30 0.1627 0.1325 0.0631 0.0351 0.0311 0.0268 0.1630 0.1329 0.0637 0.0355 0.0314 0.0269
0.40 0.1639 0.1337 0.0640 0.0358 0.0317 0.0275 0.1645 0.1345 0.0650 0.0365 0.0323 0.0277
0.50 0.1657 0.1355 0.0652 0.0367 0.0326 0.0284 0.1668 0.1370 0.0671 0.0380 0.0337 0.0289
0.60 0.1686 0.1383 0.0672 0.0382 0.0341 0.0299 0.1705 0.1408 0.0704 0.0404 0.0359 0.0308
0.70 0.1736 0.1432 0.0707 0.0409 0.0366 0.0324 0.1768 0.1475 0.0759 0.0445 0.0397 0.0342
0.80 0.1836 0.1530 0.0778 0.0466 0.0422 0.0379 0.1894 0.1608 0.0872 0.0530 0.0477 0.0413
0.90 0.2130 0.1823 0.1010 0.0661 0.0612 0.0564 0.2261 0.1998 0.1209 0.0796 0.0730 0.0644
0.95 0.2717 0.2423 0.1538 0.1126 0.1068 0.1011 0.2969 0.2757 0.1909 0.1378 0.1288 0.1168
1.00 3.1401 3.3402 3.3938 3.2839 3.2661 3.2429 3.3769 3.6514 3.7446 3.5232 3.4795 3.4196
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TABLE 2. n = 1,000 and m(x) = x

m̂2 m̂1

ρ/bc 10/18 1/2 1/3 1/5 1/6 1/10 10/18 1/2 1/3 1/5 1/6 1/10

0.00 0.1610 0.1269 0.0522 0.0251 0.0213 0.0172 0.1610 0.1269 0.0522 0.0251 0.0213 0.0171
0.10 0.1611 0.1270 0.0524 0.0253 0.0214 0.0174 0.1612 0.1271 0.0524 0.0253 0.0215 0.0174
0.20 0.1616 0.1275 0.0527 0.0256 0.0217 0.0177 0.1617 0.1276 0.0529 0.0257 0.0218 0.0177
0.30 0.1623 0.1282 0.0532 0.0259 0.0221 0.0181 0.1626 0.1286 0.0538 0.0263 0.0224 0.0182
0.40 0.1635 0.1294 0.0540 0.0265 0.0226 0.0186 0.1642 0.1302 0.0551 0.0272 0.0232 0.0189
0.50 0.1654 0.1311 0.0552 0.0273 0.0234 0.0194 0.1665 0.1327 0.0571 0.0286 0.0245 0.0199
0.60 0.1683 0.1339 0.0570 0.0287 0.0247 0.0207 0.1703 0.1367 0.0603 0.0309 0.0266 0.0216
0.70 0.1735 0.1388 0.0602 0.0310 0.0270 0.0229 0.1768 0.1435 0.0658 0.0347 0.0301 0.0246
0.80 0.1838 0.1486 0.0668 0.0363 0.0320 0.0278 0.1899 0.1572 0.0769 0.0427 0.0375 0.0310
0.90 0.2147 0.1784 0.0887 0.0543 0.0496 0.0449 0.2287 0.1979 0.1107 0.0682 0.0615 0.0525
0.95 0.2762 0.2392 0.1386 0.0978 0.0922 0.0867 0.3041 0.2780 0.1814 0.1248 0.1153 0.1024
1.00 6.1783 6.6740 6.9673 6.8136 6.7811 6.7500 6.6138 7.2842 7.5941 7.2184 7.1329 7.0197
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TABLE 3. E ρ̂, m(x) = sin(x)

n = 1,000 n = 500

ρ/bc 10/18 1/2 1/3 1/5 1/6 1/10 10/18 1/2 1/3 1/5 1/6 1/10

0.00 −0.0137 −0.0138 −0.0149 −0.0163 −0.0161 −0.0124 −0.0179 −0.0181 −0.0213 −0.0230 −0.0225 −0.0179
0.10 0.0310 0.0405 0.0637 0.0726 0.0741 0.0789 0.0270 0.0356 0.0549 0.0632 0.0649 0.0702
0.20 0.0756 0.0948 0.1424 0.1616 0.1645 0.1702 0.0720 0.0893 0.1311 0.1494 0.1524 0.1585
0.30 0.1204 0.1492 0.2212 0.2507 0.2550 0.2618 0.1169 0.1432 0.2075 0.2358 0.2401 0.2471
0.40 0.1652 0.2037 0.3000 0.3400 0.3457 0.3538 0.1619 0.1971 0.2841 0.3225 0.3282 0.3363
0.50 0.2100 0.2583 0.3791 0.4296 0.4368 0.4464 0.2070 0.2511 0.3608 0.4095 0.4167 0.4263
0.60 0.2550 0.3131 0.4583 0.5196 0.5284 0.5398 0.2521 0.3052 0.4378 0.4971 0.5059 0.5173
0.70 0.3003 0.3683 0.5380 0.6101 0.6206 0.6343 0.2974 0.3596 0.5152 0.5853 0.5959 0.6098
0.80 0.3461 0.4241 0.6183 0.7015 0.7137 0.7303 0.3432 0.4144 0.5932 0.6745 0.6871 0.7043
0.90 0.3930 0.4811 0.7003 0.7946 0.8088 0.8287 0.3902 0.4702 0.6730 0.7659 0.7807 0.8017
0.95 0.4174 0.5109 0.7433 0.8430 0.8581 0.8799 0.4153 0.4996 0.7147 0.8135 0.8293 0.8523
1.00 0.4466 0.5462 0.7903 0.8935 0.9093 0.9324 0.4399 0.5296 0.7567 0.8614 0.8781 0.9033
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TABLE 4. stdc(ρ̂), m(x) = sin(x)

n = 1,000 n = 500

ρ/bc 10/18 1/2 1/3 1/5 1/6 1/10 10/18 1/2 1/3 1/5 1/6 1/10

0.00 0.0334 0.0326 0.0327 0.0325 0.0325 0.0323 0.0474 0.0466 0.0467 0.0467 0.0467 0.0467
0.10 0.0351 0.0345 0.0339 0.0333 0.0331 0.0328 0.0488 0.0481 0.0479 0.0475 0.0474 0.0472
0.20 0.0381 0.0376 0.0356 0.0340 0.0337 0.0332 0.0510 0.0504 0.0493 0.0481 0.0479 0.0476
0.30 0.0419 0.0417 0.0376 0.0346 0.0341 0.0335 0.0540 0.0534 0.0508 0.0486 0.0482 0.0477
0.40 0.0466 0.0466 0.0398 0.0351 0.0344 0.0336 0.0577 0.0569 0.0525 0.0488 0.0482 0.0476
0.50 0.0517 0.0519 0.0423 0.0354 0.0344 0.0334 0.0619 0.0609 0.0543 0.0488 0.0480 0.0472
0.60 0.0573 0.0575 0.0448 0.0354 0.0341 0.0328 0.0666 0.0654 0.0561 0.0485 0.0474 0.0463
0.70 0.0633 0.0635 0.0472 0.0350 0.0333 0.0316 0.0718 0.0701 0.0580 0.0479 0.0464 0.0449
0.80 0.0697 0.0697 0.0498 0.0343 0.0322 0.0298 0.0777 0.0753 0.0599 0.0469 0.0449 0.0426
0.90 0.0767 0.0765 0.0526 0.0337 0.0309 0.0274 0.0844 0.0820 0.0618 0.0454 0.0427 0.0395
0.95 0.0803 0.0800 0.0544 0.0339 0.0307 0.0264 0.0877 0.0863 0.0628 0.0448 0.0417 0.0377
1.00 0.0869 0.0860 0.0572 0.0347 0.0310 0.0253 0.0942 0.0929 0.0668 0.0461 0.0427 0.0377
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FIGURE 1. The QQ plot of the standardized estimator m̂2.

1,000 and take ns = 1,000 replications throughout. We report the performance
measure

AM SE = 1

K

K∑
k=1

|m̂(xk)−m(xk)|2 ,

where K = 101 and xk = {−1,−0.98, . . . ,1}. The results for the linear case are
given in Tables 1 and 2. The results show that there is an improvement when
going from n = 500 to n = 1,000 and when going from m̂ to m̂2. In the linear
case, the bigger the bandwidth the better. In the cubic case (not shown), smaller
bandwidths do better as the bias issue is much more severe in this case.

We show in Tables 3 and 4 the performance of the estimator of ρ for n = 500
and n = 1,000. This varies with bandwidth and is generally quite poor, although
improves with sample size. Finally, we give some indication of the distributional
approximation. In Figure 1 we show the QQ plot for our (standardized) estimator
m̂2 in the case where m(x) = sin(x), ρ = 0.95, n = 1,000, and bc = 1/10.

6. CONCLUSION

We have shown that the main results of Xiao et al. (2003) regarding efficiency im-
provements can be extended to the case where the covariate process is nonstation-
ary. In practice it may be important to take account of error autocorrelation when
conducting inference about nonparametric cointegrating regressions. The idea of
using the transformed model and the results obtained in terms of efficiency im-
provements are closely related to the augmented regression findings in Wang and
Phillips (2009b), wherein it is shown that carrying the impact of endogeneity via
the conditional mean in an augmented regression reduces the asymptotic variance
of the kernel regression estimator.

NOTE

1. Here and below, we define LG (1, x) = limε→0
1
2ε

∫ 1
0 I (|G(s)− x | ≤ ε)ds, a local time process

of the process G(s), whenever it exists.
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APPENDIX: Proofs

Appendix A.1 provides several preliminary lemmas. Some of them are of independent
interest. The proofs of main theorems will be given in Appendixes A.2–A.4. Throughout
the Appendix, we denote by C0,C,C1, ... positive constants, which might be different at
each appearance.

A.1. Preliminary Lemmas

First note that

xt =
t∑

j=1

λt− j ξj =
t∑

j=1

λt− j
j∑

i=−∞
νi φj−i

= λt−s xs +
t∑

j=s+1

λt− j
s∑

i=−∞
νi φj−i +

t∑
j=s+1

λt− j
j∑

i=s+1

νi φj−i

=: λt−s xs +�s,t + x ′
s,t , (A.1)

where

x ′
s,t =

t−s∑
j=1

λt− j−s
j∑

i=1

νi+sφj−i =
t∑

i=s+1

νi

t−i∑
j=0

λt− j−i φj .

Write d2
s,t = ∑t

i=s+1 λ2(t−i)(
∑t−i

j=0 λ− j φj )
2 = E(x ′

s,t )
2. Recall limn→∞ λn = eτ and

limn→∞ λm = 1 for any fixed m. Routine calculations show that, whenever n is sufficiently
large,

e−|τ |/2 ≤ λk ≤ 2e|τ |, for all −n ≤ k ≤ n (A.2)

and there exist γ1,γ0 > 0 such that

γ0 ≤ inf
n≥k≥m

|
k∑

j=0

λ− j φj | ≤ γ1, (A.3)

whenever n,m are sufficiently large. By virtue of (A.2) and (A.3), it is readily seen that
ds,t �= 0 for all 0 ≤ s < t ≤ n because φ =∑∞

j=0 φj �= 0 and C1(t − s) ≤ d2
s,t ≤ C2(t − s).

Consequently,

1√
t−s

x ′
s,t has a density hs,t (x),

which is uniformly bounded by a constant C0 and
∫∞
−∞(1+|u|)|ϕs,t (u)|du < ∞ uniformly

for 0 ≤ s < t ≤ n, where ϕs,t (u) = Eeiux ′
s,t /

√
t−s , due to

∫
(1+|u|)|Eeiuν0 |dt < ∞. See

the proof of Corollary 2.2 in Wang and Phillips (2009a) and/or (7.14) and Proposition 7.2
(p. 1934) of Wang and Phillips (2009b) with a minor modification. Hence, conditional on
Fk = σ(νj ,−∞ < j ≤ k),

(xt − xs)/
√

t − s has a density h∗
s,t (x) ≡ hs,t (x − x∗

s,t/
√

t − s), (A.4)
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where x∗
s,t = (λt−s −1) xs +�s,t , satisfying, for any u ∈ R,

sup
x

∣∣h∗
s,t (x +u)−h∗

s,t (x)
∣∣≤ sup

x
|hs,t (x +u)−hs,t (x)|

≤ C
∣∣∣∫ ∞

−∞
(
e−iv(x+u) − e−ivx )ϕs,t (v)dv

∣∣∣
≤ C min{|u|,1}

∫ ∞
−∞

(1+|v|) |ϕs,t (v)|dv ≤ C1 min{|u|,1}, (A.5)

where we have used the inversion formula of a characteristic function in the calculation
above.

We also have the following representation for xt :

xt =
t∑

j=1

λt− j ξj =
t∑

j=1

λt− j

⎛⎝ j−1∑
i=0

+
∞∑

i= j

⎞⎠φi νj−i

=
t−1∑
i=0

φi λt−i
t∑

j=1

λ− j νj −
t−1∑
i=0

φi λt−i
t∑

j=t−i+1

λ− j νj +
t∑

j=1

λt− j
∞∑

i=0

φi+ j ν−i

= at x ′
t − x ′′

t + x ′′′
t , say, (A.6)

where at =∑t−1
i=0 φi λ−i , x ′

t =∑t
j=1 λt− j νj , and

|x ′′
t |+ |x ′′′

t | ≤ C0t1/(2+δ), a.s.

for some constant C0 > 0. Indeed, using (A.2) and the strong law, we obtain that, for some
constant C0 > 0,

|x ′′
t | ≤ 2e|τ |

t−1∑
i=0

|φi |
t∑

j=t−i+1

|νj | ≤ 2e|τ | max
1≤ j≤t

|νj |
t−1∑
i=0

i |φi |

≤ C t1/(2+δ)

⎛⎝1

t

t∑
j=1

|νj |2+δ

⎞⎠1/(2+δ)

≤ C0t1/(2+δ), a.s., (A.7)

since E |ν1|2+δ < ∞ and
∑∞

i=0 i |φi | < ∞ . Note that

∞∑
j=1

j−1/(2+δ)E |
∞∑

i=0

φi+ j ν−i | ≤
∞∑

j=1

j−1/(2+δ)

⎛⎝ ∞∑
i= j

φ2
i

⎞⎠1/2

≤ C
∞∑

j=1

j−1−1/(2+δ)

⎛⎝ ∞∑
i= j

i |φi |
⎞⎠1/2

< ∞,

which yields that
∑∞

j=1 j−1/(2+δ)|∑∞
i=0 φi+ j ν−i | < ∞,a.s. It follows from (A.2) again

and the Kronecker lemma that

|x ′′′
t | ≤ C

t∑
j=1

∣∣ ∞∑
i=0

φi+ j ν−i | = o
(

t1/(2+δ)
)
, a.s.

This proves (A.6).
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We are now ready to provide several preliminary lemmas.

LEMMA A.1. Suppose that p(x) satisfies
∫ |p(x)|dx < ∞ and Assumption 2.1 holds.

Then, for any h → 0 and all 0 ≤ s < t ≤ n, we have

E
(|p(xt/h)| ∣∣Fs

) ≤ C0h√
t − s

∫ ∞
−∞

|p(x + xs/h)|dx

= C0h√
t − s

∫ ∞
−∞

|p(x)|dx, a.s., (A.8)

where Fs = σ{νs ,νs−1, . . .}.

Proof. Recall (A.1), (A.4), and the independence of νk . The result (A.8) follows from a
routine calculation and hence the details are omitted. n

LEMMA A.2. Suppose that p(x) satisfies
∫

[|p(x)|+ p2(x)]dx < ∞ and
∫

p(x)dx �= 0
and that Assumption 2.1 holds. Then, for any h → 0 and nh2 → ∞,

φ√
nh

n∑
t=1

p
[
(xt − x)/h

]→D

∫ ∞
−∞

p(x)dx LG(1,0),

where G(t) = W (t)+ τ
∫ t

0 eτ(t−s)W (s)ds with W (s) being a standard Brownian motion
and LG(r, x) is a local time of the Gaussian process G(t).

Proof. This is a corollary of Theorem 3.1 of Wang and Phillips (2009a). The inspection
of the conditions is similar to Proposition 7.2 of Wang and Phillips (2009b). We omit the
details. n

LEMMA A.3. Suppose that Assumptions 2.1, 2.2, and 2.3(a) hold. Then, for any h → 0
and nh2 → ∞,

n∑
t=1

ut Znt →D N (0,σ 2
1 ), (A.9)

where Znt = K [(xt − x)/h]/
(∑n

t=1 K [(xt − x)/h]
)1/2

and σ 2
1 = (1−ρ2)−1σ 2

∫∞
−∞ K 2(x)dx.

Proof. For notational convenience, we assume that σ 2 = 1 in the following proof.
Note that ut = ∑t

k=1 ρt−kεk . We have
∑n

t=1 ut Znt = ∑n
k=1 εk Z∗

nk , where Z∗
nk =∑n

t=k ρt−k Znt . We first claim that

n∑
k=1

Z2
nk →P

∫ ∞
−∞

K 2(x)dx, (A.10)

n∑
k=1

Z∗2
nk →P (1−ρ2)−1

∫ ∞
−∞

K 2(x)dx . (A.11)
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The proof of (A.10) is simple by applying Lemma A.2. To see (A.11), note that

n∑
k=1

Z∗2
nk = �−1

n

n∑
k=1

⎛⎝ n∑
t=k

ρt−k K [(xt − x)/h]

⎞⎠2

= �−1
n

n∑
k=1

n∑
t=k

ρ2(t−k) K 2[(xt − x)/h]+�−1
n �1n

= (1−ρ2)−1
n∑

k=1

Z2
nk +�−1

n (�1n −�2n)

= (1−ρ2)−1
∫ ∞
−∞

K 2(x)dx +�−1
n (�1n −�2n)+oP (1), (A.12)

by (A.10), where �n =∑n
t=1 K [(xt − x)/h],

�1n = 2
n∑

k=1

∑
k≤s<t≤n

ρs−k ρt−k K [(xs − x)/h] K [(xt − x)/h],

�2n = (1−ρ2)−1
n∑

t=1

K 2[(xt − x)/h]ρ2t .

Note that �n/(
√

nh) →D φ−1 LG(1,0) by Lemma A.2. The result (A.11) will follow if
we prove

�1n +�2n = oP [(nh2)1/2]. (A.13)

Recalling that K (x) ≤ C and |ρ| < 1, it is readily seen that �2n ≤ C. On the other hand,
by applying Lemma A.1, for any t > s, we have

E
{

K [(xs − x)/h] K [(xt − x)/h]
}≤ E

[
K [(xs − x)/h] E

{
K [(xt − x)/h] | Fs

}]
≤ Ch√

t − s

h√
s
.

It follows that

E�1n ≤ C h2
n∑

k=1

∑
k≤s<t≤n

ρs−k ρt−k 1√
t − s

1√
s

≤ C1h2
n∑

k=1

1√
k

≤ Ch2√
n,

which implies that �1n = OP (h2√
n). Hence, (A.13) follows due to h → 0 and nh2 → ∞.

This also completes the proof of (A.11).
We now turn to the proof of (A.9). Since, given {x1, x2, ..., xn}, the sequence (Z∗

nk εk ,

k = 1,2, ...,n) still forms a martingale difference by Assumption 2.2, it follows from
Theorem 3.9 [(3.75)] in Hall and Heyde (1980) with δ = q/2−1 that

sup
x

∣∣P
⎛⎝ n∑

t=1

εt Z∗
nt ≤ xσ1 | x1, x2, ..., xn

⎞⎠−�(x)
∣∣≤ A(δ)L1/(1+q)

n , a.s.,
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where A(δ) is a constant depending only on q > 2 and

Ln = 1

σ
q
1

n∑
k=1

|Z∗
nk |q E(|εk |q | x1, ..., xn)

+ E

⎧⎨⎩∣∣∣ 1

σ 2
1

n∑
k=1

Z∗2
nk

[
E(ε2

k |Fk−1)−1
]∣∣∣q/2 | x1, ..., xn

⎫⎬⎭ .

Recall that K (x) is uniformly bounded and that

max
1≤k≤n

|Z∗
nk | ≤ C max

1≤k≤n
|Znk | ≤ C/

⎛⎝ n∑
t=1

K [(xt − x)/h]

⎞⎠1/2

= oP (1),

by Assumption 2.3 and Lemma A.2. Routine calculations, together with (A.11), show that

Ln = oP (1),

since q > 2. Therefore the dominated convergence theorem yields that

sup
x

∣∣P
⎛⎝ n∑

t=1

ut Znt ≤ xσ1

⎞⎠−�(x)
∣∣

≤ E

⎡⎣sup
x

∣∣∣P
⎛⎝ n∑

t=1

εt Z∗
nt ≤ xσ1 | x1, x2, ..., xn

⎞⎠−�(x)
∣∣∣
⎤⎦→ 0.

This completes the proof of Lemma A.3. n

LEMMA A.4. Suppose that Assumptions 2.3(a) and 2.4(a) hold. Then, for any x ∈ R,
we have∣∣�n(x)−m(x)

∣∣≤ C (1+|x |α)hβ, (A.14)

where �n(x) =
∑n

t=1 m(xt ) K [(xt −x)/h]∑n
t=1 K [(xt −x)/h]

. If in addition Assumption 2.4(b) holds, we have

∣∣�n(x)−m(x)− h pm(p)(x)

p!

∫ ∞
−∞

y p K (y)dy
∣∣= oP [(nh2)−1/4], (A.15)

whenever nh2 → ∞ and nh2+4p = O(1), for any fixed x.

Proof. By Assumption 2.4(a) and the fact that K (x) has a compact support, the result
(A.14) is simple. The proof of (A.15) is the same as in the proof of Theorem 2.2 in Wang
and Phillips (2011). We omit the details. n

LEMMA A.5. Suppose that Assumptions 3.1–3.4 hold. Then, for any l > 0, we have

In := sup
t∈R

sup
s:|s−t |≤εn

∣∣∣cn

n

n∑
k=1

ft,s(xk,n)
∣∣∣= o(log−l n), a.s., (A.16)

where εn ≤ cnn−l1 for some l1 > 0 and ft,s(x) = g(cn x + t)− g(cn x + s).

Proof. See Lemma 3.5 of Liu, Chan, and Wang (2014). n
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A.2. Proofs of Theorems 2.1 and 2.2

We only prove Theorem 2.2. Using Lemmas A.3 and A.4, the proof of Theorem 2.1 is
standard (see, e.g., Wang and Phillips, 2011), and hence the details are omitted.

Start with (2.6). Recall that ût = yt − m̂(xt ) = ut +m(xt )− m̂(xt ). Simple calculations
show that

ρ̂ −ρ =
∑n

s=2(̂us −ρûs−1)̂us−1∑n
s=2 û2

s−1

=
∑n

s=2 εs ûs−1∑n
s=2 û2

s−1

+
∑n

s=2 ûs−1
[
m(xs)− m̂(xs)+ρ {m̂(xs−1)−m(xs−1)}]∑n

s=2 û2
s−1

=: R1n + R2n . (A.17)

As Vn = 1
n
∑n

t=1
[
m̂(xt )−m(xt )

]2 = OP
{
nαh2β + (nh2)−1/2} by (3.5) of Theorem 3.2,

it follows from 1
n
∑n

t=1 u2
t → (1−ρ2)−1σ 2,a.s., that 1

n
∑n

s=2 û2
s−1 →P (1−ρ2)−1σ 2,

whenever nαh2β → 0 and nh2 → ∞. This, together with Hölder’s inequality, yields that

|R2n | ≤ 2(1+ρ2)1/2V 1/2
n /

⎛⎝ n∑
s=2

û2
s−1

⎞⎠1/2

= OP

{
nα/2hβ + (nh2)−1/4

}
.

On the other hand, by recalling Assumption 2.2, it is readily seen that R1n = OP (n−1/2).
Taking these facts into (A.17), we obtain (2.6).

We next prove (2.7). We may write

m̂1(x)−m(x) = ρ̂
∑n

t=1
[
m̂1(xt−1)−m(xt−1)

]
K [(xt − x)/h]∑n

t=1 K [(xt − x)/h]

+ (ρ − ρ̂)
∑n

t=1 ut−1 K [(xt − x)/h]∑n
t=1 K [(xt − x)/h]

+
∑n

t=1
[
m(xt )−m(x)

]
K [(xt − x)/h]∑n

t=1 K [(xt − x)/h]
+
∑n

t=1 εt K [(xt − x)/h]∑n
t=1 K [(xt − x)/h]

:= ρ̂ I1n + (ρ − ρ̂) I2n + I3n + I4n .

Furthermore, we may divide I1n into

I1n = 1∑n
t=1 K [(xt − x)/h]

×
⎧⎨⎩

n∑
t=1

K [(xt − x)/h]

∑n
s=1[m(xs)−m(xt−1)]K [(xs − xt−1)/h]∑n

s=1 K [(xs − xt−1)/h]

+
n∑

t=1

K [(xt − x)/h]

∑n
s=1 us K [(xs − xt−1)/h]∑n

s=1 K [(xs − xt−1)/h]

⎫⎬⎭
:= I1n1 + I1n2.
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Using Lemma A.3 and (2.6), we have

(ρ − ρ̂ )

⎛⎝ n∑
t=1

K [(xt − x)/h]

⎞⎠1/2

I2n →P 0

and (with ρ = 0 in Lemma A.3)⎛⎝ n∑
t=1

K [(xt − x)/h]

⎞⎠1/2

I4n →D N
(

0,σ 2
2

)
.

Using (A.14) and 1√
nh

∑n
t=1 K [(xt − x)/h] →D φ−1 LG(1,0), we have

⎛⎝ n∑
t=1

K [(xt − x)/h]

⎞⎠1/2

|I3n |

≤ C (nh2+4β)1/4

⎛⎝ 1√
nh

n∑
t=1

K [(xt − x)/h]

⎞⎠1/2

= oP (1).

Similarly, by recalling that K has a compact support, we obtain⎛⎝ n∑
t=1

K [(xt − x)/h]

⎞⎠1/2

|I1n1|

≤ Chβ

⎛⎝ n∑
t=1

K [(xt − x)/h]

⎞⎠−1/2 n∑
t=1

(1+|xt |α) K [(xt − x)/h]

≤ C (nh2+4β)1/4

⎛⎝ 1√
nh

n∑
t=1

K [(xt − x)/h]

⎞⎠1/2

= oP (1).

Combining all the above facts, to prove (2.7), it suffices to show that

I1n2 = oP [(nh2)−1/4]. (A.18)

To this end, for each fixed x , write

�1n =
⎧⎨⎩ω :

n∑
s=1

K [(xs − x)/h] ≥ √
nhδn

⎫⎬⎭ ,

�2n =
⎧⎨⎩ω : inf

t=1,2,...,n

n∑
s=1

K [(xs − xt )/h] ≥ √
nhδn

⎫⎬⎭ ,

where δn ↓ 0 is chosen later and ω denotes the sample points. As P(�̄1n ∪ �̄2n) → 0 by
(3.4) and Lemma A.2, the result (A.18) will follow if we prove

I�1n (ω) I�2n (ω) I1n2 = oP [(nh2)−1/4], (A.19)

where IA(ω) denotes the indicator function.
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Recall that us =∑s
k=1 ρs−kεk . Then, I1n2 can be rewritten as

I1n2 = 1∑n
t=1 K [(xt − x)/h]

n∑
s=1

us Jns

= 1∑n
t=1 K [(xt − x)/h]

n∑
k=1

εk

n∑
s=k

ρs−k Jns ,

where

Jns =
n∑

t=1

K [(xs − xt−1)/h] K [(xt − x)/h]∑n
s=1 K [(xs − xt−1)/h]

.

It follows easily from the conditional arguments and Hölder’s inequality that

E
[
I�1n (ω) I�2n (ω) I2n2

]2 ≤ C

(nh2δn)2

n∑
k=1

E

⎛⎝ n∑
s=k

ρs−k J∗
ns

⎞⎠2

≤ C

(nh2δn)2

n∑
k=1

n∑
s=k

ρs−k
n∑

s=k

ρs−k E J∗2
ns

≤ nC

(nh2δn)2
max

1≤s≤n
E J∗2

ns , (A.20)

where

J∗
ns =

n∑
t=1

K [(xs − xt−1)/h] K [(xt − x)/h].

Simple calculations show that, by letting
∑ j

k=i = 0 if j < i ,

E J∗2
ns = E

⎛⎝ n∑
t=1

K [(xs − xt−1)/h] K [(xt − x)/h]

⎞⎠2

≤ 4E

⎧⎨⎩
s−1∑
t=1

K [(xs − xt−1)/h] K [(xt − x)/h]

⎫⎬⎭
2

+4E

⎧⎨⎩
n∑

t=s+1

K [(xs − xt−1)/h] K [(xt − x)/h]

⎫⎬⎭
2

+4E K 2[(xs − xs−1)/h] K 2[(xs − x)/h]

:= T1n + T2n + T3n .

Assume t1 < t2 ≤ s − 1. Recall that K (x) has a compact support. It follows from
Lemma A.1 with p(x) = K (x − xt1−1/h)K (x − xt2−1/h) that
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E
{

K [(xs − xt1−1)/h]K [(xs − xt2−1)/h] | Ft2
}

≤ Ch√
s − t2

∫ ∞
−∞

K [y + (xt2 − xt1−1)/h]K [y + (xt2 − xt2−1)/h]dy

≤ Ch√
s − t2

∫ ∞
−∞

K (y)K [y + (xt2−1 − xt1−1)/h]dy, a.s.

This, together with the repeatedly similar utilization of Lemma A.1, yields that, for
t1 < t2 ≤ s −1,

�s,t1,t2 := E
{

K [(xs − xt1−1)/h]K [(xs − xt2−1)/h]K [(xt1 − x)/h]K [(xt2 − x)/h]
}

≤ Ch√
s − t2

∫ ∞
−∞

E
{

K [y + (xt2−1 − xt1−1)/h]

× K [(xt1 − x)/h]K [(xt2 − x)/h]
}

K (y)dy

≤ Ch2
√

s − t2

∫ ∞
−∞

E
{

K [y + (xt2−1 − xt1−1)/h]K [(xt1 − x)/h]
}

K (y)dy

....

≤ Ch4
√

s − t2

1√
t2 − t1

1√
t1

.

Similarly, for t1 = t2 < s −1,

�s,t1,t1 = E
{

K 2[(xs − xt1−1)/h]K 2[(xt1 − x)/h]
}

≤ Ch2
√

s − t1

1√
t1

.

We now obtain, for any 1 ≤ s ≤ n,

T1n =
s−2∑
t1=1

�s,t1,t1 +2
∑

1≤t1<t2≤s−2

�s,t1,t2

≤
s−2∑
t1=1

Ch2
√

s − t1

1√
t1

+
∑

1≤t1<t2≤s−2

Ch4
√

s − t2

1√
t2 − t1

1√
t1

≤ Ch2(1+√
nh2).

Similarly we may prove

T2n + T3n ≤ Ch2(1+√
nh2).

Combining all these estimates, it follows from (A.20) that

E
[
I�1n (ω) I�2n (ω) I2n2

]2 ≤ Cδ−2
n
[
(nh2)−1 +n−1/2]= o[(nh2)−1/2],

by choosing δn = min{(nh2)1/8,h−1/4} → ∞, whenever h → 0 and nh2 → ∞. This
proves (A.18) and also completes the proof of Theorem 2.2. �

A.3. Proof of Theorem 3.1

The idea for the proof of (3.3) is similar to that of Liu et al. (2014), but there are some
essential differences in details. We restate here for the convenience of reading. Without
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loss of generality, we assume τ = ∫ g(x)dx = 1. Define ḡ(x) = g(x)I{|x | ≤ nζ /2}, where
0 < ζ < 1 − δ0/γ is small enough such that nζ /cn ≤ min{n−δ0 ,n−ε0/2}, where γ and δ0
are given in Assumptions 3.1 and 3.2, respectively. Further let ε = n−α with 0 < α < δ0/2
and define a triangular function

gε(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, |y| > ε,

y + ε

ε2
, −ε ≤ y ≤ 0,

ε − y

ε2
, 0 ≤ y ≤ ε,

It suffices to show that:

�1n := max
1≤k≤n

∣∣∣cn

n

n∑
j=1

{
g[cn(xj,n − xk,n)]− ḡ[cn(xj,n − xk,n)]

}∣∣∣
= oa.s.(log−l n), (A.21)

�2n := max
1≤k≤n

∣∣∣cn

n

n∑
j=1

ḡ[cn(xj,n − xk,n)]− 1

n

n∑
j=1

gε(xj,n − xk,n)
∣∣∣

= oa.s.(log−l n), (A.22)

�3n := sup
0≤t≤1

∣∣∣ 1
n

n∑
j=1

gε(xj,n − x[nt],n)− Lnt

∣∣∣= oP (log−l n). (A.23)

The proof of (A.21) is simple. Indeed, by recalling supx |x |γ |g(x)| < ∞, it follows that

�1n ≤ cn sup
|x |≥nζ /2

|g(x)|I{|x | > nζ /2} ≤ C n−ζ γ cn = o(log−l n)

as nζ /cn ≤ n−δ0 and γ > δ0/(1− ζ ).
We next prove (A.23). Recalling

∫∞
−∞ gε(y)dy = 1, it follows from the definition of

occupation time and (3.2) in Assumption 3.2 that∣∣∣∫ 1

0
gε [G(s)− G(t)]ds − LG(1,G(t))

∣∣∣
=
∣∣∣∫ ∞

−∞
gε [y − G(t)]LG(1, y)dy − LG(1,G(t))

∣∣∣
≤
∫ ∞
−∞

gε(y)|LG(1, y + G(t))− LG(1,G(t))|dy

≤ Cεξ a.s.

for some ξ > 0, uniformly for t ∈ [0,1]. Hence, by noting∫ 1

0
gε [Gn(s)− Gn(t)]ds − Lnt =D

∫ 1

0
gε [G(s)− G(t)]ds − LG(1,G(t)),
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due to {Gn(t); 0 ≤ t ≤ 1} =D {G(t); 0 ≤ t ≤ 1},n ≥ 1, we have

P

(∣∣∣∫ 1

0
gε [Gn(s)− Gn(t)]ds − Lnt

∣∣∣≥ log−l−1 n

)

= P

(∣∣∣∫ 1

0
gε [G(s)− G(t)]ds − LG(1,G(t))

∣∣∣≥ log−l−1 n

)
= o(1), (A.24)

as n → ∞. This, together with Assumption 3.2 and the fact that |gε(y) − gε(z)| ≤ ε−2

|y − z|, implies that

∣∣∣ 1
n

n∑
j=1

gε(xj,n − x[nt],n)− Lnt

∣∣∣
≤
∣∣∣∫ 1

0
gε(x[ns],n − x[nt],n)ds −

∫ 1

0
gε [Gn(s)− Gn(t)]ds

∣∣∣+2/(εn)

+
∣∣∣∫ 1

0
gε [Gn(s)− Gn(t)]ds − Lnt

∣∣∣
= Oa.s(ε

−2n−δ0)+2/(εn)+ OP (log−l−1 n)

≤ OP (n2α−δ0 + log−l−1 n) = oP (log−l n),

uniformly for t ∈ [0,1], as α < δ0/2. This yields (A.23).
We finally prove (A.22), let ḡεn(z) be the step function which takes the value

gε(mnζ /cn) for z ∈ [mnζ /cn, (m + 1)nζ /cn),m ∈ Z. It suffices to show that, uniformly
for all 1 ≤ k ≤ n, (letting ḡj (y) = ḡ(cn(xj,n − xk,n)− y)):

�1n(k) :=
∣∣∣ 1
n

n∑
j=1

gε(xj,n − xk,n)− 1

n

n∑
j=1

ḡεn(xj,n − xk,n)

∫ ∞
−∞

ḡj (y)dy
∣∣∣

= oa.s.(log−l n), (A.25)

�2n(k) :=
∣∣∣ 1
n

n∑
j=1

ḡεn(xj,n − xk,n)

∫ ∞
−∞

ḡj (y)dy −
∫ ∞
−∞

1

n

n∑
j=1

gε(y/cn)ḡj (y)dy
∣∣∣

= oa.s.(log−l n), (A.26)

�3n(k) :=
∣∣∣∫ ∞

−∞
1

n

n∑
j=1

gε(y/cn)ḡj (y)dy − cn

n

n∑
j=1

ḡ[cn(xj,n − xk,n)]
∣∣∣

= oa.s.(log−l n). (A.27)

In fact, by noting that |gε(y)− gε(z)| ≤ ε−2|y − z| and

|ḡε n(y)− gε(z)| ≤ |ḡε n(y)− gε(y)|+ |gε(y)− gε(z)|
≤ Cε−2(nζ /cn +|y − z|), (A.28)

(A.25) follows from that, uniformly for all 1 ≤ j,k ≤ n,
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26 OLIVER LINTON AND QIYING WANG∣∣∣gε(xj,n − xk,n)− ḡεn(xj,n − xk,n)

∫ ∞
−∞

ḡj (y)dy
∣∣∣

≤
∣∣∣gε(xj,n − xk,n)− ḡεn(xj,n − xk,n)

∣∣∣+|ḡεn(xj,n − xk,n)|
∣∣∣1−

∫ ∞
−∞

ḡj (y)dy
∣∣∣

≤ Cε−2nζ /cn +C1ε−1 n−ζ(γ−1) = oa.s.(log−l n),

where we have used the fact that (recalling
∫

g(y)dy = 1),∣∣∣1−
∫ ∞
−∞

ḡj (y)dy
∣∣∣≤ ∣∣∣∫ ∞

−∞
g(y)I{|y| > nζ /2}dy

∣∣∣≤ C n−ζ(γ−1)

due to supy |y|γ |g(y)| < ∞ and γ > 1.
By the definition of ḡj (y) and (A.28) again, (A.26) follows from that, uniformly for all

1 ≤ j,k ≤ n,∫ ∞

−∞
|ḡεn(xj,n − xk,n)ḡj (y)− gε(y/cn)ḡj (y)|dy

≤
(∫ ∞

−∞
g(y)dy

)(
sup

y

∣∣∣ḡεn(xj,n − xk,n)− gε(y/cn)
∣∣∣ I{|cn(xj,n − xk,n)− y| ≤ nζ /2}

)
≤ C sup

y

[
ε−2(nζ /cn +|xj,n − xk,n − y/cn |) I

{∣∣∣xj,n − xk,n − y/cn

∣∣∣≤ nζ /(2cn)
}]

≤ Cε−2(nζ /cn) = oa.s.(log−l n).

As for (A.27), the result follows from that, by using Lemma A.5,

�3n(k) =
∣∣∣∫ ∞

−∞
1

n

n∑
j=1

{
ḡ[cn(xj,n − xk,n)− y]− ḡ[cn(xj,n − xk,n)]

}
gε(y/cn)dy

∣∣∣
≤ sup

t
sup

|s−t |≤cnε

∣∣∣ cn

n

n∑
j=1

{
ḡ(cn xj,n + s)− ḡ(cn xj,n + t)

}∣∣∣
×
(

1

cn

∫ ∞
−∞

gε(y/cn)dy

)
= oa.s.(log−l n) (A.29)

uniformly for 1 ≤ k ≤ n.
The proof of Theorem 3.1 is complete. �

A.4. Proof of Theorem 3.2

To prove (3.4), we make use of Theorem 3.1. First note that K (x) satisfies Assumption 3.1
as it has a compact support. Let xk,n = xk√

nφ
,1 ≤ k ≤ n, where xk satisfies Assumption 2.1

with
∑∞

i=0 i |φi | < ∞. As shown in Chan and Wang (2014), xk,n satisfies Assumption 3.3.
xk,n also satisfies Assumption 3.2. Explicitly we will show later that {νj , j ∈ Z} can be
redefined on a richer probability space which also contains a standard Brownian motion
W1(t) and a sequence of stochastic processes G1n(t) such that {G1n(t),0 ≤ t ≤ 1} =D
{G1(t),0 ≤ t ≤ 1} for each n ≥ 1 and

sup
0≤t≤1

|x[nt],n − G1n(t)| = o(n−δ0), a.s., (A.30)
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for some δ0 > 0, where G1(t) = W1(t) + κ
∫ t

0 eκ(t−s)W1(s)ds. We remark that G1(t)
is a continuous semimartingale having a local time LG1(t, x) that satisfies (3.2). To see
this claim, it suffices to use Corollary 1.8 of Revuz and Yor (1994, p. 226) with minor
modifications.

Due to these facts, it follows from Theorem 3.1 that

sup
0≤t≤1

∣∣∣ 1√
nh

n∑
k=1

K
[
(xk − x[nt])/

√
nφ
]− Lnt

∣∣∣= oP (log−l n), (A.31)

for any l > 0, h → 0, and n1−ε0 h2 → ∞ where ε0 > 0 can be taken arbitrarily small and

Lnt = lim
ε→0

1

2ε

∫ 1

0
I (|G1n(s)− G1n(t)| ≤ ε)ds.

Note that, for each n ≥ 1, {Lnt ,0 ≤ t ≤ 1} =D {Lt ,0 ≤ t ≤ 1} due to {G1n(t),0 ≤
t ≤ 1} =D {G1(t),0 ≤ t ≤ 1}, where Lt = limε→0

1
2ε

∫ 1
0 I (|G1(s)− G1(t)| ≤ ε)ds. The

result (3.4) now follows from (A.31) and the well known fact that P(inf0≤t≤1 Lt = 0) = 0,
due to the continuity of the process G1(s).

To end the proof of (3.4), it remains to show (A.30). In fact, the classical strong approx-
imation theorem implies that, on a richer probability space,

sup
0≤t≤1

∣∣∣ [nt]∑
j=1

νj − W1(nt)
∣∣∣= o

[
n1/(2+δ)

]
, a.s. (A.32)

See, e.g., Csörgö and Révész (1981). Taking this result into consideration, the same tech-
nique as in the proof of Phillips (1987) (see also Chan and Wei, 1987) yields

sup
0≤t≤1

∣∣ [nt]∑
j=1

λ[nt]− j νj − G∗
1n(t)

∣∣= o
[
n1/(2+δ)], a.s., (A.33)

where G∗
1n(t) = W1(nt)+ κ

∫ t
0 eκ(t−s)W1(ns)ds. Let G1n(t) = G∗

1n(t)/
√

n. It is readily
seen that {G1n(t),0 ≤ t ≤ 1} =D {G1(t),0 ≤ t ≤ 1} due to {W1(nt)/

√
n,0 ≤ t ≤ 1} =D

{W1(t),0 ≤ t ≤ 1}. Now, by virtue of (A.6), it follows that

sup
0≤t≤1

|x[nt],n − G1n(t)| ≤ sup
0≤t≤1

|a[nt] x ′
[nt]√

nφ
− G1n(t)|+ sup0≤t≤1 |x ′′

[nt] + x ′′′
[nt]|√

nφ

≤ C√
n

sup
0≤t≤1

|
⎛⎝[nt]∑

i=0

φi λ
−i −φ

⎞⎠ [nt]∑
j=1

λ[nt]− j νj |

× 1√
n

sup
0≤t≤1

∣∣∣ [nt]∑
j=1

λ[nt]− j νj − G∗
1n(t)

∣∣∣+ Oa.s.(n
−δ/2(2+δ))

= o(n−δ0), a.s.,
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for some δ0 > 0, where we have used the fact: due to max1≤i≤n |λ−i − 1| ≤ Cn−1/2 and

max1≤k≤n |∑k
j=1 λk− j νj | = o(

√
n logn),a.s., it follows from

∑∞
i=0 i |φi | < ∞ that

sup
0≤t≤1

|
⎛⎝[nt]∑

i=0

φi λ
−i −φ

⎞⎠ [nt]∑
j=1

λ[nt]− j νj |

≤ C max
1≤k≤√

n
|

k∑
j=1

λk− j νj |+ O
(√

n logn
)

max√
n≤k≤n

|
k∑

i=0

φi λ
−i −φ|

≤ OP (n1/4
√

logn)+ O(
√

n logn)

⎛⎝∣∣∣
√

n∑
i=0

φi (λ
−i −1)

∣∣∣+ ∞∑
i=√

n

|φi |
⎞⎠

= O(n1/4
√

logn), a.s.

This proves (A.30) and also completes the proof of (3.4).
We finally prove (3.5). Simple calculations show that

Vn ≤ 2

n

n∑
t=1

(J 2
1t + J 2

2t ), (A.34)

where

J1t =
∑n

s=1
[
m(xs)−m(xt )

]
K [(xs − xt )/h]∑n

s=1 K [(xs − xt )/h]
, J2t =

∑n
s=1 us K [(xs − xt )/h]∑n

s=1 K [(xs − xt )/h]
.

Assumption 2.4(a) implies that, when |xs − xt | ≤ M h and h is sufficiently small,

|m(xs)−m(xt )| ≤ C |xs − xt |β(1+|xt |α) ≤ C1hβ(1+|xt |α),

uniformly on s, t . Using this fact and K has a compact support, it follows that

1

n

n∑
t=1

J 2
1t ≤ C h2β

n

n∑
t=1

(1+|xt |2α) = OP (nαh2β). (A.35)

As for J2t , by recalling us =∑s
k=1 ρs−kεk , we have

1

n

n∑
t=1

J 2
2t ≤

⎧⎨⎩ inf
t=1,...,n

n∑
s=1

K [(xs − xt )/h]

⎫⎬⎭
−1

1

n

n∑
t=1

J∗2
2t ,

where

J∗
2t =

∑n
k=1 εk

∑n
s=k ρs−k K [(xs − xt )/h](∑n

s=1 K [(xs − xt )/h]
)1/2

.
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It follows from Assumption 2.2 that, for 1 ≤ t ≤ n,

E(J∗2
2t | x1, . . . , xn) ≤

∑n
k=1 E(ε2

k | x1, . . . , xn)
{∑n

s=k ρs−k K [(xs − xt )/h]
}2∑n

s=1 K [(xs − xt )/h]

≤ C
∑n

k=1
∑n

s=k ρs−k K 2[(xs − xt )/h]
∑n

s=k ρs−k∑n
s=1 K [(xs − xt )/h]

≤ C1,

where we have used the fact that
∑∞

k=0 ρk = 1/(1 − ρ) < ∞. Hence 1
n
∑n

t=1 J∗2
2t =

OP (1). Due to this fact and (3.4), we get

1

n

n∑
t=1

J 2
2t = OP [(nh2)−1/2]. (A.36)

Combining (A.34)–(A.36), we prove (3.5) and hence complete the proof of Theorem 3.2.�
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