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NONPARAMETRIC
TRANSFORMATION REGRESSION
WITH NONSTATIONARY DATA

OLIVER LINTON
University of Cambridge

QiviNG WANG
University of Sydney

We examine a kernel regression estimator for time series that takes account of the
error correlation structure as proposed by Xiao et al. (2003, Journal of the Amer-
ican Statistical Association 98, 980-992). We show that this method continues to
improve estimation in the case where the regressor is a unit root or a near unit root
process.

1. INTRODUCTION

This paper is concerned with estimation of a nonstationary nonparametric cointe-
grating regression. The theory of linear cointegration is extensive and originates
with the work of Engle and Granger (1987) (see also Stock, 1987; Johansen,
1988; Phillips, 1991). Wang and Phillips (2009a, 2009b, 2011) recently consid-
ered the nonparametric cointegrating regression. They analyze the behavior of
the standard kernel estimator of the cointegrating relation/nonparametric regres-
sion when the covariate is nonstationary. They showed that under self (random)
normalization, the estimator is asymptotically normal. See also Phillips and
Park (1998), Karlsen and Tjgstheim (2001), Karlsen, Myklebust, and Tjgstheim
(2007), Schienle (2008), and Cai, Li, and Park (2009).

We extend this work by investigating an improved estimator in the case where
there is autocorrelation in the error term. Standard kernel regression smoothers do
not take account of the correlation structure in the covariate x; or the error process
u, and estimate the regression function in the same way as if these processes were
independent. Furthermore, the variance of such estimators is proportional to the
short-run variance of u;, auz =var(u,), and does not depend on the regressor or er-
ror autocovariance functions y, (j) = cov(x;, x;—;), yu(j) =cov(us, u;—;), j #0.
Although the time series properties do not affect the asymptotic variance of the
usual nonparametric estimators, the error structure can be used to construct a more
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efficient estimator. Xiao, Linton, Carroll, and Mammen (2003) proposed a more
efficient estimator of the regression function based on a prewhitening transforma-
tion. The transform implicitly takes account of the autocorrelation structure. They
obtained an improvement in terms of variance over the usual kernel smoothers.
Linton and Mammen (2008) proposed a type of iterated version of this procedure
and showed that it attains higher efficiency. Both these contributions assumed that
the covariate process was stationary and weakly dependent. We consider here the
case where x; is nonstationary: of the unit root or close to unit root type. We allow
the error process to have some short term memory, which is certainly common-
place in the linear cointegration literature. We show that the Xiao et al. (2003)
procedure can improve efficiency even in this case and one still obtains asymp-
totic normality for the self-normalized estimator, which allows standard inference
methods to be applied. In order to establish our results we require a new strong
approximation result and use this to establish the L, convergence rate of the usual
kernel estimator.

2. THE MODEL AND MAIN RESULTS
Consider a nonlinear cointegrating regression model
yl:m('xl‘)—i_ul‘) t=1929"'9n: (2'1)

where u; = pu;—1 + ¢; with |p| < 1 and x; is a nonstationary regressor. The con-
ventional kernel estimator of m(x) is defined as

> ys Kl(xs—x)/h]
2?21 K[(xs _x)/h] ’

where K (-) is a nonnegative real function and the bandwidth parameter 2 = h,, — 0
as n — 0o. Applying the Cochrane—Orcutt transformation to (2.1), we obtain

m(x) =

Vi = pYyi—1+pm(x—1) =m(x;) +€. (2.2)

It is expected that a two-step estimator of m(x) by using (2.2) may achieve effi-
ciency improvements over the usual estimator 7 (x) that uses (2.1). The strategy
to provide the two-step estimator is as follows:

Step 1: Construct an estimator of p by
Z?:z i‘\sﬁs—l
n =2 ’
ZS=2 Ug_q

where i, = y, —m(x;).

5=

Step 2: Construct an estimator of m(x), say m(x), by using (2.2) and the
kernel method, but replace the unknown quantity m (x) in (2.2) by m(x).
We now have a two-step estimator 7711 (x) of m(x), defined as follows:

D=1 [yt —Pyi-1 +ﬁ”A1(Xt—l)] K[(xr—x)/h]
21 Kl —x)/h] '

my(x) =
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To establish our claim that 711 (x) achieves efficiency improvements over the usual
estimator 71 (x), we make the following assumptions.

Assumption 2.1. x; = Ax;—1 + &, (xo =0), where A =14 17/n with ¢ <0
being a constant and {{;, j > 1} is a linear process defined by

&= hrvj-i (2.3)
k=0

where o £ 0, ¢ =D 72 P #0, and > 77 || < 00, and {v;, —co < j < 00}
is a sequence of i.i.d. (independent and identically distributed) random variables
with Evg =0, E vg =1,E |v0|2+‘3 < oo for some 0 > 0; the characteristic function

o(1) of v satisfies [0 (14 t]) o (1)|dt < oc.

Assumption 2.2. u; = pu,—1 +¢, with |p| < 1 and €g = up =0, where F, ; =
o(€o,€1,...,€,X1,...,%,) and {e,F, })_, forms a martingale difference se-
quence satisfying, as n — oo first, and then m — oo,

max |E(e2|Fni—1)—02| =0, a.s.,
m<t<n

where 62 is a given constant, and sup ., ,~1 E(l€|?|F,.1—1) < 0o a.s. (almost

surely) for some g > 2.

Assumption 2.3. (a) ffooo K (s)ds =1 and K () has a compact support; (b) For
any x,y € R, |K(x) — K(y)| < C|x —y|, where C is a positive constant; (c) For
p=>2,

/y”K(y)dy #0, /yiK(y)dy=0, i=12,...,p—1L

Assumption 2.4. (a) There exist a0 < £ < 1 and a > 0 such that
Im(x+y)—m@)| < CA+1x|) |yl
for any x € R and |y| sufficiently small, where C is a positive constant; (b) For

given fixed x, m(x) has continuous p + 1 derivatives in a small neighborhood of
x, where p > 2 is defined as in Assumption 2.3(c).

We have the following main results.

THEOREM 2.1. Suppose that Assumptions 2.1, 2.2, 2.3(a), and 2.4(a) hold.
Then, we have

(ZK[(X, —x)/h])l/z[ﬁz(x) —m@)] >p NO,oD), 2.4)
=1
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for any h satisfying nh®> — oo and nh***# — 0, where 012 =(1-p>~lo?
0 Kz(s dt. If in addition Assumptions 2.3(c) and 2.4(b) hold, then
JZo K2 (s)dt. If p ( (
" 1/2
A hpm(p)(x 00
ZK[(xt—x)/h]) m(x)—m(x)——,) / YPK (y)dy
il p: -0
—p NQ,a]), (2.5)

for any h satisfying nh*> — oo and nh***P = 0(1).

THEOREM 2.2. Suppose that Assumptions 2.1, 2.2, 2.3(a) and (b), 2.4(a), and
> 2oilgil < oo hold. Then, we have

p—p=0p{n®?*h? + (nn* =14, (2.6)

and with 022 =02 ffooo K2(s)d1,

n 12
(ZK[(x, —x)/h]) [ () =m ()] = b N(O,03), @.7)
t=1

for any h satisfying that nh*t** — 0, n*h*! — 0, and n'=h* — oo for some
€0 > 0. If in addition Assumptions 2.3(c) and 2.4(b) hold, then

n 12 P (P) 00
(ZK[(x,—x)/h]) [wx)—m(x)—h’"p—,(") / yPK(y)dy}

t=1

—p N(0,03), (2.8)

for any h satisfying that nh>*4? = 0 (1), n*h*# = 0, and n'~0h?> — oo for some
€o > 0.

Remark 1. Theorem 2.1 generalizes certain related results in previous articles.
See, for instance, Wang and Phillips (2009a, 2011), where the authors investigated
the asymptotics under p = 0 and v = 0. As noted in previous works, the condi-
tions on m(x) to establish our results are quite weak, in particular, a wide range
of regression functions m(x) are included in Assumption 2.4(a), like m(x) =1/
(140 |x)#), m(x) = (a+be*) /(1 +¢*), and m(x) =0 +brx + - -+ O x*1.

If we are only interested in the asymptotics of m(x), recent research has shown
that the information set F, ; = o (€, €1, ..., €, X1,...,X,) given in Assumption
2.2 can be reduced to F; = o (€9, €1, ..., €, X1, ..., X;), amore natural condition in
the framework of cointegration. We refer to Wang and Phillips (2009a) and Wang
(2014) for current developments. However, due to the involvement of x1, ..., x, in
the definition of 71 (x), it is difficult to weaken this restriction for the asymptotics
of m(x), which is provided in Theorem 2.2. Theorem 2.1 of this paper is only
stated to make a comparison with Theorem 2.2, which does not provide a general
result in this direction.
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Remark 2. As |p| < 1, Theorem 2.2 confirms the claim that /721 (x) achieves
efficiency improvements over the usual estimator 72(x) under certain additional
conditions on m(x) and the bandwidth 2. Among these additional conditions, the
requirement on the bandwidth 4 (that is, n“h? — 0 and n!~0n2 - 00, where
€o can be sufficiently small) implies that 0 < a < £, which in turn requires that
the rate at which m(x) diverges to oo in the tail is not faster than lx|"*# . In com-
parison with Theorem 2.1, this is a little bit restrictive but it is reasonable, due to
the fact that the consistency result (2.6) heavily depends on the following uniform
convergence

LS (i) = m) P = 0 ), 2.9)
n

t=1

where 0 < r, — 0 is a sequence of constants. As x; ~ +/f under our model, it
is natural for the restriction on the tail of m(x) to enable (2.9). The result (2.9)
is a consequence of Theorem 3.1 in the next section, which provides a strong
approximation result on the convergence to a local time process.

One referee argued that the condition n*h* — 0 can be weakened if the local
linear estimator /7 (x) is used in the definition of 71 (x) instead of m(x). Since
this improvement requires new limit theorems, we leave the topic for future work.

Remark 3. Consider model (2.1) with AR(k) errors, i.e., u; is assumed to be
strictly stationary satisfying

U = prig—1 +pauty—2 + -+ prlts—i + €, (2.10)
where max; <<k |pj| < 1. In this situation, similar to (2.2), we have

k

=D pilyi—j = mx— )l =mx) + e,
j=1

and, as in Step 2, we may construct a two-step estimator 175 (x) of m(x) as

S v = b pilyiej — e I} K [ —x)/ B
D=1 K[y —x)/ h] ’

ma(x) =

where (p1,..., ) is a Least Squares (LS) estimator of i; on i;—1, ;-2 ...,
Uik, where ti; = y, —m(x;).

If €j,j € Z, are assumed to be ii.d. random variables with Eey = 0 and
Eeg =¢2and ¢; are independent of x;, (2.4) and (2.5) hold true except that 012 is
replaced by

o
01*2:(02+pTy)/ K (s)dt,
—00
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where p = (pl,...,pk)T andy = (yl,...,yk)T with y; =cov(ui,ui4j),1<j<k.
Furthermore, (2.7) and (2.8) hold for 7 (x) being replaced by i, (x). Since we
generally have p'y > 0, /i (x) achieves efficiency improvements over 7 (x) un-
der model (2.1) with AR(k) errors (2.10). The proof of this claim is similar to
Theorems 2.1 and 2.2, but involves some complicated calculations. The details
are hence omitted.

3. STRONG APPROXIMATION TO LOCAL TIME

This section investigates the strong approximation to a local time process, which
provides a technical tool in the development of the uniform convergence such as
(2.9) for the kernel estimator m(x). As the conditions imposed are different, this
section can be read separately.

Let x¢,n,1 <k <n,n >1 be a triangular array, constructed from some under-
lying nonstationary time series and assume that there is a continuous limiting
Gaussian process G(t),0 <t < 1, to which x|, converges weakly, where [a]
denotes the integer part of a. In many applications, we let x; , =d,; !Xk, where
X, 1S a nonstationary time series, such as a unit root or long memory process,
and d,, is an appropriate standardization factor. This section is concerned with the
limiting behavior of the statistic S, (), defined by

n
C,
Su(6) == glen Kk = Xpurra)ls 1 €10, 1], 3.1)
n k=1

where ¢, is a certain sequence of positive constants and g is a real integrable
function on R. As noticed in the last section and previous research (see, e.g.,
Wang and Phillips, 2012), this kind of statistic appears in the inference for the
unknown regression function m(x) and its limiting behavior plays a key role in
related research fields.

The aim of this section is to provide a strong approximation result for the target
statistic. To achieve our aim, we make use of the following assumptions.

Assumption 3.1. sup, |x|” |g(x)| < oo for some y > 1, [%_|g(x)|dx < oo,
and |g(x) —g(y)| < C|x — y|, whenever |x — y| is sufficiently small on R.

Assumption 3.2. On a rich probability space, there exists a continuous semi-
martingale G (r) having a local time L (z,s) ! such that, for some & > 0,

IL(1,5)—Lg(1,0)| < Cls—t° a.s., (3.2)

and a sequence of stochastic processes G, (¢) such that {G,(¢);0 <t < 1} =p
{G();0 <t <1}foreachn > 1 and

sup |X[ur1,n — Ga )= Oa.s.(n_(so)
0<r<1

for some 0 < dp < 1.
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Assumption 3.3. Forall0 < j <k <n,n > 1, there exist a sequence of o -fields
Fi,n (define Fo , = o {¢, Q}, the trivial o-field) such that:

(i) xj, are adapted to F; , and, conditional on F; ,, [n/(k — j)]d(xk,n —Xjn)s
where 0 < d < 1, has a density /iy, (x) satisfying that Ay ; ,(x) is uni-
formly bounded by a constant K and

(ii) sup,cp |hk,~,~’n u+1)— hk,j,n(u)| < C min{|¢|, 1}, whenever n and k — j
are sufficiently large and 7 € R.

Assumption 3.4. There is an €y > 0 such that n~<0¢,, — oo and n~!*+<0¢, — 0.

The following is our main result.

THEOREM 3.1. Suppose that Assumptions 3.1-3.4 hold. Then, on the same
probability space as in Assumption 3.2, for any | > 0, we have

sup |8, (t) = 7 Ly | = op(log ™ n), 3.3)

0<t<l1

where T = ffooog(t)dt and L,; = lim¢_s¢ i fol I1(1Gn(s) = Gu(2)] < €)ds.

The rate obtained in (3.3) may not be optimal. We conjecture that the optimal
rate should have the form n=% , where Jd; > 0 is related to dgp > O given in As-
sumption 3.2. We are not able to establish the optimal rate due to the technical
difficulty. However, by noting {L,;;0 <t < 1} =p {Lg(1,G(t));0 <t < 1} due
to {G,(1);0<t <1} =p {G(r);0 <t < 1}, the result (3.3) is enough in many ap-
plications. To illustrate, we have the following theorem which provides the lower
bound of S, (¢) over ¢ € [0, 1]. As a consequence, we establish the result (2.9)
when x; satisfies Assumption 2.1.

THEOREM 3.2. Let x; be defined as in Assumption 2.1 with >"p2 k|| < oo.
Let Assumptions 2.3(a) and (b) hold. Then, for any n > 0, there exist M} > 0 and
no > 0 such that

P(s_li,lzlf n; K[(xt_xs)/h] 2 \/}Tlh/M]) 2 1_;/” (3.4)

.....

for all n > ng and h satisfying that h — 0 and n'~0h* — oo for some €y > 0.
Consequently, we have

1 n
V=~ [l —m()] = 0p{nh? + (n?)~V/?}, (3.5)

t=1

that is, (2.9) holds true if in addition n*h*f — 0.
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4. EXTENSION

We next propose another estimator that potentially can improve efficiency further,
following the method of Linton and Mammen (2008). Note that we can write

1
m(x)zm (27 (p) - PZ,+1(P)|Xz=X],

where: Z; (p) = yi — pyi—1 + pm(x;—1) and Z; (p) = yi — pyi—1 —m(x;). Let
m() p be initial cons1stent estimators of m(.) and p, and let y, = Z (p) —

PZ} (P, where: Z7 (p) = y; — pyi—1 + piit(xi—1) and Z; (p) = y; — pyi—1 —
m(x;). Then let

1 05 Kl —x)/ A
1+52 S K (v —x)/h]

;n\eff(x) =

We claim that the following result holds. The proof is similar to earlier results and
is omitted.

THEOREM 4.1. Suppose in addition to Assumptions 2.1, 2.2, 2.3(a) and (b),
and 2.4(a), that 322 il¢i| < oo holds. Then, for any h satisfying nh***# — 0,
n®h* — 0 and n'=h? — oo for some €y > 0, we have

n 12
(ZK[(x, —x)/h]) [resr(x) =m(x)] = p N(©0,03),

t=1

where o3 = (1+p>)~! [ _K?(s)dt.

We have 0‘32 < 022 < 012, and so my(x) is more efficient (according to asymp-

totic variance) than m;(x), which itself is more efficient than 7 (x).

5. MONTE CARLO SIMULATION

We investigate the performance of our procedure on simulated data. We chose a
similar design to Wang and Phillips (2009b) except that we focus on error auto-
correlation rather than contemporaneous endogeneity. We suppose that

ye=m(x;)+ou;, u = pouts—1+¢&

with m(x) = x and m(x) = sin(x), where x;, = x,—1 + #;, with 5, ~ N(0, 1),
o = 0.2, and & ~ N(0, 1); the two errors are mutually independent. We used
the Epanechnikov kernel K (1) = 0.75(1 — u?)1(Ju| < 1) with the bandwidth
h = n~b. We examine a range of values of pg € {—1,-0.9,...,0.9,0.95, 1}
(although we only show the results for nonnegative values of pg) and the
bandwidth constant bc € (10/18,1/2,1/3,1/5,1/10}. We consider n = 500,
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TABLE 1. n =500 and m(x) = x

p/bc  10/18 1/2 1/3 1/5 1/6 1/10 10/18 12 1/3 1/5 1/6 1/10
0.00  0.1613 01311 00621 00343 00302 00257 0.1613  0.1311 00621 00343  0.0302  0.0257
0.10  0.1615  0.1313 00622 00344 00304 00260 0.1615 0.1313 00623  0.0345  0.0304  0.0260
020  0.1619  0.1317 00626 00347 00307 00263 0.1620 0.1319 00628 00349  0.0308  0.0263
030  0.1627 01325 00631 00351 00311 00268 0.1630 0.1329 00637 00355  0.0314  0.0269
040  0.1639  0.1337 00640  0.0358 00317 00275 0.1645  0.1345 00650  0.0365 00323  0.0277
0.50  0.1657  0.1355 00652  0.0367 00326 00284  0.1668  0.1370  0.0671  0.0380  0.0337  0.0289
0.60  0.1686  0.1383  0.0672  0.0382 00341 00299  0.1705  0.1408  0.0704  0.0404  0.0359  0.0308
070 0.1736  0.1432 00707  0.0409  0.0366  0.0324  0.1768  0.1475  0.0759  0.0445  0.0397  0.0342
0.80  0.1836  0.1530  0.0778  0.0466  0.0422  0.0379  0.1894  0.1608  0.0872  0.0530  0.0477  0.0413
090 02130 0.1823  0.1010  0.0661 00612 00564 02261  0.1998  0.1209  0.0796  0.0730  0.0644
0.95 02717 02423 01538  0.1126  0.1068  0.1011 02969 02757  0.1909  0.1378  0.1288  0.1168
1.00  3.1401  3.3402 33938 32839 32661  3.2429 33769  3.6514  3.7446 35232 34795  3.4196

NOISS3IHDIY NOILVINHO4SNVHL JIHLINVHVYINON
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TABLE 2. n = 1,000 and m(x) = x

my mj

p/bc  10/18 1/2 1/3 1/5 1/6 1/10 10/18 12 1/3 1/5 1/6 1/10

0.00  0.1610 01269 00522 00251 00213 00172  0.1610  0.1269 00522 00251  0.0213  0.0171
0.10 01611 01270 00524 00253 00214 00174  0.1612  0.1271 00524  0.0253  0.0215  0.0174
020  0.616 01275 00527  0.0256 00217 00177  0.1617  0.1276  0.0529  0.0257  0.0218  0.0177
030  0.1623  0.1282 00532  0.0259 00221 00181  0.1626  0.1286  0.0538  0.0263  0.0224  0.0182
040  0.1635  0.1294 00540  0.0265 00226 00186  0.1642  0.1302 00551  0.0272  0.0232  0.0189
0.50  0.1654  0.1311 00552  0.0273 00234 00194  0.1665 0.1327 00571  0.0286  0.0245  0.0199
0.60  0.1683  0.1339 00570  0.0287  0.0247 00207 0.1703  0.1367  0.0603  0.0309  0.0266  0.0216
070 0.1735  0.1388  0.0602  0.0310  0.0270  0.0229  0.1768  0.1435  0.0658  0.0347  0.0301  0.0246
0.80  0.1838  0.1486  0.0668 00363  0.0320 0.0278  0.1899  0.1572  0.0769  0.0427  0.0375  0.0310
090 02147  0.1784 00887 00543  0.0496  0.0449 02287  0.1979  0.1107 00682  0.0615  0.0525
095 02762 02392 01386  0.0978  0.0922 00867 03041 02780  0.1814  0.1248  0.1153  0.1024
1.00 61783  6.6740 69673 68136 67811 67500  6.6138 72842  7.5941 72184  7.1329  7.0197

oL
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TABLE 3. Ep, m(x) = sin(x)

n = 1,000 n =500

p/bc  10/18 1/2 1/3 1/5 1/6 1/10 10/18 1)2 1/3 1/5 1/6 1/10

0.00 —0.0137 —0.0138 —0.0149 —0.0163 —00161 —00124 —0.0179 —0.0181 —0.0213 —0.0230 —0.0225 —0.0179
0.10 00310 00405 00637 00726 00741 00789  0.0270 00356  0.0549  0.0632  0.0649  0.0702
020 00756  0.0948  0.1424  0.1616  0.1645  0.1702  0.0720  0.0893  0.1311  0.1494  0.1524  0.1585
030  0.1204  0.1492 02212 02507 02550 02618  0.1169  0.1432 02075 02358 02401  0.2471
040  0.1652 02037 03000 03400 03457 03538  0.1619  0.1971 02841 03225 03282 03363
050 02100 02583 03791 04296 04368 04464 02070 02511 03608 04095 04167 04263
0.60 02550 03131 04583 05196 05284 05398 02521 03052 04378 04971 05059  0.5173
070 03003 03683 05380 06101 06206 06343 02974 03596 05152 05853 05959  0.6098
0.80 03461 04241 06183 07015 07137 07303 03432 04144 05932  0.6745  0.6871  0.7043
0.90 03930 04811 07003  0.7946  0.8088  0.8287 03902 04702  0.6730 07659  0.7807  0.8017
095 04174 05109 07433 08430 0.8581  0.8799 04153 04996 07147 08135 08293  0.8523
1.00 04466 05462 07903  0.8935 09093 09324 04399 05296 07567  0.8614  0.8781  0.9033

NOISS3IHDIY NOILVINHO4SNVHL JIHLINVHVINON
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TABLE 4. stdc(p), m(x) = sin(x)

n=1,000 n =500

p/bc  10/18 1/2 1/3 1/5 1/6 1/10 10/18 1/2 1/3 1/5 1/6 1/10

0.00 00334 00326 00327 00325 00325 00323 00474 00466  0.0467 00467  0.0467  0.0467
0.10 00351 00345 00339 00333 00331 00328 00488 00481  0.0479  0.0475 0.0474  0.0472
020 00381 00376 00356 00340 00337 00332 00510 00504 0.0493  0.0481  0.0479  0.0476
030  0.0419 00417 00376 00346  0.0341 00335 00540 00534 00508 00486  0.0482  0.0477
040  0.0466 00466 00398 00351 00344 00336 00577 00569 00525 0.0488  0.0482  0.0476
050 00517 00519 00423 00354 00344 00334 00619 00609 00543 00488  0.0480  0.0472
0.60  0.0573  0.0575  0.0448 00354 00341 00328 00666 00654 00561 00485  0.0474  0.0463
0.70  0.0633 00635 00472 00350 00333 00316 00718 00701 00580 00479  0.0464  0.0449
0.80  0.0697  0.0697  0.0498  0.0343 00322 00298 00777 00753  0.0599  0.0469  0.0449  0.0426
0.90  0.0767 00765 00526 00337  0.0309 00274 00844 00820 00618 00454 00427  0.0395
0.95  0.0803 00800 00544 00339 00307 00264 00877 00863 00628 00448 00417  0.0377
1.00  0.0869 00860 00572 00347 00310 00253  0.0942  0.0929 00668 00461 00427  0.0377

4}
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3 -2 -1 0 1 2 3 4
FIGURE 1. The QQ plot of the standardized estimator 771;.

1,000 and take ns = 1,000 replications throughout. We report the performance
measure

K
|
AMSE = — ]; 177 o) — m (a) |

where K = 101 and x; = {—1,—0.98, ..., 1}. The results for the linear case are
given in Tables 1 and 2. The results show that there is an improvement when
going from n = 500 to n = 1,000 and when going from m to m,. In the linear
case, the bigger the bandwidth the better. In the cubic case (not shown), smaller
bandwidths do better as the bias issue is much more severe in this case.

We show in Tables 3 and 4 the performance of the estimator of p for n = 500
and n = 1,000. This varies with bandwidth and is generally quite poor, although
improves with sample size. Finally, we give some indication of the distributional
approximation. In Figure 1 we show the QQ plot for our (standardized) estimator
my in the case where m(x) = sin(x), p = 0.95, n = 1,000, and bc = 1/10.

6. CONCLUSION

We have shown that the main results of Xiao et al. (2003) regarding efficiency im-
provements can be extended to the case where the covariate process is nonstation-
ary. In practice it may be important to take account of error autocorrelation when
conducting inference about nonparametric cointegrating regressions. The idea of
using the transformed model and the results obtained in terms of efficiency im-
provements are closely related to the augmented regression findings in Wang and
Phillips (2009b), wherein it is shown that carrying the impact of endogeneity via
the conditional mean in an augmented regression reduces the asymptotic variance
of the kernel regression estimator.

NOTE

1. Here and below, we define L (1, x) =lim¢_¢ i [01 I(|G(s)—x| < €)ds, alocal time process
of the process G (s), whenever it exists.
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APPENDIX: Proofs

Appendix A.1 provides several preliminary lemmas. Some of them are of independent
interest. The proofs of main theorems will be given in Appendixes A.2—A.4. Throughout
the Appendix, we denote by Cyp, C, C1, ... positive constants, which might be different at
each appearance.

A.1. Preliminary Lemmas

First note that

1 t

J
xo= 2 ATIE =" vig

j=1 j=1 i=—00
t s t J
1= t—j t—j
= x D AT D g+ > AT D vig
j=s+1 i=—00 Jj=s+1 i=s+1
=2 xg+ As x5 (A1)
where
’ P 1—
Kot = Z /s zvl+s¢] i= Z Vi Z’l i l¢ .
j=1 i=1 i=s+1 j=0

Write d2, = i _ . 220 l>(z’ LTI $)? = E(x} )% Recall limy_ 00 A" = €7 and
limy 00 A™ =1 for any fixed m. Routlne calculations show that, whenever n is sufficiently
large,

e 17l 2 < 7k <267l forall—n <k <n (A2)

and there exist y1, yo > 0 such that

yo< dnf DT g <y, (A3)
j=0

n>k>m

whenever n,m are sufficiently large. By virtue of (A.2) and (A.3), it is readily seen that
ds,t #0forall0 <s <t <n because ¢ = Zf’io?ﬁj #0and C(t—s) < dsz,t < Ch(t—s).
Consequently,

1
AE—=s

xé,t has a density Ay, (x),

which is uniformly bounded by a constant Cq and f (I41ul)lgs,t ()|du < oo uniformly

for 0 <5 < < n, where g ; () = Ee!™5/¥1=5 due to [(1+ |ul)|Ee™™|dt < co. See
the proof of Corollary 2.2 in Wang and Phillips (2009a) and/or (7.14) and Proposition 7.2
(p. 1934) of Wang and Phillips (2009b) with a minor modification. Hence, conditional on
Fr=0(j,—00 < j<k),

(xr —x5)/+/t — s has a density h:,,(x) =hy(x —x:’,/«/t —5), (A4)
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where x}', = (A5 —1) x5 + Ag.s, satisfying, for any u € R,

sup |k, (x +u) — h;"t(x)| < suplhg, ¢ (x +u) —hg ¢ (x)]
X X
o) . .
< C‘/ (e—w(x+u) —e_wx)(ps,;(l))dv‘
—00

o0
< C minf]ul, 1}/ (I+ o) |@s,¢ (0)|do < Cy minf|ul, 1}, (A.5)
—00
where we have used the inversion formula of a characteristic function in the calculation
above.
We also have the following representation for x;:

t t Jj—1 oo
ISR Wl p3d ) I

=1 j=1 i=0 i=j

t—1 ) t ) t—1 ) 1 ) t -OO
DWTEDWEIE WIS MERUED Wad e

i=0 j=1 i=0 j=t—i+1 j=1 i=0

=arx;—x; +x;", say, (A.6)

where a; = Zf;(l) ¢ A7 x) = Z}:l ’lt_j”j’ and
lx;/l_'_lx;r/' < Cotl/(2+5)’ a.s.

for some constant Cy > 0. Indeed, using (A.2) and the strong law, we obtain that, for some
constant Cy > 0,

t t—1

t—1
1 .
/1< 26T gl D> vyl < 2el] E’f‘i,'”f'E il¢i|
sJ= N
i=0

i=0  j=t—i+l
, 1/(2+6)
1 N
< Ctl/(2+5) - (|2+0 < C, tl/(z‘”;), 5. A7
< tj;w < Cy a.s., (A7)

since E|v1|2+5 < 0o and Z?ioi|¢i| < 00 . Note that
1/2

o N o0 o0 o0
STV RS gl = 3N (367
j=l i=0 j=l i=j

1/2

o0 o
<> TV N g <o,

Jj=1 i=j
which yields that Z;’il jT1/@E+9) > 20 Pi+jv—il <o00,a.s. It follows from (A.2) again
and the Kronecker lemma that
t oo
1 <C 0D i vl =0(t1/(2+5)), a.s.
j=1 i=0
This proves (A.6).
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We are now ready to provide several preliminary lemmas.

LEMMA A.1. Suppose that p(x) satisfies f |p(x)|dx < oo and Assumption 2.1 holds.
Then, for any h — 0 and all 0 < s <t < n, we have

Bt/ II) < <2 [ pGa-txe/ il

=

Coh [
=\/t°Ts _Oolp(x)|dx, as., (A.8)
where Fy = o {vg,v5_1,...}.

Proof. Recall (A.1), (A.4), and the independence of v;. The result (A.8) follows from a
routine calculation and hence the details are omitted. |

LEMMA A.2. Suppose that p(x) satisfies [[|p(x)| —|—p2(x)]dx <ooand [ p(x)dx #0
and that Assumption 2.1 holds. Then, for any h — 0 and nh? = oo,

ﬁzp[m —x)/h] =p / p(x)dx L (1,0),
t=1 —0o0

where G(t) = W(t)+ 1t fé e’(t_S)W(s)ds with W (s) being a standard Brownian motion
and L (r,x) is a local time of the Gaussian process G (t).

Proof. This is a corollary of Theorem 3.1 of Wang and Phillips (2009a). The inspection
of the conditions is similar to Proposition 7.2 of Wang and Phillips (2009b). We omit the
details. n

LEMMA A.3. Suppose that Assumptions 2.1, 2.2, and 2.3(a) hold. Then, for any h — 0
and nh? = 00,

n
> uiZw = p N©O.o}), (A9)
t=1

1/2

where Zy; = K[(x; —x)/h]/(X)_ K[(xt —x)/h]) " and 6} = (1= p*)~'o? [%2 K?(x)dx.

Proof. For notational convenience, we assume that ¢2 = 1 in the following proof.
Note that u; = Zf{:lp’_kek. We have >/ uiZn = 2 )_ €2y, where Z%, =
Yk p'=kZ,;. We first claim that

n 00
> zh-p / K% (x)dx, (A.10)
k=1 -
n 00
> ziiop (1=pH™! / K% (x)dx. (A.11)
-0

k=1

https://doi.org/10.1017/5026646661400070X Published online by Cambridge University Press


https://doi.org/10.1017/S026646661400070X

18 OLIVER LINTON AND QIYING WANG

The proof of (A.10) is simple by applying Lemma A.2. To see (A.11), note that
2

Sz =07 D SRR =) /)
k=1

k=1 \t=k

n n
=N PP K2 —x) /AL T,
k=1t=k

n
=U=pH I D 22+ A (T =T
k=1

== [T KW+ A = T2 +op() (A12)

—00

by (A.10), where A, = X1 | K[(x; —x)/hl,

Tin=22" > pFp" Kl —x)/hIK[( —x)/ B,

k=lk<s<t<n
n

Do = (1= p) ™ D K2 —x)/h1 p*.
t=1

Note that A, /(v/nh) = p ¢_1 L (1,0) by Lemma A.2. The result (A.11) will follow if
we prove

Ty, + Ty = 0p[(nhH)'/. (A13)

Recalling that K (x) < C and |p| < 1, it is readily seen that I'5,, < C. On the other hand,
by applying Lemma A.1, for any ¢ > s, we have

E{K(xs =)/ b1 K1(r =)/ b1} < E[KL(ts =)/ HUE{K (v =)/ 01| 5}

IA

It follows that

n
) 1 1
2 s—k t—k
El'y, <Ch Z Z P p _
k=lk<s<t<n Vi=s /s

n
1
<Cii?Yy —= < Ch*n,
=k

which implies that I'1,, = Op (hzﬁ). Hence, (A.13) follows due to 2 — 0 and nh% — oc.
This also completes the proof of (A.11).

We now turn to the proof of (A.9). Since, given {x1, x2, ..., X, }, the sequence (Z;:k €ks
k=1,2,...,n) still forms a martingale difference by Assumption 2.2, it follows from
Theorem 3.9 [(3.75)] in Hall and Heyde (1980) with 6 = ¢ /2 — 1 that

n
sup}P ZE[Z;} <x01 | X1,X0, 00y Xn —(I>(x)| < A(é)ﬁ,l,/(1+q), a.s.,
X

t=1
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where A () is a constant depending only on ¢ > 2 and

1 n
Ly=— D NZ0 I E(ex|? | x1,.... Xn)
o1 k=1

LS a2
+E ‘?ZZZI%I:E(GIa}-k—I)—l” [ X1y eees Xn
1 k=1

Recall that K (x) is uniformly bounded and that
1/2

n
max |Z3] < C max |Zy < C/ > Kl —x)/h1 | =op(D),

|
sksn =1

by Assumption 2.3 and Lemma A.2. Routine calculations, together with (A.11), show that
‘Cﬂ =op (1)>

since ¢ > 2. Therefore the dominated convergence theorem yields that

n
sup}P ZM,Z,,; < xo] —(D(x)|
. =1

< E | sup

X

n
P ZG,ZZISxallxl,xz,...,xn —d(x)| | = 0.
t=1

This completes the proof of Lemma A.3. n

LEMMA A.4. Suppose that Assumptions 2.3(a) and 2.4(a) hold. Then, for any x € R,
we have

|An(x) =m(x)| < C (14 |x|*)hP, (A14)

where Ay (x) = W If in addition Assumption 2.4(b) holds, we have
1=1 [

WPmP) (x) [ _
[An ) =my = [ k)| = opln®) T4, (A.15)
p: —00
whenever nh? — oo and nh?T4P = 0 (1), for any fixed x.
Proof. By Assumption 2.4(a) and the fact that K (x) has a compact support, the result

(A.14) is simple. The proof of (A.15) is the same as in the proof of Theorem 2.2 in Wang
and Phillips (2011). We omit the details. u

LEMMA A.S. Suppose that Assumptions 3.1-3.4 hold. Then, for any | > 0, we have

n
Cn
W z S5 Gexn)
k=1

where €, < cyn ™1 for some 1] > 0and fr s(x) = g(cpx +1) — glcpx +5).

[

Iy :=sup sup
teR s:|s—t|<e¢,

=o(og™"'n), a.s., (A.16)

Proof. See Lemma 3.5 of Liu, Chan, and Wang (2014). n
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A.2. Proofs of Theorems 2.1 and 2.2

We only prove Theorem 2.2. Using Lemmas A.3 and A.4, the proof of Theorem 2.1 is
standard (see, e.g., Wang and Phillips, 2011), and hence the details are omitted.
Start with (2.6). Recall that ity = y; —m(x;) = u; +m(x;) —m(x;). Simple calculations

show that
~ Zzzz(ﬁs — plls_1)ilg_1
pP=p= n =2
s=2U51
Do €sily_1 N D i1 [mxs) —m(xs) 4 p M (xg_1) —m(xg_1)}]
- =2 =2
?:2 Ue_1 ?:2 g1
=: Ry, + Ry, (A.17)

As V=157 i) —=m(x)]* = 0p{n®h?P + (nh?)~1/2} by (3.5) of Theorem 3.2,
it follows from 1 > u? — (1-p?) o2 as, that 137 @2 | —p (1-p?)~ 162,

whenever n“h*# — 0 and nh? — co. This, together with Holder’s inequality, yields that
1/2

n
1/2 ~ _
IRyl <201+ pD2v12 (Y72 =o0p {n“/%ﬂ +(nh?) 1/4} .
s=2

On the other hand, by recalling Assumption 2.2, it is readily seen that Ry,, = Op (n_l/z)‘
Taking these facts into (A.17), we obtain (2.6).
We next prove (2.7). We may write

ﬁ2?=1 [”Aﬂ (xr—1) _m(xt—l)] K[(x;—x)/h]
> Kl —x)/h]
(p—0) 2/ us—1 K[(xt —x)/h]
S Kl(x; —x)/h]
N S mG) =m0 Kl —x)/h] >0 € Kl(x; —x)/h]
1= K[(xr —x)/h] S Kl —x)/h]
=plin+(p—p) Iy + I3y + Iy

my(x) —m(x) =

+

Furthermore, we may divide /1, into

1
I, = ,
= S Ko —x)/ k]

; S Im(es) = m(x— K (s —xi-1)/ h]
K — h E
" ; e =/ s—1 K[(xs —x;—1)/ ]

Z?:l us K[(xs —x;—1)/hl
D Kl(xs —x;—1)/h]

+ D K[ —x)/h]

=1
=11+ o
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Using Lemma A.3 and (2.6), we have
12

(=) | D_KIxe=x)/h1| 1y —>p0
t=1

and (with p =0 in Lemma A.3)
n 1/2
S Kl —x/h) I —p N(O,azz).

t=1

Using (A.14) and ﬁ S Kl —x)/hl—=p ¢~ LG(1,0), we have

t=1

i 12
(Z K[(x; —x)/h]) |73

172

1 n
< Cah*T)! ( D Kl =x)/hl | =op().
Vih t=1

Similarly, by recalling that K has a compact support, we obtain

i 1/2
> Kl —x)/h]) a1l

=l " —-1/2 "
<ch? | > Kl —x)/h] D (1) Ko —x)/ k]
t=1 t=1
1/2

1 n
sCon™HYH —2 > Kiea=x)/hl| - =op().
t=1

Combining all the above facts, to prove (2.7), it suffices to show that
Iy = opl(nh®) =14,
To this end, for each fixed x, write

Qp={w: > Kl(xs—x)/h] > /nho, t .

s=1

=1,2,...,

n
Qo ={o: inf > Kl(xy—x)/hl>/nhdy .
1B

21

(A.18)

where J;, |, 0 is chosen later and » denotes the sample points. As P(Q;, UQy,) — 0 by

(3.4) and Lemma A.2, the result (A.18) will follow if we prove
Ian (C()) IQZn (CO) Iln2 =op [(nhz)_1/4]’

where 14 (w) denotes the indicator function.
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Recall that ug = zi:l ps_kek. Then, I1,, can be rewritten as

1
I, = ug J,
1n2 ’[1=1 K[ —x)/h] Z s Jns

s—k
T 1K[(Xt—x)/h]z Zp Jns.

where

K[(xs —x;—1)/h1K[(xt —x)/ h]
Jns = .
z > Kl(xs —x;-1)/h]

t=1

It follows easily from the conditional arguments and Holder’s inequality that

2
E[[Qm (0) Ig,, (@) I2n2] = h25 )2 Z pr_k I

< (nhzén)z ZZPA —k Zps kEJ*Z

k=1s=k s=k

nC 2
<————— max EJ'Z, A.20
- (nh25n)2 1<s<n ns ( )

where

T =D Kl(xs —x,_1)/ 11 K[(x; —x)/ h].

=1

Simple calculations show that, by letting Ziz ;=0if j <i,

2
EN2 = E D Kl(xs —x-1)/ h1K[(x = x)/h]
=1
s—1 2
< 4E{> Kl —x-1)/ B K[(xt = x)/ h]
t=1

n

+4E{ D" KI(xs —x-1)/ 1K [(x —x)/h]
t=s+1

+4EK[(xs —x5_1)/h1 K*[(xs —x)/ h]
=Ty +To, +Tsy.

Assume f; < tp < s — 1. Recall that K(x) has a compact support. It follows from
Lemma A.1 with p(x) = K(x —x;,—1/h) K (x —x4,_1/h) that
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E{K[(xs = x4y —1)/ K[t = x1p—1)/ 1] | F, }

Ch 00
< / K[y + (xt, = x4, 1)/ h1K [y + (xr, = x4, —1)/ hldy
§s—1 J-co
< Ch ooK( VK [y+( )/ hld
Xpy—] — Xpy — , a.s.
_H . y y Hh—1 t1—1 y

This, together with the repeatedly similar utilization of Lemma A.1, yields that, for
HH<th<s—1,

LPs,l‘l,tg =K {K[(xé _xll—l)/h]K[(xS _xtz—l)/h]K[(xtl —X)/h]K[(X;z —X)/h]}

Ch 00
N _OOE{K[y+(xt2_1—xtl_1)/h]
x K[(xt, —x)/ h1K [(x, —x)/ 1]} K ()dy
C/’l2 o)
< m/_OOE{K[nyQ_l — %1/ HIK G, =)/ W1} K ()dy
- ch* 1
T VsmnJn—nJn’
Similarly, fort; =1 <s—1,
Ch? 1
P = (KL =)/ WK =0/ M <~

We now obtain, forany 1 < s <n,

s—=2
T = Z P10 +2 Z 1.0
=1 1<ti<tr<s—2

s—2

Ch? 1 ch* 1 1
<> —+ > —=
e RVEETRVE] NOE RV R TR

1<ti<tr<s-2

< Ch>(1+/nh?).
Similarly we may prove
Ton + T3 < Ch2(1 4 /nh?).
Combining all these estimates, it follows from (A.20) that
2 — — — —
E[lg,, (@) Ia,, (@) L] < €62 [(h®) ™ 40712 = ol (k) =V,

by choosing d, = min{(nhz)l/g,h_l/4} — o0, whenever & — 0 and nh? — oco. This
proves (A.18) and also completes the proof of Theorem 2.2. |

A.3. Proof of Theorem 3.1

The idea for the proof of (3.3) is similar to that of Liu et al. (2014), but there are some
essential differences in details. We restate here for the convenience of reading. Without
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loss of generality, we assume 7 = [ g(x)dx = 1. Define g(x) = g(x)I{|x| < n¢ /2}, where
0 <¢ < 1=24dp/y is small enough such that n¢ /c;, < min{n_‘so,n_‘()/z}, where y and d
are given in Assumptions 3.1 and 3.2, respectively. Further let ¢ =n~% with 0 < a < /2
and define a triangular function

0, Iyl > €,
y+e
geWM=1"72> —€<y<0,
6
ézy, O<y<e,

It suffices to show that:

n
C, —
Dy = 1211?;1 f g{g[cn(xj,n _xk,n)] _g[cn(xj,n _xk,n)]} ‘
]:
= 0q.5.(log ™" n), (A.21)
Cn < 1<
Oy, = 12113; ‘;n Zg’[cn(xj,n _xk,n)] - 0 de (xj,n _xk,n)
j=1 j=1
= 04.5.(log "' n), (A.22)
1 n
©3, = SUp |~ > 2e(¥jn = X[ni).n) — Lut| = 0p (log ™' m). (A.23)
0<r<1'n

j=1
The proof of (A.21) is simple. Indeed, by recalling sup, |x|” [g(x)| < oo, it follows that

O <cn sup g I{lx] > n¢/2} < Cn~¢7 ¢y = o(log™! n)
[x|>n¢ /2

asn/c, <n % andy > &y/(1—7).

We next prove (A.23). Recalling ffooo ge(y)dy =1, it follows from the definition of
occupation time and (3.2) in Assumption 3.2 that

[ 5166) - 601as - 60, 60|
= ‘/_de[y—G(t)]Lc(l,y)dy —Lg(1, G(t))‘

s/ e OILG (L y+G ) — Lo (1, G(0)ldy

< cé€  as.

for some ¢ > 0, uniformly for 7 € [0, 1]. Hence, by noting

1 1
/0 9e[Gn(s) — Gu(D)]ds — Lus =p /0 4e[G(s) = G()ds — L (1, G (1),
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due to {G,(1);0<t <1} =p {G();0<t < 1},n>1, we have

> log_l_l n)

1
= P(‘/O 2e[G(s)— G(1)lds — L (1, G(z))‘ > log /! n) —o(1),

1
P(’/O 2e[Gu(s)—Gp(t)lds — Lyt

25

(A24)

as n — oo. This, together with Assumption 3.2 and the fact that |ge(y) — ge(z)] < €2

|y — z|, implies that

1 &
}; de (xj,n _x[nt],n) — Lyt

j=1
1 1
<| [ et =stnds = [ 5e1Ga )= G olds] +2/(en)

1
+‘/0 gE[GVl(S)_Gn(t)]dS—Ln[

= 045 (€2n™%) +2/(en) + Op(log ™'~ n)
< 0p(M**™% +log™ "' n) = 0p(log™' ),

uniformly for # € [0, 1], as o < Jy/2. This yields (A.23).

We finally prove (A.22), let ge¢n(z) be the step function which takes the value
ge(mnt /cy) for z € [mné /ey, (m + )né /cyy), m € Z. 1t suffices to show that, uniformly

forall 1 <k <n, (letting g; (y) = g(cn(xjn — Xk,n) — ¥)):

1 < 1< % _
B1n ()= |~ ge(xjn = 20) = = D Ben 0 = ) / g )dy|
j=1 a

j=1
= 0a.5.(10g ™" n),
1 ~ 0 o 1M _
820 )= D Ben i =) | GOy = [ =S e/ ()|
" —o —oo i

=0q.s. (IOg_l n),
o1& _ Cn
Ban@):=| [ = ge(r/an)g 0y = 3 glen(xjn = x|
=1 j=1
=0aq.s. (10g_l n).
In fact, by noting that |g¢ (y) — ge (z)] < e_2|y —z| and

[8en () —8e (@D < 18en(¥) — ge (W) + 186 (¥) — ge (2)]
< Ce 2 (n Jen +1y —20),

(A.25) follows from that, uniformly for all 1 < j, k <n,
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o0
(i =) = Ben i —35.0) | 50|
—00

<

o
el =l 1= [ G0)ay]
—0Q

< Cenf Jen+Cre” ™0 =D = o4 ¢ (log ™! ),

8e (xj,n _xk,n) —8&en (xj,n _xk,n)

where we have used the fact that (recalling [ g(y)dy = 1),

1= [ goa| <] [~ smrm>na| < c a0

due to supy, [y|” |g(y)| <coand y > L.
By the definition of g;(y) and (A.28) again, (A.26) follows from that, uniformly for all
1<j,k<n,

/ |gen(xj,n_xk,n)gj()))_ge(y/cn)gj(y)ldy

< ( /j:g(y)dy) (Sl;p

< Csup [E_z(n‘(/cn + Ixj,n — Xk,n — )’/Cnl) 1 {‘xj,n — Xk,n — y/cn
y

8en (xj,n — Xk,n) — 8e (v/cn) I{lcn(xj,n — X)) = Y| < nC/z})

<nf/@a)]

<Ce 2t /cy) = Oa.s.(log_[ n).

As for (A.27), the result follows from that, by using Lemma A.5,

© 1 n ~ B
B3 (k) =| / =3 {glenCejn —xk) =¥ = len (i = 56,001} ge(v/cn)dy |
o

<sup sup
t|s—t|<cye€

] o0
x (— /_ & <y/cn)dy)

=0q4.5.(log~' n) (A.29)

n
LS {gentjn+9) = 3lentjn+0} |
j=1

uniformly for 1 <k < n.
The proof of Theorem 3.1 is complete. |

A.4. Proof of Theorem 3.2

To prove (3.4), we make use of Theorem 3.1. First note that K (x) satisfies Assumption 3.1
as it has a compact support. Let x; , = ﬁ, 1 <k < n, where x; satisfies Assumption 2.1
with Z}ﬁoilqﬁil < 00. As shown in Chan and Wang (2014), x; ,, satisfies Assumption 3.3.
Xk,n also satisfies Assumption 3.2. Explicitly we will show later that {v;, j € Z} can be
redefined on a richer probability space which also contains a standard Brownian motion
Wi (t) and a sequence of stochastic processes G1,(f) such that {G,(¢),0 <t <1} =p
{G1(),0 <t <1}foreachn > 1and

Sup [Xpurn — Gia ()l = 0™ %), a.s., (A.30)

0<r<l1
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for some dy > 0, where G(t) = Wi (t) +« fé U= W, (s)ds. We remark that G (¢)
is a continuous semimartingale having a local time L, (¢, x) that satisfies (3.2). To see
this claim, it suffices to use Corollary 1.8 of Revuz and Yor (1994, p. 226) with minor
modifications.

Due to these facts, it follows from Theorem 3.1 that

> K[k —xni)/n$] = Lut| = 0p(og™ n), (A31)

1
sup ‘—
0<t<1 Jnh il

forany/ > 0, h — 0, and n!=€0p2 5 0o where €g > 0 can be taken arbitrarily small and

1
Lus = lim = [ 10G1) = G1a 1)) < s
e—02€ Jo

Note that, for each n > 1, {L;;,0 <t <1} =p {L;,0 <t < 1} due to {G,(1),0 <
1 <1} =p {G1(1),0 <1 < 1}, where L; =lim¢_0 5= [o 1(1G1(s) = G1 (1) < €)ds. The
result (3.4) now follows from (A.31) and the well known fact that P (info<;<1 Ly =0) =
due to the continuity of the process G1(s).

To end the proof of (3.4), it remains to show (A.30). In fact, the classical strong approx-
imation theorem implies that, on a richer probability space,

sup ‘[nivj Wiun)| =o[n!/CH], as. (A32)

0<r<1

See, e.g., Csorgo and Révész (1981). Taking this result into consideration, the same tech-
nique as in the proof of Phillips (1987) (see also Chan and Wei, 1987) yields

[nt]

sup | > =iy — Gy (0] = o[n'/ ], s, (A33)
0<t<1 j=1

where G}, (1) = Wy (nt) +x [§ U= W (ns)ds. Let G, (t) = G}, (t)/+/n. It is readily
seen that {G1,,(1),0 <t <1} =p {G1(¢),0 <t < 1} due to {Wy(nt)//n,0<t <1} =p
{W1(2),0 <t < 1}. Now, by virtue of (A.6), it follows that

1 "
t SUPO<r <1 X1 X1
P [Xfurtn = Gra(Ol < sup [2lnr] o) ﬁf;] L]

=G+
0<r<1 0<t<1 f¢ "

[nt]

c [nt] ) )
<— sup [ D gidT =g | D AT
i go : 2 j

j=1
[nt]

Xfo llzilm J,, — Tn(t)’+0a.s_(n—§/2(2+5))
<t<

zo(n_a‘)), a.s.,
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for some dp > 0, where we have used the fact: due to max;<; <, 271 —1] < Cn~ Y2 and
maxj<x<p | Zj;l /lk_jvj| =o(y/nlogn),a.s., it follows from Z?io”(/’ﬂ < oo that

[nt]

sup | Zw— -4 Zx["” Tvj

0<r<1

k

c 2k=i o (V/nl At
< KI}(@X{IZ vjl+ (\/n Ogn) frrix<n|§¢l

< 0p(!/*/logn) + 0(/nlogn) ]Zmr’—l)\ b3

i=Ji
= O(n1/4\/10gn), a.s.
This proves (A.30) and also completes the proof of (3.4).
We finally prove (3.5). Simple calculations show that

v, <%i(ﬂ+12) (A.34)

"=y 1t 2t/ .

=1

where
o i[O = m GO KTy —x0)/ 1) n_y s KIGvs —x1)/ ]

1t = s Jor = .

' 1 Kl(xs —x0)/ h] ' 11 Kl(xs —x1)/h]

Assumption 2.4(a) implies that, when |xg —x;| < M h and £ is sufficiently small,
Im (xs) —m(xo)| < Clxg —x 1P (14 1] *) < CrAP (14 x| %),

uniformly on s, #. Using this fact and K has a compact support, it follows that

- Z i < Z(l +1x 1) = 0p (1" h?P). (A.35)
=1
As for Jy;, by recalling ug = Zi:l ps_kek, we have

1 < e
2 2
;E‘lm < . 1nf ZK (xs —x1)/ ] ;;JZ*I

, ,ﬂ

where

Zk 1szg P kK[(Xr—xt)/h]

Jx
? (3", Kl(xs —x0)/ 1)) 2

t
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It follows from Assumption 2.2 that, for 1 <t < n,

2
SH BRI x1s i) {0 R K LG —x0)/ 1)
?:1 K[(xs —x;)/ h]

O X P T K G =) B 3
- i1 K5 —x0)/ h]

EU32 X1, yxn) <

<Cy,

where we have used the fact that > 72 p¥ =1/(1 = p) < oco. Hence 1 p Jz*t2 =

n
Op(1). Due to this fact and (3.4), we get
1 < _
- > 15 = 0pl(h®) ™12, (A.36)
=1

Combining (A.34)—(A.36), we prove (3.5) and hence complete the proof of Theorem 3.2. H
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