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We examine experimentally the influence of non-Darcy effects on convective
dissolution in Hele-Shaw cells. We focus on buoyancy-driven convection, where the
flow is controlled by the Rayleigh–Darcy number, Ra, which measures the strength
of convection compared to diffusion. The Hele-Shaw cell is suitable to mimic Darcy
flows only under certain geometrical constraints, and a recent theoretical work
(Letelier et al., J. Fluid Mech., vol. 864, 2019, pp. 746–767) demonstrated that a
precise limit exists for the parameter ε2Ra – ε∼ thickness-to-height ratio – beyond
which the flow exhibits non-Darcy effects. In this work, we run experiments for
solute convection in Rayleigh–Bénard-like configuration. We examine a wide range
of the parameters space (Ra, ε) and we clearly identify the application limits of
Darcy flow assumptions. Besides confirming previous theoretical predictions, current
results are of relevance in the context of porous media flows – which are often
studied experimentally with Hele-Shaw set-ups. Using our original datasets, we
have been able to explain and reconcile the discrepancies observed between scaling
laws previously proposed for Rayleigh–Bénard-like experiments and simulations in
similar contexts. Specifically, we attribute an important role to the parameter ε2Ra,
which clearly establishes thresholds beyond which Hele-Shaw experiment results are
influenced by three-dimensional effects.

Key words: convection in porous media, Hele-Shaw flows, buoyancy-driven instability

1. Introduction
Hele-Shaw cells are made by two parallel, transparent plates, which are separated

by a gap that – ideally – is infinitesimal. Under this condition, any flow established
inside the gap can reproduce a Stokes flow. This property makes Hele-Shaw cells
widely used to visualise and analyse experimentally different types of flow instances.
We focus here on the use of Hele-Shaw cells to investigate flows driven by the
differential gravity force acting on fluids of different density, which are initially
set in an unstable configuration. This type of experiment is particularly important
for a number of applications, since it is simple and can, under certain assumptions,
reproduce important features of Darcy flows in porous media. Specifically, we refer
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to the instance of fluid saturated porous media, in which a heavier fluid sits on top
of a lighter fluid. In this instance (for certain density differences), the fluid flow
is dominated by convection; this type of flow was examined by Saffman & Taylor
(1958), who also introduced the concept that the flow inside a porous media can be
experimentally reproduced employing a Hele-Shaw cell.

In this paper, we examine the process of solute convection in Rayleigh–Bénard-like
flows in Hele-Shaw cells, with the following set-up: the cell is filled with pure fluid,
i.e. solute is initially not present, and the concentration of solute is kept constant along
the top boundary of the domain. Since the density of the fluid is larger at the top
wall, the system is unstable and, with time, tiny instabilities of the density interface
grow into finger-like structures, which eventually develop convective currents. This
configuration is of crucial importance to investigate geophysical subsurface flows such
as water contamination (LeBlanc 1984; Van Der Molen & Ommen 1988), petroleum
migration (Simmons, Fenstemaker & Sharp Jr 2001), carbon sequestration (Huppert
& Neufeld 2014; Emami-Meybodi et al. 2015) and sea ice formation (Wettlaufer,
Worster & Huppert 1997; Feltham et al. 2006). The main dimensionless governing
parameter of the flow is the Rayleigh–Darcy number (Ra), which stands for an inverse
diffusivity, or for the relative strength of convection to diffusion (Slim 2014), and is
defined as

Ra=
g1ρ∗s (b

∗)2H∗

12µD
, (1.1)

where, 1ρ∗s is the density difference between the solute-saturated fluid and the pure
fluid, g is the acceleration due to gravity, b∗ is the cell gap thickness, H∗ is the
cell height, D is the molecular diffusion coefficient and µ is the dynamic viscosity.
This system is analysed in terms of solute dissolution rate F(t), i.e. the amount of
solute dissolved per unit of area and time. Based on the time evolution of F(t), three
different flow phases can be defined: (i) the flow is initially controlled by diffusion;
then (ii) an unstable layer builds up at the upper boundary and convective finger-like
structures form and control the evolution of the system; and finally (iii) shutdown of
convection takes place (Hewitt, Neufeld & Lister 2013; Slim 2014).

Two-dimensional Darcy simulations have shown that, during the convection
dominated phase, the solute dissolution rate is independent of the Rayleigh–Darcy
number (Pau et al. 2010; Hewitt et al. 2013; Slim 2014). Noteworthy though,
experiments in Hele-Shaw cells have shown that the quantity F(t) exhibits weak
dependence on Ra (Backhaus, Turitsyn & Ecke 2011; Tsai, Riesing & Stone
2013). Therefore, in an attempt to unravel this discrepancy, Hidalgo et al. (2012)
investigated numerically the time-dependent dissolution process in fluids characterised
by concentration-dependent viscosity and non-monotonic density-concentration curves;
they concluded that the Ra-dependent character of the dissolution flux observed
experimentally is not motivated by these two causes. Subsequent studies investigated
the influence of the geometry of the domain on the features of the flow. In particular,
with the aid of perturbation techniques and numerical simulations, Letelier, Mujica &
Ortega (2019) investigated the effect of the combined action of the Rayleigh–Darcy
number and the anisotropy ratio ε = b∗/

√
12H∗. In accordance with the value

of the parameter ε2Ra, they have been able to identify three flow configurations:
(i) Darcy regime (ε2Ra→ 0), where the flow is two-dimensional and well described
by Darcy simulations; (ii) Hele-Shaw regime (ε2Ra � 1), where the flow is still
two-dimensional but influenced by gap-induced dispersion; and (iii) three-dimensional
regime (ε2Ra� 1), when the effects of the third dimension become non-negligible.
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FIGURE 1. Sketch of the experimental set-up adopted. (a) Side view of the apparatus with
indication of the main components. (b) Domain with explicit indication of dimensions,
coordinate system and boundary conditions.

The object of this work is to provide experimental ground to these recent findings,
with a further ambitious attempt of reconciling the different scaling laws of the solute
dissolution rate available from the literature. To explore a wide range of the parameter
space ε2Ra, we will use a Hele-Shaw cell with variable gap and variable height in a
Rayleigh–Bénard-like set-up.

2. Methodology
We consider a rectangular domain initially filled with pure fluid. Solute concentration

is kept constant at the top wall, whereas other boundaries are impermeable with
respect to fluid and solute fluxes. This set-up is defined as Rayleigh–Bénard-like
or a one-sided configuration (Hewitt et al. 2013; De Paoli, Zonta & Soldati 2016).
For different Rayleigh–Darcy numbers, we measured the mean solute dissolution rate
by keeping the same fluid and solute (1ρ∗s , D and µ are constant), but varying the
geometry of the cell (gap width, b∗, and domain height, H∗).

The apparatus is sketched in figure 1(a) and consists of two parallel acrylic plates
(thickness 30 mm), having width of 200 mm and height of 370 mm, separated by
a gap b∗ ∈ [0.15; 1.00] mm. Except the top wall, fluid layer boundaries are defined
by rubber seals, which confine the fluid between the plates and avoid leakages. The
cell width is kept constant and equal to L∗ = 160 mm, whereas the cell height is
varied using different gaskets so that H∗ ∈ [104; 343] mm. The material used for the
gaskets is a high-quality impermeable rubber (Klinger–Sil C–4400) worked with high-
precision CNC machines. The fluid domain, with explicit indication of the dimensions,
coordinate system and boundary conditions, is shown in figure 1(b). The plates are
held in place with the aid of screws. To obtain a desired value of gap thickness and
to ensure its uniformity over the cell, metal shims are placed in the gap and the same
torque is applied to all the screws. Along the top wall lies a steel mesh (40 µm grid
size) which contains the dye powder.

Jafari-Raad & Hassanzadeh (2015) observed that some discrepancies between
experiments and simulations may occur due to the nature of the fluids adopted. For
instance, Methanol and Ethylene-Glycol (known as MEG) and Propylene-Glycol
(PPG), often used in experimental studies, are characterised by a non-monotonic
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variation of the fluid density with respect to solute concentration. In contrast, most
of the numerical studies considered a much simpler linear dependency of density
and concentration. To neglect the effect of the fluid properties, we chose two fluids
marked by a linear density-concentration profile: an aqueous solution of potassium
permanganate (KMnO4) to mimic the heavy fluid (high solute concentration) and
water to mimic the light fluid (low solute concentration). Viscosity and diffusion are
assumed constant and equal to µ = 9.2 × 10−4 Pa s and D = 1.65 × 10−9 m2 s−1,
respectively (Slim et al. 2013). With these fluids, a linear behaviour of the mixture
density ρ∗ as a function of the solute concentration C∗ is obtained, i.e.

ρ∗ = ρ∗s

[
1+

1ρ∗s

ρ∗s C∗s
(C∗ −C∗s )

]
, (2.1)

where, ρ∗s is the density of the saturated solution, C∗s = 48 kg m−3 is the effective
saturation value of concentration and 1ρ∗s is the density difference between a saturated
solution and pure water. A discussion on the mixture density as a function of the
solute concentration can be found in appendix A. Since water density is sensitive to
temperature, although we run experiments in the temperature range 20–25 ◦C, for the
sake of precision ρ∗s and 1ρ∗s are estimated in each experiment by the correlations of
Novotný & Söhnel (1988). With this set-up, we obtained Ra ∈ [4.8× 104

; 7.0× 106
].

We reconstruct solute concentration fields from light intensity maps (Slim et al.
2013; Ching, Chen & Tsai 2017). The accuracy of the concentration reconstruction
process is sensitive to the local value of the mass fraction (Slim et al. 2013); in
particular, the error may be significant (a few per cent) in regions of the domain
that are characterised by high values of solute concentration. However, regions of high
solute concentration are limited to the top of the domain, with an overall extension of
less than 5 %, similar to previous experimental campaigns (Slim et al. 2013; Alipour
& De Paoli 2019). Grains of potassium permanganate (diameter greater than 200 µm)
are poured onto the grid. Afterwards, water is injected from two channels located at
the bottom of the cell with the aid of a syringe pump. The fluid level is increased up
to the upper boundary and the pump is shut down. This moment is considered as the
beginning of the experiment (t∗= 0). After water injection, the solute dissolves and a
fluid layer denser than water forms below the grid: the heavy mixture layer thickens,
becomes unstable and the finger-like structures form (Slim 2014). We use a Canon
1300D camera equipped with 18–55 mm lenses to record the evolution of the flow,
with resolution and acquisition rate corresponding to 3456× 5184 pixel and 1 f.p.s.,
respectively. The system is illuminated from the back side with a tuneable LED-based
system: the tension applied to the LEDs is adjusted to maximise the sensitivity of the
apparatus. Since the gap thickness has a significant effect on the colour of the mixture,
the calibration is repeated for each value of b∗. Given the light intensity distribution
(camera images), the concentration field is finally reconstructed (Slim et al. 2013).
Experimental results are the average of three experiments in the same configuration.
A summary of all experimental parameters investigated can be found in table 1.

To present the results in dimensionless form, we set the buoyancy velocity

W∗
=

g1ρ∗s (b
∗)2

12µ
(2.2)

as the reference velocity scale, whereas lengths and time are scaled with L∗=D/W∗

and L∗/W∗, respectively. Concentration is made dimensionless with respect to C∗s (for
further details on the dimensionless set of variables, see Slim (2014)). The absence
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b∗ H∗ 103ε Ra 〈F〉
(mm) (mm) (—) (—) (—)

0.150 104 0.415 4.82× 104 0.102
0.150 132 0.328 6.10× 104 0.105
0.150 164 0.264 7.58× 104 0.100
0.150 201 0.215 9.30× 104 0.110
0.150 236 0.183 1.09× 105 0.101
0.150 343 0.126 1.58× 105 0.097

0.300 104 0.830 1.93× 105 0.082
0.300 132 0.656 2.44× 105 0.083
0.300 164 0.527 3.03× 105 0.080
0.300 201 0.430 3.72× 105 0.082
0.300 236 0.366 4.36× 105 0.083
0.300 343 0.253 6.33× 105 0.087

0.500 104 1.383 5.35× 105 0.065
0.500 132 1.093 6.78× 105 0.076
0.500 164 0.879 8.42× 105 0.074

b∗ H∗ 103ε Ra 〈F〉
(mm) (mm) (—) (—) (—)

0.500 201 0.717 1.03× 106 0.070
0.500 236 0.611 1.21× 106 0.071
0.500 343 0.421 1.76× 106 0.075

0.800 104 2.213 1.37× 106 0.022
0.800 132 1.748 1.73× 106 0.020
0.800 164 1.406 2.16× 106 0.024
0.800 201 1.147 2.64× 106 0.026
0.800 236 0.977 3.10× 106 0.030
0.800 343 0.674 4.50× 106 0.024

1.000 104 2.766 2.14× 106 0.013
1.000 132 2.185 2.71× 106 0.012
1.000 164 1.758 3.37× 106 0.013
1.000 201 1.433 4.13× 106 0.013
1.000 236 1.222 4.85× 106 0.012
1.000 343 0.843 7.03× 106 0.012

TABLE 1. Summary of all experiments performed. The Rayleigh–Darcy number is defined
as Ra= g1ρ∗s (b

∗)2H∗/(12µD), where 1ρ∗s = 38.1 kg m−3, µ= 9.2× 10−4 Pa s and D=
1.65 × 10−9 m2 s−1. Experiments are grouped by gap thickness, b∗. Flux measurements
reported are the average of three experiments.

of the superscript * is used here to refer to dimensionless variables. The most
relevant global observable for the present system is the averaged dimensionless
dissolution rate F(t). This observable, which represents the amount of solute dissolved
per unit of area and time, is customarily computed in numerical simulations as
F(t) = 1/L

∫ L
0 ∂zC(x, z)|z=H dx. However, in experiments, the concentration gradients,

especially at the top of the domain, are very sensitive to the concentration values as
reconstructed from the pixels’ intensity. Therefore, we compute F(t) starting from the
cumulative indicator represented by the dimensionless mass of solute contained in the
domain per unit of depth, m(t)=

∫ L
0

∫ H
0 C dx dz, obtaining (Ching et al. 2017)

F(t)=
1
L

dm(t)
dt

. (2.3)

Numerical and experimental investigations have shown that, with respect to the
dissolution process, three regimes may be identified: diffusion-driven, convection-
dominated (or constant flux) and shutdown of convection. We refer to Slim (2014)
for a thorough description of the entire dissolution dynamics.

3. Results and discussion
In this section we will assess potential consequences of the assumption of Darcy

flow by examining the role of the cell width when it is used as the parameter to
increase the Rayleigh–Darcy number. However, it is instrumental in our analysis to
examine the behaviour of dissolution flux in time for cases in which the Darcy flow
assumptions can be safely applied (we will demonstrate this later). For experimental
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FIGURE 2. Time-dependent dimensionless dissolution rate F(t) for different Rayleigh–
Darcy numbers, as indicated in the figure. All experiments refer to the same gap thickness
(b∗ = 0.30 mm), whereas H∗ varies. It is apparent here that a constant flux regime is
found and it is later followed by a shutdown regime. The black line at Ra = 6.3 ×
105 corresponds to the experiment shown in figure 3(a). The time-averaged value of
the dissolution rate during the constant flux regime, averaged over three experiments, is
reported in figure 4(a) (red squares).

convenience, we will examine the solute flux behaviour for different Rayleigh–Darcy
numbers: for this assessment, we increase Ra by increasing the domain height H∗,
as from (1.1), but fixing the gap thickness to b∗ = 0.30 mm. The evolution of the
dimensionless time-dependent dissolution rate, F(t), computed as in (2.3), is shown
in figure 2. The line at Ra= 6.3× 105 is black as a reference for later discussion. It
is apparent from the plateaux exhibited by the different experiments that a constant
flux regime is found and it is later followed by a shutdown regime. The value of
the plateau is similar for all the different cases and appears independent of Ra.
This behaviour was found also, with quantitatively similar results, by a number of
numerical studies performed under Darcy flow assumptions (Pau et al. 2010; Hidalgo
et al. 2012; Slim 2014; De Paoli, Zonta & Soldati 2017; Amooie, Soltanian &
Moortgat 2018; Wen et al. 2018a).

To focus now on the role of the domain gap, b∗, we consider experiments performed
in a cell with constant domain height H∗ = 343 mm, and variable gap thickness b∗.
Four snapshots of the solute concentration are shown in figure 3, and correspond to
four different cases of increasing gap width (b∗ = 0.30, 0.50, 0.80 and 1.00 mm), i.e.
of increasing Ra; the experiment shown in figure 3(a) corresponds to the black line
in figure 2. The four snapshots of figure 3 are taken at the time at which fingers have
impinged on the lower boundary. This time precedes the end of the different plateaux
in figure 2, just before the beginning of the shutdown phase. While in figure 3(a)
sharp concentration gradients (highlighted by the pronounced colour gradients) are
noticeable, we observe from figure 3(b–d) that increasing Ra via increasing the
gap width corresponds to a smoothing of the concentration gradients, and fingers
appear progressively less and less coherent. Responsible for this smoothing of the
concentration gradients is the shear (or hydrodynamic) dispersion (Taylor 1953), which
occurs when a velocity profile advects scalar species at different streamwise velocity.
Increasing the gap width corresponds to a decrease of the resistance experienced
by the fluid flowing down the cell and, for the same driving force (i.e. density
difference) we should expect a larger solute flux, since the convective velocity W∗

scales with (b∗)2, see (2.2). However, since the hydrodynamic dispersion varies with
the velocity gradient of the Poiseuille flow profile, which scales as W∗/b∗ ∼ b∗,
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FIGURE 3. Effect of the gap thickness on the flow. Concentration fields are reported for
(a) b∗= 0.30 mm (Ra= 6.3× 105), (b) b∗= 0.50 mm (Ra= 1.8× 106), (c) b∗= 0.80 mm
(Ra= 4.5× 106) and (d) b∗= 1.0 mm (Ra= 7.0× 106). Larger gap thicknesses correspond
to stronger effects of dispersion. When gap thickness is increased, the shape of the fingers
is less defined and the concentration gradients across the interface of the fingers reduce.

increasing the gap width produces an interplay between convective velocity and
hydrodynamic dispersion; in this way, the flow in the cell can be influenced by the
three-dimensional spurious effects, which can prevent the application of the Darcy
flow hypothesis to analyse the flow features. This will be further discussed later in
this section.

To fully appreciate the important role of hydrodynamic dispersion on this type of
experiment, we present in figure 4 a global view of all our measurements of 〈F〉,
which is the time average of the solute flux F(t) during the constant flux regime.
We underline here that Letelier et al. (2019) used the scalar dissipation rate rather
than 〈F〉, but as discussed by De Paoli et al. (2019), for the present configuration,
〈F〉 is equivalent to the mean scalar dissipation rate. In figure 4(a), we present 〈F〉
as a function of Ra, which is varied both by changing H∗ and b∗, see (1.1). The
figure shows five datasets, corresponding to five values of b∗. We can observe that
data corresponding to small values of b∗ (60.50 mm) have a distinctly different
behaviour from those obtained for the two larger values of b∗. In particular, for
b∗ = 0.80 mm and 1.00 mm, corresponding to a decrease of resistance to the flow,
there is an important decrease of 〈F〉, while hypothetical two-dimensional simulations
would give a constant 〈F〉. The case of the reported strong reduction of 〈F〉 in
our experiments may be interpreted as the combined action of spurious transversal
solute fluxes in the Hele-Shaw cell, which produce the dispersion effects as discussed
by Letelier et al. (2019), and the transition towards to the three-dimensional flow
regime. Numerical simulations can replicate a perfect two-dimensional situation and
therefore will be used here to benchmark and analyse our data in the limit of small
thicknesses. Numerical simulations are commonly analysed in terms of the Sherwood
number, Sh = 〈F〉Ra which, in the instance of heat transfer problems, is called the
Nusselt number. In the papers by Slim (2014) and Wen et al. (2018a), a linear
scaling was found for the Sherwood number as Sh= βRaα with α= 1 and β = 0.017.
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b*
2 = 0.30 mm

b*
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b*
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b*
5 = 1.00 mm

Sh¯F˘

(a) (b)

10-2
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å1

å2

å3105

105 106

Ra Ra
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FIGURE 4. (a) Time-averaged dissolution rate, 〈F〉, as a function of the Rayleigh–Darcy
number, Ra. Here, Ra is changed varying gap thickness b∗ and domain height H∗. A
difference in the behaviour of 〈F〉 is observed between low and high values of the gap
thickness. (b) Low-thickness experiments, corresponding to three values of thickness b∗,
and six values of the domain height H∗= 104 mm, 132 mm, 164 mm, 201 mm, 236 mm
and 343 mm. Sherwood number is shown as a function of the Rayleigh–Darcy number.
Results are fitted within the same value of the gap thickness. Best fitting functions
Sh= βRaα computed for constant b∗ are shown as dashed lines. Scaling exponents found
via data fitting and limited to each subdataset are also reported. The curve corresponding
to the exponent found in numerical simulations, α = 1, is also shown (solid line).

Similarly, a linear scaling is obtained by Hidalgo et al. (2012) and Amooie et al.
(2018). With the aim of emphasising the effect of the experimental parameters on
Sh, in figure 4(b) we show the behaviour of the Sherwood number as a function of
Ra in the following way: we grouped the data into subdatasets of six experiments
obtained for the same gap, and for each subdataset, Ra was varied by changing only
the domain height H∗. In figure 4(b), the scaling exponents found via data fitting and
limited to each subdataset are also reported: the value of the exponents is in very
good agreement with those found in the literature, which are summarised in table 2.
To find best fit power laws, a regression model is applied on the data in the form
log Sh= α log Ra+ log β.

If we compare now our situation to previous experimental campaigns, we observe
that Backhaus et al. (2011) and Tsai et al. (2013) report α = 0.80 and 0.76,
respectively. In both papers α was identified as a best fit exponent on the entire
dataset, but while Tsai et al. (2013) varied b∗ only, Backhaus et al. (2011) varied
both b∗ and H∗. To emphasise clearly the effect of changing b∗ and H∗ on our data,
in figure 5 we show the behaviour 〈F〉 as a function of Ra and we find the best
fit exponents α on different subdatasets which, this time, group data points with
the same H∗. We plot 〈F〉 rather than Sh because effects emerge in a more evident
manner, and therefore we now look for the scaling

〈F〉 =
Sh
Ra
∼ Raα−1. (3.1)

As shown clearly by the value of the slopes reported in figure 5, in this case we
find values for α ≈ 0.85, much closer to those obtained in previous experiments by
Backhaus et al. (2011) and Tsai et al. (2013). It seems therefore clear that the scaling
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FIGURE 5. Time-averaged dissolution rate, 〈F〉, as a function of the Rayleigh–Darcy
number, Ra. Experiments for all the values of height considered, H∗, and small thicknesses
(b∗ = 0.15, 0.30 and 0.50 mm) are shown. Best fitting functions 〈F〉 ∼ Raα−1 computed
for constant H∗ are shown as dashed lines. Scaling exponents found via data fitting and
limited to each value of domain height are also reported. The curve corresponding to the
mean value of best fit exponents, α = 0.85, is also shown (solid line).

Reference Method Technique Ra α

Backhaus et al. (2011) Experimental PPG and water 6× 103–9× 104 0.76
Tsai et al. (2013) Experimental PPG and water 5× 103–1× 105 0.84
Hidalgo et al. (2012) Numerical Spectral and

finite differences
5× 103–3× 104 1.031

Slim (2014) Numerical Pseudospectral 2× 103–5× 104 1
Wen, Chang & Hesse
(2018b)

Numerical Pseudospectral 1× 104–5× 104 1

Amooie et al. (2018) Numerical Spectral elements 1.5× 103–1.35× 105 1

TABLE 2. Summary of scaling exponents, α of equation Sh= βRaα , as found in previous
numerical and experimental works. We consider here only experiments performed in
Hele-Shaw cells and two-dimensional Darcy simulations in homogeneous and isotropic
porous media. In the experimental works, an aqueous solution of PPG has been used. In
the numerical works, different discretisation techniques have been adopted. The range of
Rayleigh–Darcy numbers considered is also reported.

of α found in previous experimental works includes also some effect of the spurious
transversal currents.

To analyse in detail, and also in an effort to quantify the influence of the geometry
of the Hele-Shaw cell, which is crucial for the evolution of the flow, we use the cell
anisotropy ratio, ε = b∗/

√
12H∗, which scales as the ratio of the characteristic time

of transverse diffusion, (b∗)2/D, to the longitudinal advection time, H∗/ŵ∗, being
ŵ∗ the vertical velocity averaged across the gap b∗ (see Bae, Beta & Bodenschatz
2009; Kirby 2010). The behaviour of 〈F〉 as a function of the anisotropy ratio
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FIGURE 6. Time-averaged dissolution rate, 〈F〉 is here reported. Experiments are grouped
by gap thickness b∗. (a) Here, 〈F〉 is shown as a function of the anisotropy ratio, ε.
Results are grouped by regime as Hele-Shaw and three-dimensional regime. Here, (b) 〈F〉
is shown as a function of ε2Ra. In this case, the regime classification is more evident.
A drop of the dissolution rate is observed in correspondence of ε2Ra = 1, where the
transition from Hele-Shaw flow to three-dimensional flow occurs. The Darcy regime,
which represents a theoretical limit for the experiments and corresponds to ε2Ra→ 0, is
also indicated.

is shown in figure 6(a). As discussed by Letelier et al. (2019), a Hele-Shaw cell
behaves as a two-dimensional domain only in the limit of ε → 0, which is also
the limit for Darcy flow. Indeed, an increase of the gap width produces an increase
of vertical velocity, while the characteristic diffusion time scale remains unchanged.
Since diffusion is responsible for the homogenisation of the solute distribution
in the wall-normal direction, we cannot assume that the solute concentration is
uniform across the gap. An increase of ε implies the occurrence of transverse
effects which will lead the behaviour of the cell to Hele-Shaw regime and further
to three-dimensional regime as proposed by Letelier et al. (2019). The application
of their classification to our data emerges very clearly from figure 6(b), where we
plot 〈F〉 as a function of the dimensionless number ε2Ra: if ε2Ra is small, the
cell behaviour is closer to the Darcy flow behaviour, whereas if ε2Ra is large the
flow exhibits three-dimensional effects which cannot be described with the Darcy
equations, and can cause discrepancies of the scaling exponents. This is perhaps
rather obvious, but it is here quantified precisely via experiments for the first time.
We observe a drop of 〈F〉 after the threshold ε2Ra= 1, which represents the threshold
value identified theoretically for the transition to the three-dimensional flow (Letelier
et al. 2019). Our current dataset does not allow us to investigate whether there is
a sharp or a smooth transition in correspondence of ε2Ra = 1. We can, however,
confirm that the transition to the three-dimensional regime occurs for the subdatasets
b∗ = 0.80 and 1.00 mm, corresponding to ε2Ra� 1. These results provide a further
assessment of the gap-induced dispersion effects, which represent one of the possible
differences in the flow behaviour observed numerically and experimentally. Clearly,
a transition of the cell behaviour from Hele-Shaw to three-dimensional regime, will
require using the full Navier–Stokes equation set rather than a Darcy model (plus
corrective terms) to analyse the flow. From the experimental viewpoint, a satisfactory
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FIGURE 7. (a) Concentration field over a small portion of the domain. The solid, black
line identifies the position of the interface between the solute-rich mixture (aqueous
solution of KMnO4) and the pure fluid (water). The dashed line shows the position of
the averaged fingertip, identified as the value of z∗ at which C∗/C∗s = 1/50, and with
indication of the fingertip velocity, w∗f (vectors). (b) Horizontally averaged concentration
profile (black, solid line) used to identify the fingertip position. (c) Gap-based Reynolds
number, Re, estimated for all the experiments considered; when Re 6 1 the system is in
the Hele-Shaw regime, the transition to the three-dimensional flow occurs for Re� 1.

analysis of full three-dimensional regime would require further observations in the
out-of-plane direction. Phenomena like multiple finger in the thickness of the cell
could not, otherwise, be accurately quantified.

The effect of inertia in the Hele-Shaw regime was examined theoretically by
Letelier et al. (2019), who proposed to add extra terms to the Darcy model. In our
experiments, these extra terms scale as ε2Ra/Sc, where Sc is the Schmidt number, i.e.
the ratio of momentum to mass diffusivity, and is defined here as Sc = µ/ρD. We
have that in our experiments Sc∼ O(103). Since inertial terms are multiplied by the
coefficient ε2Ra/Sc (Letelier et al. 2019), we can neglect these terms when ε2Ra6 1,
which in our experimental dataset corresponds to b∗ 6 0.50 mm. Our aim here is
to evaluate the Reynolds number Re to confirm the predictions of Letelier et al.
(2019). In this context, we assume as velocity scale 〈w∗f 〉, defined as the mean value
during the constant flux regime of the average fingertip velocity w∗f , as sketched in
figure 7(a), and we compute the Reynolds number Re as follows:

Re=
ρ∗s 〈w

∗

f 〉b
∗

µ
. (3.2)

To find w∗f we use the horizontally averaged concentration profile

C∗(z∗, t∗)=
1
L∗

∫ L∗

0
C∗(x∗, z∗, t∗) dx∗. (3.3)

We customarily set the location of the average fingertip as the vertical coordinate z∗
of the cell where

C∗(z∗, t∗)/C∗s = 1/50, (3.4)

as illustrated in figure 7(b). In figure 7(c) we report the values of Re for our dataset.
We can observe that the Reynolds number Re increases for increasing the cell gap
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width, b∗. The smallest gap-width experiments (b∗ = 0.15 mm) give a value of
Re lower than 10−1, which is a good experimental approximation of Darcy flow
conditions. For Re 6 1 (i.e. b∗ 6 0.50 mm) inertial effects are of the same order of
viscous effects. However, we have shown via detailed analysis of the dissolution rate
that these experiments are in the Hele-Shaw regime. This indicates that the Reynolds
number is not sufficient for the evaluation of inertia, and a detailed analysis of the
local flow velocities may be required. Finally, for the larger gap-width experiments
Re� 1 (i.e. b∗ > 0.80 mm), where three-dimensional effects are important, we can
observe that also inertial effects are becoming important, with Re value of the order
of 10.

4. Conclusions

In this work, we investigate experimentally the problem of solute convection
in Hele-Shaw cells in Rayleigh–Bénard-like configuration. The solute dynamics is
governed by the complex interplay of convection, diffusion and dispersion. The flow is
controlled by two dimensionless parameters: the Rayleigh–Darcy number, Ra, which
measures the relative importance of convection and diffusion, and the anisotropy
ratio, ε, proportional to the cell thickness-to-height ratio. On the basis of accurate
measurements of the concentration field, we examined the occurrence of non-Darcy
effects and their influence on the dissolution dynamics. Following the classification
proposed by Letelier et al. (2019), based on the value of the dimensionless parameter
ε2Ra, we can experimentally confirm the existence of three different flow regimes:
(i) Darcy regime, for ε2Ra→ 0, the flow is two-dimensional and is well described by
a Darcy model; (ii) Hele-Shaw regime, the effect of non-Darcy terms is crucial for
0< ε2Ra< 1, when dispersion effects are responsible for the Ra-dependent behaviour
of the dissolution rate; (iii) three-dimensional regime, at last, for ε2Ra > 1, the flow
has a three-dimensional character. On the basis of this analysis, we have also been
able to reconcile the Ra-dependent behaviour of the mean dissolution rate reportedly
observed in previous experiments, and we have been able to attribute this dependency
on Ra to spurious three-dimensional effects.

Present results can also have implications for porous media flows. To investigate
the effect of a porous structure on solute convection, more complicated experiments
use Hele-Shaw cells: the porous matrix is usually mimicked by glass beads, which
fill the cell gap that in this case is of the order of few centimetres. Experimental
investigations in Rayleigh–Bénard-like configuration indicate that, as well as in the
Hele-Shaw apparatus, also in this case there is a regime dominated by convection in
which the solute dissolution rate is constant, and the time-averaged dissolution rate
scales as ∼Raα−1, with 0 < α < 1 (Neufeld et al. 2010). In a recent work, Liang
et al. (2018) investigated experimentally the effect of solute redistribution induced
by the beads. Tortuosity of the flow paths as well as friction with the solid surface
of the porous matrix makes the fluid and the solute advected by the fluid follow
sinuous pathways. This process, defined as mechanical dispersion, causes additional
mechanical mixing and dilution effects and was identified as responsible for the
Ra-dependent behaviour of the dissolution rate (Liang et al. 2018). This conclusion is
also supported by simulations performed including the effect of mechanical dispersion
(Wen et al. 2018b). The effect of mechanical dispersion in porous media shares some
similarities with the Taylor hydrodynamic dispersion induced by the presence of the
walls in Hele-Shaw cells. Although different in nature (e.g. strict two-dimensionality
of the Hele-Shaw cell and tortuosity of flow paths in porous media), the Hele-Shaw
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FIGURE 8. Density difference between aqueous solutions of KMnO4 and water (symbols)
as a function of KMnO4 concentration at constant temperature (T∗ = 23 ◦C, ρ∗(0) =
997.54 kg m−3). The linear function defined by (2.1) (solid line) approximates very well
the correlation proposed by Novotný & Söhnel (1988) (symbols) in the range of values
of interest.

cell is a good analogy for flows in homogenous and isotropic porous media provided
that ε2Ra→ 0, and can be used for the verification of closure models for Darcy flows
(Nield & Bejan 2013).
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Appendix A

The density of an aqueous solution of potassium permanganate and water, ρ∗, is
a nonlinear function of fluid temperature, T∗, and solute concentration, C∗ (Novotný
& Söhnel 1988). However, we show here that, in the range of values of C∗ and T∗

considered in the present work, the behaviour of the function ρ∗(C∗, T∗) for a given
T∗ is nearly linear.

The fluid temperature is measured before fluid injection and after the experiment.
Since we find a variation lower or equal to 0.2 ◦C, we compute mixture density
ρ∗(C∗, T∗) assuming that the temperature of the fluid is constant during the
experiment. From the empirical correlation proposed by Novotný & Söhnel (1988),
we have that

ρ∗ = A0(T∗)+C∗A1(T∗)+ (C∗)3/2A2(T∗), (A 1)
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where A0(T∗), A1(T∗) and A2(T∗) are functions of the temperature T∗. In figure 8, the
value of the density difference between solution (concentration C∗) and pure water is
shown as a function of the solute concentration (symbols) for T∗ = 23 ◦C. The linear
function corresponding to (2.1) (solid line) fits very well the correlation proposed by
Novotný & Söhnel (1988) in the range of values of interest.

REFERENCES

ALIPOUR, M. & DE PAOLI, M. 2019 Convective dissolution in porous media: experimental
investigation in Hele-Shaw cell. Proc. Appl. Maths Mech. 19 (1), e201900236.

AMOOIE, M. A., SOLTANIAN, M. R. & MOORTGAT, J. 2018 Solutal convection in porous media:
comparison between boundary conditions of constant concentration and constant flux. Phys.
Rev. E 98, 033118.

BACKHAUS, S., TURITSYN, K. & ECKE, R. E. 2011 Convective instability and mass transport of
diffusion layers in a Hele-Shaw geometry. Phys. Rev. Lett. 106 (10), 104501.

BAE, A. J., BETA, C. & BODENSCHATZ, E. 2009 Rapid switching of chemical signals in microfluidic
devices. Lab on a Chip 9 (21), 3059–3065.

CHING, J., CHEN, P. & TSAI, P. A. 2017 Convective mixing in homogeneous porous media flow.
Phys. Rev. F 2, 014102.

DE PAOLI, M., GIURGIU, V., ZONTA, F. & SOLDATI, A. 2019 Universal behavior of scalar dissipation
rate in confined porous media. Phys. Rev. F 4, 101501.

DE PAOLI, M., ZONTA, F. & SOLDATI, A. 2016 Influence of anisotropic permeability on convection
in porous media: implications for geological CO2 sequestration. Phys. Fluids 28 (5), 056601.

DE PAOLI, M., ZONTA, F. & SOLDATI, A. 2017 Dissolution in anisotropic porous media: modelling
convection regimes from onset to shutdown. Phys. Fluids 29 (2), 026601.

EMAMI-MEYBODI, H., HASSANZADEH, H., GREEN, C. P. & ENNIS-KING, J. 2015 Convective
dissolution of CO2 in saline aquifers: progress in modeling and experiments. Intl J. Greenh.
Gas Control 40, 238–266.

FELTHAM, D. L., UNTERSTEINER, N., WETTLAUFER, J. S. & WORSTER, M. G. 2006 Sea ice is
a mushy layer. Geophys. Res. Lett. 33 (14), L14501.

HEWITT, D. R., NEUFELD, J. A. & LISTER, J. R. 2013 Convective shutdown in a porous medium
at high Rayleigh number. J. Fluid Mech. 719, 551–586.

HIDALGO, J. J., FE, J., CUETO-FELGUEROSO, L. & JUANES, R. 2012 Scaling of convective mixing
in porous media. Phys. Rev. Lett. 109 (26), 264503.

HUPPERT, H. E. & NEUFELD, J. A. 2014 The fluid mechanics of carbon dioxide sequestration.
Annu. Rev. Fluid Mech. 46, 255–272.

JAFARI-RAAD, S. M. & HASSANZADEH, H. 2015 Onset of dissolution-driven instabilities in fluids
with nonmonotonic density profile. Phys. Rev. E 92, 053023.

KIRBY, B. J. 2010 Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices.
Cambridge University Press.

LEBLANC, D. R. 1984 Sewage Plume in a Sand and Gravel Aquifer, Cape Cod, Massachusetts. US
Geological Survey.

LETELIER, J. A., MUJICA, N. & ORTEGA, J. H. 2019 Perturbative corrections for the scaling of
heat transport in a Hele-Shaw geometry and its application to geological vertical fractures.
J. Fluid Mech. 864, 746–767.

LIANG, Y., WEN, B., HESSE, M. A. & DICARLO, D. 2018 Effect of dispersion on solutal convection
in porous media. Geophys. Res. Lett. 45 (18), 9690–9698.

NEUFELD, J. A., HESSE, M. A., RIAZ, A., HALLWORTH, M. A., TCHELEPI, H. A. & HUPPERT, H. E.
2010 Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37, 2–6.

NIELD, D. A. & BEJAN, A. 2013 Convection in Porous Media. Springer.
NOVOTNÝ, P. & SÖHNEL, O. 1988 Densities of binary aqueous solutions of 306 inorganic substances.

J. Chem. Engng Data 33 (1), 49–55.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

22
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.229


Non-Darcy effects on convection scaling laws 892 A41-15

PAU, G. S. H., BELL, J. B., PRUESS, K., ALMGREN, A. S., LIJEWSKI, M. J. & ZHANG, K. 2010
High-resolution simulation and characterization of density-driven flow in CO2 storage in saline
aquifers. Adv. Water Resour. 33 (4), 443–455.

SAFFMAN, P. G. & TAYLOR, G. I. 1958 The penetration of a fluid into a porous medium or
Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312–329.

SIMMONS, C. T., FENSTEMAKER, T. R. & SHARP, J. M. JR 2001 Variable-density groundwater
flow and solute transport in heterogeneous porous media: approaches, resolutions and future
challenges. J. Contam. Hydrol. 52 (1–4), 245–275.

SLIM, A. C. 2014 Solutal-convection regimes in a two-dimensional porous medium. J. Fluid Mech.
741, 461–491.

SLIM, A. C., BANDI, M. M., MILLER, J. C. & MAHADEVAN, L. 2013 Dissolution-driven convection
in a Hele-Shaw cell. Phys. Fluids 25 (2), 024101.

TAYLOR, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R.
Soc. Lond. A 219 (1137), 186–203.

TSAI, P. A., RIESING, K. & STONE, H. A. 2013 Density-driven convection enhanced by an inclined
boundary: implications for geological CO2 storage. Phys. Rev. E 87 (1), 011003.

VAN DER MOLEN, W. H. & OMMEN, H. C. V. 1988 Transport of solutes in soils and aquifers.
J. Hydrol. 100 (1), 433–451.

WEN, B., AKHBARI, D., ZHANG, L. & HESSE, M. A. 2018a Convective carbon dioxide dissolution
in a closed porous medium at low pressure. J. Fluid Mech. 854, 56–87.

WEN, B., CHANG, K. W. & HESSE, M. A. 2018b Rayleigh–Darcy convection with hydrodynamic
dispersion. Phys. Rev. F 3, 123801.

WETTLAUFER, J. S., WORSTER, M. G. & HUPPERT, H. E. 1997 The phase evolution of Young
Sea Ice. Geophys. Res. Lett. 24 (10), 1251–1254.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

22
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.229

	How non-Darcy effects influence scaling laws in Hele-Shaw convection experiments
	Introduction
	Methodology
	Results and discussion
	Conclusions
	Acknowledgements
	Appendix A 
	References




