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A Lower Bound for the Length of Closed
Geodesics on a Finsler Manifold

Wei Zhao

Abstract. In this paper, we obtain a lower bound for the length of closed geodesics on an arbitrary
closed Finsler manifold.

1 Introduction

The study of closed geodesics is a classical and important problem in differential
geometry. There are many important results, which in turn to lead to a better under-
standing of the global geometry of differential manifolds. In Riemannian geometry,
following Klingenberg[K], Cheeger [Ch] gives a lower bound for the length of simple
closed geodesics in terms of an upper bound for the diameter and lower bounds for
the volume and the sectional curvature. Finsler geometry is a natural generalization
of Riemannian geometry. The analogue of sectional curvature in Finsler geometry is
the so-called the flag curvature. It is a natural question whether Cheeger’s theorem
still holds in the Finslerian case. However, even to most trivial Finsler metrics, such
as Berwald—Randers metrics, the answer is negative.

Example 1.1 ([BCS]) Let  be the canonical Riemannian product metric on $? x S
and let 3 be a parallel 1-form. Denote by (r, #) and ¢ the spherical coordinates of $?
and S, respectively. Then 8 = dt. For each € € [0,1), F. := a + ¢/ is a Berwald—
Randers metric with the flag curvature K. > 0, diam.(M) < 37 and the Holmes—
Thompson volume y.(M) = 87%. However, o(t) = (0,0, —t) is a geodesic of F, with
the length 27(1 —¢) — 0 (ase — 1).

The purpose of this paper is to study the length of simple geodesics on a closed
Finsler manifold. Given a Finsler manifold (M, F), let T and Ar be the T-curvature
and the uniformity constant, respectively (see [E,S] or Section 2). These quantities
are non-Riemannian quantities. In fact, T = 0 if only if F is Berwaldian, while
Ar = 1ifand only if F is Riemannian. Our main result is the following theorem.

Theorem 1.2 Let (M, F) be a closed Finsler m-manifold withK > 0, T < ¢, Ap > A,
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and diameter < d. Then for any simple closed geodesic ,

w(M)
m—1 . )
A% | S (mindd/2VO)}) <mmi"_~j/(m>})+max{o,g} s sg"—l(t)dt]

Le(y) =

where p(M) is either the Busemann—Hausdorff volume or the Holmes—Thompson vol-
ume of M, Lr(y) is the length of 7y, and c,,_, := Vol(S"™ ).

According to Theorem 1.2, a lower bound for the length of the simple closed
geodesics in Example 1.1 is 8/(97TA19:{2). Note that Ar. > (1 + €)?(1 — €) 2. Hence,

L. (0) > 8/(97AY) — 0

(as € — 1). In fact, by a better estimate for Randers manifolds (see Theorem 6.3), we
have Lr, () > 8(1 —€)*/(97(1 +¢)) for any simple closed geodesic v in Example 1.1.
We remark that Cheeger’s argument in [Ch] was carried out using Toponogov’s
comparison theorem. But Toponogov’s comparison theorem does not hold in a non-
Riemannian Finsler manifold. In [HK], Heintze and Karcher gave a more direct proof
of Cheeger’s theorem by studying the normal bundle of a simple closed geodesic.
However, in the general case, the normal bundle of a Finsler submanifold is not a
vector bundle but a cone-bundle [Ru, S]. Apparently, it is rather hard to handle this
cone-bundle due to nonlinearity. The principal idea in the proof of Theorem 1.2 is to
investigate the conormal bundle, which is the homeomorphic image of the normal
bundle under the Legendre transformation. In fact, our method works for Finsler
submanifolds with arbitrary codimensions. This will be discussed elsewhere.

2 Preliminaries

In this section, we recall some definitions and properties about Finsler manifolds.
See [BCS, S] for more details.

Let (M, F) be a (connected) Finsler m-manifold with Finsler metric F: TM —
[0,00). Define S;M := {y € T:M : F(x,y) = 1} and SM := U,epScM. Let
(x,¥) = («', y) be local coordinates on TM. Define

-y 1 0*F*(x, y) F O°F*(x,y)
fl = - i 5 = o Al 5 = T
F’ &ij(%,y) 2 dyldyi (%) 4 9y 0yidyk
i 1 ;008 Oga  Ogik i i pj ik
Nem 58 (Gt a0 o) N (- Anee) o

The Chern connection V is defined on the pulled-back bundle 7*TM and its forms
are characterized by the following structure equations:

(1) Torsion freeness: dx’ A w;- =0;

(2) Almost g-compatibility: dg;; — gkjwlk —'g,-kwﬁ? = ZA%k(dyk _|_ Nkdx!).

From the above, it is easy to obtain w§ = F’jkdxk, and F’jk =TI i
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The curvature form of the Chern connection is defined as

dy' + Nldx*

. . 1 ,
Q= dw'’ — wf Awp =: ERIJ dxk A dx! + P dxk A F

J J

Given a non-zero vector V € T, M, the flag curvature K(y,V) on (x,y) € TM\O0 is

defined as o
ViyIRjiuy'V*

&g (V,V) — [g,(y,V)]?

K(y,V) :=

where Rjikl = g,‘SR; K
Given y, v € TyM with y # 0, define the T-curvature T as

T,(v) == g,(V)V,y) — g,(VIV,),

where V' (resp. Y) is a vector field with V, = v (resp. Y, = y). And wesay T < ¢ if

T,(v) < c{\/gy(v, V) —gy(v, F(yy))] 2F(y),

forall y,v € TM\0.

Remark 2.1 We modify the definition of T < ¢ here, because the original one in
[S] is not well defined when F is a Randers metric and y = —v.

The uniformity constant Ar of (M, F) is defined by ([E])

gX(Y; Y)

AF = .
xyzesm8z(Y,Y)

Clearly, Ar > 1; A = 1 if and only if F is Riemannian.
Given any volume form dy on M, in a local coordinate system (x'), express du =
o(x)dx' A -+ Adx". For y € T,M\0, define the distortion of (M, F, du) as

det(gi;(x, )
o(x) '

The Legendre transformation £: TM — T*M is defined by

L(Y){o, Y =0,

7(y) = log

gY(Ya ')7 Y#O

For each x € M, the Legendre transformation is a smooth diffeomorphism from
T.M\{0} onto T} M\{0}.

Define the dual Finsler metric F*: T*M — [0, c0) of F by F*(§) := SUP, o E(y).
By [BCS, S], F*(£(y)) = F(y) and g*'/(€) := 3[F*?]¢¢, (&) = g'(y), where £ =
L(y).
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3 Conormal Bundle and Exponential Map

Throughout this paper, we assume that (M, F) is a forward complete Finsler m-man-
ifold and that v(s), 0 < s < ¢ = Lg(7y), is a unit speed simple closed geodesic on M.
And we always identify «y with its image ([0, £]). Denote by c,(t) a constant speed
geodesic with ¢,(0) = y. The rules that govern our index gymnastics are as follows:

e i, jrunfrom 1 to m.
¢ A,Brunfrom2tom.g,brunfrom2tom— 1.
e a,brunfromltom— 1.

According to [Ru, S], the normal bundle V- of «y is defined as
Vy:={ne€TM:n=0org,(n7y) =0}

In general, V7 is not a vector bundle even F is reversible. Consider the following
subbundle of T*M:
Viyi={we T"M: w(y) = 0}.

It is easy to see that V*y = L(V~), where £L: TM — T*M is the Legendre transfor-
mation. Note that £ is a homeomorphism from TM to T*M and a diffeomorphism
from TM\0 to T*M\0. Hence, V* is called the conormal bundle over ~ in M.

Let m: V*vy — ~ denote the bundle projection. For each s, there exists a local
coordinate system (U;x") at y(sp) such that x! o y(s) = s and x* o y(s) = 0. Hence,
foreaché € 77N (U N7), € = Eudx* and 77 (U Ny) = (UN7) x R, We call
(x') (resp. (s,£4)) an adapted coordinate system for v (resp. V*7).

Define the conormal exponential map Exp: V*vy — M by

Exp“(§) == eXPw(g)(L_l ).

Let S*M := {w € T*M : F*(w) = 1} and V*Sy := §*M N V*~. Now we have the
following theorem.

Theorem 3.1 Foreachn € V*Sv, there exists a small (n) > 0 and an open neighbor-
hood W of 1) in V* S~y such that Exp®,,, is nonsingular for all§ € W andt € (0, e(n)).

Proof For the sake of clarity, we use (x,&) to denote a point £ € V*v. Given
(x0,m0) € V*Sy C V*v, let (U;x') be an adapted coordinate system at x, for
and V := U N~. We can choose a small § > 0 such that Exp*(D) C U, where
D = {(x,tn) : t € (0,0), (x,n) € V*SV}. Let (x',y") and (s,&4) be the local
(adapted) coordinates for TM and V*~, respectively. Thus, for each (x,tn) € D, we

have
0 dexplx,£7'(9) _ i i1 9
Bt s = 05 |, L PHOED GG
where
i [0exp’ . i1 Oexp’ -1 g
H(t,x,n)| == [W(x, tL™(n) — 51} + Ty"(x’tL (m) - Oxl (1) - t114.
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Likewise,

0 * i i 9
(31) EXpC*(x,tn) 87& — gUSk [(Sk + L(t, X, 77)k] axi )

where '
0 exp’
ayk

L(t,x, )} = (x,tL7 () — o}

Clearly, tlirgH(t, x,m)i = tli}IgL(t, x,m)i = 0. The matrix of EXp©, (i) 1

S(t.x.m) ( 1+ H(t,x,n)i H(t,x,n)? )
, X, 1) = * *xAk * *xAk .
S &L,y g+ gLt x, m)E

Since det S(0, xg,70) > 0, there exists a small e(xp,79) > 0 and an open neigh-
borhood W of (xg, 1) in V*Sv such that Expc, ¢ 1s nonsingular for all £ € W and
t € (0, €(xo, M) [ ]

Remark 3.2 In general, Exp® is not C! at all the zero sections of V*~. Otherwise, it
follows from (3.1) that £L™!|y«,: V*y — V7 is an isomorphism, which implies that

V7 is a vector bundle.

Definition 3.3 Given ¢ € Vi+\0, the co-(second fundamental form) of v along &
in M is defined as

he(X,Y) = (£, VRY), VXY € Ty,
And co-Weingarten map U¢: Tyy — T,y is defined as
A(X) = —(Vim) T,
where 71 := £71(€), € (resp. Y) is an extension of £ (resp. Y) to a co-normal (resp.

tangent) vector field along -y, and the superscript T¢ denotes projection to Tyy by
L1

By the definition of Legendre transformation and [S, (3.10), p. 39], it is easy to
check that 4 and ¢ are well defined. A direct calculation yields

Definition 3.4 Given { € V;Sv, a vector field X along the geodesic cg—1(¢)(£),
t € [0, al, is called a transverse vector field if

¢r(T,X) = 0, X(0) € Tey, (V1X)(0) + A(X(0)) € T;-,

where T' = ¢ -1(¢)(t) and Tiy={Y € T,)M: gc-1e(Y,¥(s)) = 0}.
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Let T denote the collection of transverse Jacobi fields along the geodesic ¢ —1(¢)(£),
t € [0, a]. Then T isa vector space. A similar argument to the one given in [C, p. 141]
shows that dim(%) = m — 1.

Let mr: V*Sy — ~ be the natural projection. Clearly, V*Sy := 71 (7(s)) is a
(m — 2)-dimensional unit Minkowski sphere in T:(S)M . Let (s, 6,) be a local coordi-
nate system on V*S, where (6,) are the local coordinates for V}Sv. Thus, we obtain
a local conic coordinate system (t,s, 0,) on V*4\0, that is, for £ € V*4\0, t = F*(¢)
and £/F*(€) = (5, 6,).

Define amap E: [0, +00) X V*Sy — M by E(t, &) = Exp®(t£). Then we have the
following lemma.

Lemma 3.5 J]i(t) = E. ¢ % and J3(t) = Esup a%‘ are m — 1 transverse Jacobi
fields along the geodesic c—1(¢)(t) with initial data ‘

P
J1(0) = §(s0), Jo(0) =0, (VI])(0) = L?fl(aT)) ’
g

where y(sp) := w(§), T := ép—1(¢)(t) and L;g: Tg(T;*,(SO)M) = Tp1(6)(Tys)M) is
the tangent map.

Proof Suppose £ = (so, 07).
(1) Set&(s) = (s, 93), where s € (—e + 59, € + s9). Consider the variation o (¢, s) =
E(t,&(s)) = €exp.,(5) tL~(&(s)). Thus, Ji(t) = % s=5,0 (t, 5), which implies

Ji(0) =4(s0) and  (VE)(0) = V£ €L (E(s)).
Hence, (V111)(0) + A (J1(0)) € Ty. Since F*(£(s)) = 1, gr(T, (V1]1)(0)) = 0 =
gr(T, J1). Therefore, J; is a transverse Jacobi field along co—1(g(t).
(2) Set £(u) = (s,05(w)), u € (—¢,€) with 05(0) = 62 and L[, _o&(u) = %
Consider the variation o(t, u) = E(t,£(u)) = €eXP.(s)) tL71(E(u)). Clearly,

0 0 )
Jo(t) = Esre) a6, =3 u:og(t’ u) = (expv(SO))*m,l(Otﬂ*;(aieq) '

Since F(L™1(&(w)) = 1,
d _ _ (0
0= gl e 60 = 280000 (4710 £ (55-) )

The Gauss lemma[BCS, p. 140] then yields gr(T, J;) = 0. [ |

Now we extend focal points to Finsler manifolds.

Definition 3.6 Given £ € V*Sv, a point c-1(¢)(t) (to > 0) is said to be focal to
along cc—1(¢)(t) if there exists a nontrivial transverse Jacobi field J such that J(t) = 0.
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Given £ € VS, let X denote the collection of all vector fields X along c—1(¢) (),
t € [0, a], such that gr(T, X) = 0 and X(0) € T,y and let X, consist of those elements
of X that vanish at t = a. On X, the index form is defined by

I(X,Y) := —he(0),Y(0)) +/ gr(VIX, VIY) + Rp(T, X, T,Y) dt.
0

By Lemma 3.5 and the arguments given in [BCS, pp. 180-185], one can easily show
the following theorem.

Theorem 3.7 Suppose that c;—1(¢)(t) has not focal points on (0, a] toy. Given X € X,
let J denote the (unique) transverse Jacobi field along c -1y with J(a) = X(a). Then
I(X,X) > I(], ]) with equality if and only if X = ].

Suppose that some point cg—1)(to), 0 < to < a is focal to vy along ci—1 (). Then
thereis U € Xy with I(U,U) < 0.

Lemma 3.5 together with Theorem 3.1 furnishes the following proposition.

Proposition 3.8 Given £ € V*S, the following statements are mutually equivalent:

(i) co-1(e)(to), 0 <ty < o0 is a focal point of y along c—1(¢)(t);
(i) Exp€,, is singular;
(iil) Eusy,¢) 15 singular.

Proof Define a diffeomorphism .%: (0,+00) X V*Sy — V*4\0 by .7 (1,&) = ¢&.
Clearly, Exp®, o.#, = E,, which implies (ii) < (iii). It follows Lemma 3.5 that (iii)
= (i). Now we show (i) = (iii).

Let J,(t),a = 1, g, be as in Lemma 3.5. By Theorem 3.1, there exists €(§) > 0 such
that E,( ¢) is nonsingular for 0 < ¢t < €(§). Thus, {Ja(t)} form a basis for the space
of the transverse Jacobi fields along ¢, (¢), 0 < t < €(£), where n = £L71(€).

Suppose ¢,(ty) is a focal point. Then there exists a nontrivial transverse Jacobi
field J along c, such that J(ty) = 0. We can suppose J(t) = C* J,(¢t) for t > 0. Here,
C®s are constants not all zero. Then J(#y) = 0 implies (i) = (iii). [ |

Definition 3.9 Given § € V*Sv, the focal value c;(§) is defined by
cp(§) :==sup{r > 0: no point c; -1 (t), 0 < t < ris focal point }

By Theorem 3.1 and Proposition 3.8, we have the following lemma.
Lemma 3.10 The function cs: V*Sy — (0, +00] is lower semicontinuous.

Proof Given ¢y € V*Syand 0 < r < ¢f(&), lete(&) and W be as in Theorem 3.1. If
r < e(&)/2, then we take €, = £(&p)/2 and U = W. Suppose r > £(&,)/2. For each
t € [e(&)/2, r], there exist a neighborhood U, of £ and ainterval I, = (f — ¢, 1 + ¢;)
such that Exp®, is nonsingular at sn for all n € U, and s € L. Then one can find
finitely many {I, }%_, such that U, D [e(&)/2,r]. Without loss of generality, we
suppose that t; < --- < frand tx = r (so ¢, = ¢€). Set U := N,U, N'W. Thus,
EXP©,(x¢) 1 DOt singular for all ¢ € (0,7 + ¢,) and (x,§) € U, i.e, cf(§) > r+¢,.
From above, liminfe_¢,¢¢(§) > 1+ €, and lim, . (¢,) € = 0. We complete the proof
by letting r — c£(&o). ]
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Given & € ViSy, letn = L71(¢) and nt = {X € TyM : gu(n,X) = 0}. The
proof of Lemma 3.5 furnishes the following decomposition

(TyoM,g) =R-n@R-4(s) ® SpanR{ £ ( aaeg> } .

For convenience, set e; := (s) and ey = L*—;(a/ 06,). Denote by Py, the parallel
translation along ¢, from T )M to T, )M (with respect to the Chern connection)
forallt > 0. Set T = ¢,(t), Rr := Rr(-, T)T and

R(t,n) := P! o Ry o Pyy: nt — nt.

Let A(t, n) denote the solution of the matrix differential equation on n=:

A"+ Rt y)A = 0,
A(0,n)e; = €1, A’(0,n)e; = (VI]1)(0),
‘A(Oy ”)eg = Oa ‘A/(Ov n)eg = 697

where A’ = %.A. Note that ¢, (t) = P;,,n. Thus, for each X € n™,
gpl;nn(Pt;nn,Pt;n‘A(t,n)X) :gn(n,A(t,n)X) =0.

Hence, Py, A(t, n)X is a transverse Jacobi filed along c,(f). Let J,(¢),a = 1,9, be as
in Lemma 3.5. Thus, J,(t) = P;,, A(t, n)e,. Set Ae, =: Aley, and det A := det AL.
Clearly, det A(ty, n) = 0 (t;, > 0) if and only if ¢,(#) is a focal point of v along c,(t).
Moreover, we have the following lemma.

Lemma 3.11
. det A(t,n)
lim ——= =

t—0+ M2

1.
Proof The Lagrange identity [BCS, p. 135] together with (3.2) implies that
gr(VIh(®), Jo(0) —gr(1i(0), ViJy(n) =
= 8 (W (11(0)), J5(0) +gu(11(0), A (J4(0)) ) = 0.

By UHospital’s rule, we have

i SO0 _ o gr(VE ) _

t—0+ t t—0+

& ((V111)(0),¢5) -

gT(]I)-,]g)
tZ

And it is easy to see that lim;_,¢+ = gu(ey, e5). Hence,

i detgrUa(®), (1))

t—0t t2(m—2)

= detg, (e, e;) detg,(ey, e,).

Now the conclusion follows from

det[gr(Ja(t), Jo(t))] = (det.A)* - detg,(er, e)) - detg,(ey, eg). u
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By the arguments above and Lemma 3.11, we have the following Heintze—Karcher
type inequality.

Theorem 3.12 Given & € V:iSv, let n = L71(E). If the flag curvature K(¢,(t); -) >
8, then c;(€) < min{¢,7/V/6} and

T, ()
gn(¥,7)

det Az, n) < (sg + 55) (t) - s2(E), fort € [0,¢(6)],

where ( is the first positive zero of

(4 5 ™) ©

(should such a zero exist; otherwise, set ( = +00).

Proof Fix some positive number r < ¢(§). Recall J,(t) = Py, Ae,, fora = 1, g. For
I € (0,r), we have
(det.A)’ 1 (detgr(Ja, J))'

detd D=3 deg g

Note that {J,(¢)} is a basis for the space T of transverse Jacobi fields along ¢,(#),
0 <t < I Let{J,(t)} be another m— 1 transverse Jacobi fields such that { T(I), J,(I)}
is a gr-orthonormal basis. Then {J,(¢)} is also a basis for T. Hence,

(detfl)’(l) _ 1 (detgr(Ja, Jb))' D — 1 (detgr(Ja, Jv))'

3.3 = — =
(3.3) det A 2 detgr(Ja, Jo) 2 detgr(Ja, Jv)

().

A direct calculation yields

1 (detgr(Ja, Ju))'

3.4 ——
( ) 2 deth(]aa]b)

D)= (@r(ViTa, T D = Ty, Ta),

where Ijg jj is the index form restricted to c,(¢), 0 <t <.
Consider the solution As(t) to the matrix differential equation in n-:
.A(IS/ +kAs =0,

with the same initial conditions as A(t). Let f; be a g,-unit eigenvector of A with
the eigenvalue A. It follows from (3.2) that A = —T,(%)/g.(¥, 7).
Let { f,} be a g,-orthonormal basis for n- N T:-+. Then we have

Ast) fi = (55 = As5)(t) - fi +55(t) - (Cf), As(t) fy = 55(t) - fy,

where C9’s are constants determined by the initial data of A (¢). Clearly, det As(t) =
7 2(8) - (55 — Asg)(t).

Let r < (o, where (p is the first positive zero of det As(¢t). Then {T, P;,,As(t) fa}
is a frame field along ¢,(t), 0 < t < r. Now consider the vector fields Y,(¢) :=
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C},’Pt;nﬂg(t)fb, where Cg’s are constants such that Y,(I) = J,(I). Clearly, VEIVIY, +
0Y, = 0 and gr(T,Y,) = 0. Theorem 3.7 then yields

(3.5) > Ton(Tar Ta) <D Tion(Ya, Ya) <Y gr(ViYa, Ya) (D).

Since g7(Ya, Yp) (1) = Jab,

(detﬂ(s)/

—().
det As 0

(3.6) > er(VEYa, Ya) () = tr(Af - A7 () =

Equation (3.3) together with (3.4), (3.5), (3.6), and Lemma 3.11 furnishes det A(¢) <
det As(t) for all ¢ € [0, r], which implies that c/(§) < (o. |

4 Proof of Theorem 1.2

4.1 Volume of a Unit Conormal Sphere

Note that £~ is an isometry from (T} M\0, g¥) to (T, M\0, g.). Denote by dv; the
Riemannian volume form on V¢ Sy induced by g7 ). Given { € V{$v, let n and e,
a = 1, g be defined as before. Then we have

(90N gy (2 9
(4.1) % (a5 95) =@ 80 ( g 5g;) = snCewen),

which implies dvs(§) = /detg,(eq, e)dO, where dO = Aydf,. Using the technique
in [W, Proposition 3.1], one can easily show that the uniformity constant Ag« of F*
coincides with Ar. Then we have the following estimate.

Lemma 4.1 v,(V;Sy) < cps - A;mil)/z.

Proof Let (s,£4) be an adapted coordinate system for V*~y. Thus,

ViSy = {€=&ade P (7(s),6) = 1.

Hence,

dvy(§) = w/detggAB(Z(—l)A”gAdfz A-edEg N - -~d€m) .
A

Set V¥Bry := {& = &4dx : F*((s),€) < 1}. Stokes’s theorem then yields

(V) / \/7 /
LA LAV det ¢*4B A, dé, < ( max 4 /det T*AB) A dés
m—1 V¥ By gf A fA = ey nEV* By g] A £A

Now the conclusion follows from Ap+ = Ap. [ |
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4.2 A m-form on V*7\0

Given a volume form du on M, one can define a global m-form @ on V*4\0. In a
conic coordinate system,

wué):e*“%*WM”HkLAU,wagndLANﬁgfuavﬂﬂ,ﬁ&ndsAdydgx

where 7 is the distortion of du. It is easy to check that w is well defined.

4.3 Conic Coordinate Systems on M

Given an arbitrary point p € M\, there exists a unit speed minimizing geodesic c,
from v to p. A simple first variation argument yields n := L£(v) € V*Sv. If ¢,(t)) is
a focal point to v along c,, then the second variation of arc length formula together
with Theorem 3.7 furnishes d(~, p) < t,. Hence, E(D) = M, where

D={(,§):£€VSy, 0<t < (O}

Moreover, for each xy = E(ty,&) € M with 0 < t; < ¢f(&), by Lemma
3.10, there exists an open set Q(ty,&) = (fo — &,tp + &) X W(&) such that
E w6t Qto, &) — E(Q(to, &)) is a diffeomorphism. Thus,

—1 —1 —1
(0 E g7 5© Elawg) 0a © Elog.e))

is a conic coordinate system on E(Q(ty, &)). In particular, it follows from (4.1) that
E S 1 = @

Proof of Theorem 1.2 Sard’s theorem implies that (M) = u(E(Dy)), where
Dy :={(t,£) : £ € V*Sy, 0 < t < min{d, cs(§)}}.

By the argument above and the proof of Lemma 3.10, there is a countable open cov-
ering {Q(#;, &)} of D, such that Q(#;, &) C Dy and

Elow.g): Qti, &) — E(Q(t,&))

is a diffeomorphism. For simplicity, set Q; := Q(#;,&;) and E; := E|g,. Note that
{E(Q,)} is an open covering of E(Dy). Let {p;} be a partition of unity subordinate to
{E(Q))}. Define a sequence of nonnegative continuous functions g;: D; — R by

@Ufy:{moﬂ’(nﬂth

0, otherwise.
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A simple argument based on [W, Proposition 3.1, Proposition 4.1] shows that
e ™) < A} Then Theorem 3.12 together with Lemma 4.1 furnishes

“(M):Z/E(Q)p’"d/‘ZZ/QQi'W< Dw
i i\ =i i i d

é‘ .
S/ \/gﬁ—‘(é)(’?(s)a’V(S))dS/ e "0 dy (¢)
0 v

=l
min{d,c(§)} T, :
x/ <5,§+ Wsé> (t) - s 2(r)de
0 817, 7)
o [sr Y (min{d, =~ d
< cm_zAZmE[ 0 ( m{ I 2\/3}) +max{0,g}/ S?_l(t)dt:|. [ |
- 0

It follows from [S, Lemma 12.2.5] that Kingenberg’s lemma can be extended to
the case of a reversible Finsler manifold. Hence, we have a generalization of Cheeger’s
injectivity radius estimate.

Corollary 4.2 Let (M, F) be a closed reversible Finsler m-manifold with |[K| < 0,
T <, Ar > A, diameter < d, and (M) > V, where (M) is either the Busemann—
Hausdorff volume or the Holmes—Thompson volume of M. Then

s Vv
iy > mind ——, .
M mln{ Vo 2em oA % [sﬁgl(d)/(m — 1) + max{0, s} fod Sﬁgl(t)dt} }

5 Non-Riemannian Examples

In [Ch], Cheeger gives the existence of the lower bound for the length of simple
closed geodesics in a closed Riemannian manifold in terms of an upper bound for
the diameter and lower bounds for the volume and the curvature. However, this is
false for general Finsler manifolds. Before giving more examples, we first introduce
the notations used in this section.

We say a function ¢: (—1,1) — R satisfies Condition (A) if one of the following
conditions is true:

(1) there exists a positive constant C such that 7, ;(s) > C for |s| < ¢ < 1;
(2) (s) == Fu(s) — 1is an odd function.

Here 7, () = ¢(s)- (p(s) — 50" (5))"2[$(s) — 59" (s) + (t* —5*)p"' (5)]. Let p denote
the collection of smooth positive functions ¢ defined on (—1, 1) such that ¢ satisfies
Condition (A), SUPe(_11)P(s) < +00, lims—, 1 ¢(s) = 0, and

B(s) — s¢(s) + (t* — )" (s) > 0, |s] <t < 1.

Let (M, a) be a closed Riemannian m-manifold with nonnegative curvature and
let 3 be a 1-form on M with sup,.,, [|5]|« = 1. Given ¢ € p and € € [0, 1), define
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a function F. on TM by F. := ag¢(ef/a). It follows from [CS] that F. is a Finsler
metric on M. Let K., diam, and p, denote the flag curvature, the diameter, and the
Holmes—-Thompson volume of (M, F,), respectively.

A simple argument based on [BC, (5), Proposition 4.1, Corollary 4.2] shows the
following lemma.

Lemma 5.1 If 8 is parallel corresponding to «, then F. is a Berwald metric with
K. > 0, diam.(M) < diam,(M) - M, and p.(M) > D, where M := supse(_171)¢(s),
and D is a positive constant independent of €. In particular, a geodesic of « is also a
geodesic of F. and vice versa.

Let M = S" x S, n > 2 and let a be the canonical Riemannian product metric on
M. There exists a parallel 1-form 8 on (M, a). Denote by (r,0) and ¢ the spherical
coordinates of $"” and S, respectively. Then S = dt. It should be noted that 5 is
global defined on M, even though the coordinate ¢ is not. Given ry and 6y, Y(t) =
(r, 00, —1) is a (closed) geodesic on (M, ). Thus, for each ¢ € p, the Finsler metric
F., € € (0,1) has the properties stated in Lemma 5.1 and Ly (7) — 0Oase — 1. In
particular, ¢(s) = 1+ s € p. Hence, we have the following example.

Example 5.2 There always exist a sequence of Randers metrics {F.} on M = $" xS
(n > 2) with K, > 0, diam,(M) < (v/2 + 1)m, and p.(M) = 27c,. In particular,
there exists a closed geodesic y of all (M, F,) such that Lg, (y) — 0 as e — 1. Hence,
the injective radius of F, — 0 as e — 1.

Let T =S x - - x S denote the flat torus. From the construction above, one can
easily show the following example.

Example 5.3 There always exists a sequence of Randers metrics {F.} on M = S§" x
T (n > 2, k > 1) with K, > 0, diam.(M) < (v/1+k + 1)7 and p.(M) = ¢, (2m)k.
In particular, there exists a closed geodesic «y of all (M, F,) such that Ly (y) — 0 as
€ — 1. Hence, the injective radius of F, — O ase — 1.

6 Randers Metric

In general, it is very difficult to compute the uniformity constant and the T-curvature
of a Finsler metric. However, for a Randers metric F = « + (3, instead of the unifor-
mity constant and the T-curvature, one can use ||5||, and || V*3]||, to estimate the
lower bound for the length of closed geodesics, where V is the Levi-Civita connec-
tion of av. Before stating our result, we need the following estimate.

Lemma 6.1 IfF = o+ 3 is a Randers metric, then v,(V*Sy) < ¢,y (1 —b(s)) ™7,
where b(s) = [|B]|a(v(s)-

Proof By [S, Example 3.1.1], F* = o* + 3* is also a Randers metric. Let (x') be an
adapted coordinate system for . Denote by ¥; the subspace {£ = &dx' : & = 0} of
Tf;(S)M. Example 3.1.1 of [S] also furnishes supgezs\o(ﬁ*(ﬁ)/a*(f)) < b(s), which
implies that detggAB < (deta**B)(1 + b(s))™, for all ¢ € ¥,\0. Now the conclusion
follows from the proof of [S, Example 2.2.2]. ]
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A direct calculation yields the following lemma.

Lemma 6.2 Let F = « + 3 be a Randers metric, where a(y) = \aiiy'yl and
B(y) = biy'. Let b;; denote the covariant derivative corresponding with cv. Set

1 1 . . .
— ik — -
rij = E(bi\j+bj|i)7 Sij = E(bi\j_bﬂi)? Slj =a Skjy Sj = bis’]-, 6jj 1= T’,']'+b,'5]'+bj51'.

Then we have

[ e 501 1 €o (v, y)
Ty(”_{ 257 %) *2a0 o (arey ) (“(”+a(y>)]F(”

-(a(V)—m>,

where the index “0” (resp. “1”) means the contraction with y' (resp. v').

Theorem 6.3 Let (M, F) be a compact Randers manifold withK > 6, || 8| < b and
[IV®B|la < by. For each simple closed geodesic -y, we have

1 . b m;l M
Li(y) > ( L (M) ’
Cm—Z(l +b) 2 6(17’ blaévda I’l’l)

where
S(b,by,0,d,m) =
sy (min{d, Z=1) b (7 4 130+ 302 — 130 + 2b* — 4b%) (¢
SN/ ERSNNL / =1 (1) dt
m—1 2(1 — b)> o ) :

Proof For each n € £L1(V*Sy), we have a(n)B(§) = — (7, n), where (-, -} is the
inner product induced by «.. Hence,

(1-b)? o FG=1) _ a+b)?
A7) &0 =20y STy
And Lemma 6.2 yields

by (7 + 13b + 3b% — 130° + 2b* — 4b°)

Ttn) < 20+ D)1 - b

By [BC], one can easily check that e~ ™) < (1 + b)"*D/2, Now the conclusion
follows from Lemma 6.1, the proof of Theorem 1.2, and the inequalities above. W
m+l

Remark 6.4 Note that jyr(M) = Vol (M) and pzg(M) > (1 — b*)2 Vol (M).
By this, one can obtain a weak version of Theorem 6.3.
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