ON THE RADICAL OF A GROUP ALGEBRA OVER A COMMUTATIVE RING

by GLORIA POTTER

(Received 3 October, 1975)

Several people, including Wallace [4] and Passman [3], have studied the Jacobson radical of the group algebra F[G] where F is a field and G is a multiplicative group. In [4], for instance, Wallace proves that if G is an abelian group with Sylow *p*-subgroup P and if F is a field of characteristic p, then the Jacobson radical of F[G] equals the right ideal generated by the radical of F[P]. In this paper we shall study group algebras over arbitrary commutative rings. By a reduction to the case of a semi-simple commutative ring, we obtain Theorem 1 whose corollary contains a generalization of Wallace's theorem. Theorem 2, on the other hand, uses the first theorem to obtain results related to the main theorem of [3].

NOTATION. Throughout this paper, J(R) will denote the Jacobson radical of the ring R, and $O_p(G)$ will denote the (unique) maximal normal *p*-subgroup of the group G.

LEMMA 1. Let R be a commutative ring with identity and let G be a locally finite group. Let H be a subgroup of G and suppose $J(\overline{R}[G]) \subseteq J(\overline{R}[H]) \cdot \overline{R}[G]$ where $\overline{R} = R/J(R)$. Then $J(R[G]) \subseteq J(R[H]) \cdot R[G]$.

Proof. If $\phi : R[G] \to \overline{R}[G]$ is the natural map, then clearly ker $\phi = J[G]$ where J is the Jacobson radical of R. Since G is a locally finite group, $J[G] \subseteq J(R[G])$ by Proposition 9 of [1], and we have $J(R[G])/J[G] = J(R[G])/J[G]) \cong J(\overline{R}[G])$. It is also true that

$$J(\overline{R}[H]) \cdot \overline{R}[G] \cong (J(R[H]) \cdot R[G])/(J[G] \cdot R[G]) = (J(R[H]) \cdot R[G])/(J[G]).$$

Now let $x = \sum_{i \in I} p_i g_i \in J(R[G])$ with $p_i \in R[H]$ and $\{g_i \mid i \in I\}$ a set of right coset representatives for H in G. Then

$$\phi(x) = \sum_{i \in I} \bar{p}_i g_i \in J(\bar{R}[G]) \subseteq J(\bar{R}[H]) \cdot \bar{R}[H].$$

Thus, $\bar{p}_i \in J(\bar{R}[H]) \cong J(R[H])/J[H]$, and $p_i \in J(R[H])$, as desired.

LEMMA 2. Let R be a commutative ring with identity and H a locally finite subgroup of a group G. Let $\{I_v : v \in \Gamma\}$ be a family of ideals of R and m be a positive integer such that $\bigcap_v I_v = 0$, and for each v in Γ ,

(i) $R_v = R/I_v$ has a composition series of length at most m, and

(ii) $J(R_{\nu}[G]) \subseteq J(R_{\nu}[H]) \cdot R_{\nu}[G]$.

Then $J(R[G]) \subseteq J(R[H]) \cdot R[G]$.

Proof. Let $\{g_j | j \in J\}$ be a set of coset representatives for H in G with $g_1 = 1$. Then for any $x \in R[G]$ we can write $x = \sum_j \rho_j g_j$ with $\rho_j \in R[H]$. Let $\pi : R[G] \to R[H]$ be the projection map, i.e., $\pi(x) = \rho_1$. Then $\pi(J(R[G]))$ is an ideal of R[H]. We shall show that $\pi(J(R[G]))$

Glasgow Math. J. 18 (1977) 101-104.

GLORIA POTTER

is in fact a nil ideal of R[H]. Let $x \in J(R[G])$, and let W be the finite group generated by $\sup \pi(x)$ in H. Let $\phi_v : R[G] \to R_v[G]$ be the canonical map. Since

 $\phi_{v}(x) \in J(R_{v}[G]) \subseteq J(R_{v}[H]) \cdot R_{v}[G],$

we have $\phi_v(\pi(x)) \in J(R_v[H]) \cdot R_v[G] \cap R_v[W] \subseteq J(R_v[W])$. But $|W| = n < \infty$ and the R_v have composition length $\leq m$, so that $J(R_v[W])$ is nilpotent. Hence, $\pi(x)^{mn} \in \ker \phi_v$ for all v in Γ . This proves that $\pi(x)^{mn} \in \cap I_v G = 0$ so $\pi(J(R[G]))$ is a nil ideal in R[H]. This puts ρ_1 in J(R[H]). Now suppose $\rho_j, j \neq 1$, occurs in the sum $\sum \rho_j g_j = x$. Since xg_j^{-1} is another element of J(R[G]), we can repeat the above argument with x replaced by xg_j^{-1} to get

$$\pi(xg_j^{-1}) = \rho_j \in J(R[H]).$$

Thus, $J(R[G]) \subseteq J(R[H]) \cdot R[G]$, which was to be proved.

THEOREM 1. Let R be a commutative ring with identity of prime characteristic p and H be a subgroup of a locally finite group G such that $J(F[G]) \subseteq J(F[H]) \cdot F[G]$ for all fields F of characteristic p. Then $J(R[G]) \subseteq J(R[H]) \cdot R[G]$ and, provided H is normal in G,

$$J(R[G]) = J(R[H]) \cdot R[G]$$

Proof. Let $\overline{R} = R/J(R)$, and let $\{I_v | v \in \Gamma\}$ be the collection of maximal ideals of \overline{R} . Then conditions (i) and (ii) of Lemma 2 are easily seen to be satisfied, and

$$J(\overline{R}[G]) \subseteq J(\overline{R}[H]) \cdot \overline{R}[G].$$

The result now follows from Lemma 1 and Lemma 4.1 of [5].

COROLLARY. Let F be a field of characteristic p > 0 and let G be a locally finite group. Suppose H is a normal subgroup of G such that G|H has no elements of order p. Then $J(R[G]) = J(R[H]) \cdot R[G]$ for any commutative F-algebra R.

Proof. Since G/H is a locally finite p'-group, $J(K[G]) \subseteq J(K[H]) \cdot K[G]$ for any field K of characteristic p by Theorem 16.6 of [2].

In [3] Passman proposes a candidate for the Jacobson radical of F[G] when F is a field of characteristic p > 0 and G is a locally finite group. Define $\int (G)$ to be the subgroup of Ggenerated by all finite, locally subnormal subgroups of G and let $\int^{p}(G) = [\int (G)]^{p}$ be the subgroup of $\int (G)$ generated by its *p*-elements. Then $J(F[\int^{p}(G)]) \cdot F[G]$ is Passman's candidate and as evidence, Passman proves that this ideal is a semiprime ideal whenever $0_{p}(G) = 1$. Also, if H is a normal subgroup of G and $J(F[G]) = J(F[H]) \cdot F[G]$, then Passman proves $H \supseteq \int^{p} (G)$. Since there are no known examples of locally finite groups G and normal subgroups H with $J(F[G]) \neq J(F[H]) \cdot F[G]$ and $H \supseteq \int^{p} (G)$, it makes sense to study subgroups Hcontaining $\int^{p} (G)$. Therefore, we offer:

THEOREM 2. Let K be a field of characteristic p > 0 and let G be a locally finite group such that $0_p(G) = 1$ and $J(K[G]) \subseteq J(K[\int^p(G)]) \cdot K[G]$. Then $J(R[G]) = J(R[H]) \cdot R[G]$ for any commutative K-algebra R and normal subgroup H of G with $\int^p(G) \subseteq H$. *Proof.* By Theorem 1 we need only prove that if F is any field of characteristic p, then $J(F[G]) \subseteq J(F[H]) \cdot F[G]$. For this, it suffices to show that $J(F[G]) \subseteq J(F[\int^p (G)]) \cdot F[G]$. This is so by virtue of Woods' theorem (Lemma 4.1 of [5]) and the fact that $\int^p (G)$ is a normal subgroup of G.

First, let F be a field contained in K. Then since G is locally finite we have $J(F[G]) \subseteq J(K[G])$; for if $x \in J(F[G])$, x(K[G]) is easily seen to be a nil ideal. Therefore $J(F[G]) \subseteq J(K[\int^{p}(G)]) \cdot K[G] \cap F[G] \subseteq J(F[\int^{p}(G)]) \cdot F[G]$ by Proposition 9 of [1].

Secondly, let F be a field extension of K. If F has finite degree n over K then by Theorem 16.10 of [2] and Woods' theorem we have

$$(J(F[G]))^{n} \subseteq F \otimes_{K} J(K[G]) \subseteq F \otimes_{K} J\left(K\left[\int^{p} (G)\right]\right) \cdot K[G] \subseteq J\left(F\left[\int^{p} (G)\right]\right) \cdot F[G] \subseteq J(F[G]).$$

Since $J(F[\int^{p}(G)]) \cdot F[G]$ is a semiprime ideal, $F[G]/(J(F[\int^{p}(G)]) \cdot F[G])$ has no nilpotent ideals. Therefore, $J(F[G]) \subseteq J(F[\int^{p}(G)]) \cdot F[G]$. Next suppose F is a purely transcendental extension of K. By Theorems 16.11 and 17.10 of [2], $J(F[G]) = F \otimes_{K} (J(F[G]) \cap K[G]) \subseteq F \otimes_{K} J(K[G])$. By hypothesis, $J(K[G]) \subseteq J(K[\int^{p}(G)]) \cdot K[G] \subseteq J(F[\int^{p}(G)]) \cdot F[G]$.

Now let F be an arbitrary field extension of K. If $x \in J(F[G])$, then there exists a field L with $K \subseteq L \subseteq F$ such that L is finitely generated over K and $x \in L[G]$. Again using Theorem 16.11 of [2] we have $x \in J(F[G] \cap L[G] \subseteq J(L[G])$. But L is a finite extension of a purely transcendental extension of K, so that the above cases yield

$$x \in J(L[G]) \subseteq J\left(L\left[\int^{p}(G)\right]\right) \cdot L[G] \subseteq F \otimes_{L} J\left(L\left[\int^{p}(G)\right]\right) \cdot L[G] \subseteq J\left(F\left[\int^{p}(G)\right]\right) \cdot F[G].$$

Finally, if F is an arbitrary field of characteristic p, then let L be a field of characteristic p containing F and K. Since L is an extension of K, we know by the previous step that $J(L[G]) \subseteq J(L[\int^{p} (G)]) \cdot L[G]$ and by the first step, since $F \subseteq L$, that

$$J(F[G]) \subseteq J(F[\int^{p}(G)]) \cdot F[G].$$

This completes the proof of the theorem.

COROLLARY. Let R be a commutative ring with identity and G be a locally finite group such that for all primes p, $0_p(G) = 1$ and $J(K[G]) \subseteq J(K[\int^p(G)]) \cdot K[G]$ for all prime fields of characteristic p. Then $J(R[G]) = J(R[H]) \cdot R[G]$ for any normal subgroup H of G with $\int (G) \subseteq H$.

Proof. First note that $\int (G)$ contains $\int^{p} (G)$ for any prime p. Therefore, by the theorem $J(F[G]) \subseteq J(F[H]) \cdot F[G]$ for any field of characteristic p > 0. If F is a field of characteristic zero then F[G] is semi-simple by Lemma 18.7 of [2], so trivially $J(F[G]) \subseteq J(F[H]) \cdot F[G]$. Now take $\{I_{\nu} | \nu \in \Gamma\}$ to be the collection of all the maximal ideals of R. Then all the hypotheses of Lemma 2 are satisfied and $J(\overline{R}[G]) \subseteq J(\overline{R}[H]) \cdot \overline{R}[G]$. Now apply Lemma 1 and Lemma 4.1 of [5].

GLORIA POTTER

REFERENCES

1. I. G. Connell, On the group ring, Canad. J. Math. 15 (1963), 650-685.

2. D. S. Passman, Infinite group rings (Marcel Dekker, 1971).

3. D. S. Passman, Radical ideals in group rings of locally finite groups, J. Algebra 33 (1975), 472-497.

4. D. A. R. Wallace, The Jacobson radicals of the group algebras of a group and of certain normal subgroups, *Math. Z.* 100 (1967), 282–294.

5. S. M. Woods, Some results on semi-perfect group rings, Canad. J. Math. 26 (1974), 121-129.

STATE UNIVERSITY OF NEW YORK BROCKPORT, N.Y. 14420 U.S.A.

> PRINTED IN GREAT BRITAIN BY ROBERT MACLEHOSE AND CO. LTD PRINTERS TO THE UNIVERSITY OF GLASGOW