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Summary

We investigate how sampling of parents or children based on their extreme phenotypic values

selected from clinical databases would affect the power of identification of quantitative trait loci

(QTL) by a transmission disequilibrium test (TDT). We consider three selective sampling schemes

based on the selection of phenotypic values of parents or children in nuclear families : (1) two

children, one of extreme value, the other random; (2) two children extremely discordant ; (3) one

parent of extreme value. Other family members not specified will be recruited randomly with

regard to phenotypic values. Our study shows that the second sampling scheme can always

enhance the power for QTL identification, sometimes dramatically so. The increase in the

statistical power of the TDT is particularly dramatic when h# at the QTL under test is small or

intermediate (e.g. 0±05 or 0±10). For the other two sampling schemes, under dominant effects at the

QTL, the power is always increased relative to random sampling; however, under recessive or

additive genetic effects, the power gain is generally minor or even decreased a little sometimes.

Allele frequencies at the QTL and the selection stringency are important for determining the effect

of selective sampling on the power of QTL identification. Our study is useful as a practical

guideline on how to perform the TDT efficiently in practice by taking advantage of the extensive

databases accumulated that are enriched with people of extreme phenotypic values.

1. Introduction

Mapping and identification of genes underlying

complex traits, especially those of primary health

importance, has been a challenge for geneticists. The

challenge is largely due to the limited power of and the

large samples required by many currently employed

approaches, such as traditional sib pair linkage studies

(Risch & Merikangas, 1996). A powerful approach,

the transmission disequilibrium test (TDT), has been

developed for identification of genes, originally for

complex diseases (Spielman et al., 1993), and has

recently been extended to quantitative traits (e.g.

Allison, 1997; Rabinowitz, 1997; Xiong et al., 1998).

The TDT is used widely in practice (Schaid, 1998). In

testing candidate genes for association with complex

traits, the TDT is not plagued by the problem of
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population admixture}stratification and can test for

linkage in the presence of evidence for association

(Ewens & Spielman, 1995; Spielman & Ewens, 1996).

When markers are at or very close to the genes of

complex traits, the TDT is much more powerful than

traditional sib pair linkage analyses (Risch & Meri-

kangas, 1996; Allison, 1997; Xiong et al., 1998).

However, the sample size required may still be too

large for application of the TDT in practice. This is

especially true for identifying those genes with

relatively small to intermediate effects. Therefore, it is

of great practical importance to develop sampling

schemes that can effectively reduce the sample sizes

required for the TDT.

Selective sampling based on phenotypic values or

disease status of family members (such as parents

and}or children) may greatly enhance the power of

traditional sib pair linkage analyses (Eaves & Meyer,

1994; Risch & Zhang, 1995; Zhang & Risch, 1996).

For the TDT of disease genes, ascertainment of
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nuclear families with consideration of the affected

status of parents will substantially increase the power

(Whittaker & Lewis, 1998; Chen & Deng, 2001). For

the TDT of QTL, the investigation (Allison, 1997;

Xiong et al., 1998) was largely for randomly ascer-

tained nuclear families without regard to the selection

of phenotypic values of family members. Although

Allison (1997) considered the sampling of extreme

children for his TDT
Q#

, TDT
Q$

and TDT
Q%

, sampling

with regard to parental phenotypic values is not

considered and these TDT tests require family trios

consisting of one heterozygous parent, one homo-

zygous parent and only one child. Xiong et al. (1998)

developed a general TDT (TDT
G
) for QTL identifica-

tion. The TDT
G

allows for more than one child per

family and does not require only one parent to be

heterozygous. With multiple children from each

nuclear family, the power of the TDT
G

is greatly

increased (Xiong et al., 1998; Deng et al., 2001).

However, for the TDT
G
, the investigation of its

statistical power is conducted for randomly ascer-

tained nuclear families. The power of the TDT
G

is

unknown under various selective sampling schemes

that can be based on extreme phenotypic values of

parents or children.

For quantitative traits important for human health,

generally only extreme (low}high) values are of

primary clinical significance. For the past few decades,

extensive records have been accumulated for people

with extreme phenotypic values in clinics}clinical

studies for many quantitative traits (such as blood

pressure, bone mass and cholesterol level) (e.g. Deng

et al., 1998a, b, 2000b, c). These extensive records of

individuals with extreme phenotypic values may form

convenient and powerful resources for recruitment of

parents or children for nuclear families for the TDT
G

analyses. Depending on the ages of the people in the

records, these people may form probands as children

or as parents for the nuclear families to form various

selective sampling schemes. Therefore, it is important

to investigate the effects of various selective sampling

schemes on the power of the TDT
G
. The investigation

will provide a practical guideline on efficient im-

plementation of the TDT
G

(as an example of the

TDT) by taking advantage of existing data for people

with extreme phenotypes.

In this study we will investigate how selective

sampling of parents or children based on their extreme

values would affect the power of QTL identification

by the TDT
G
. The purpose is to provide a theoretical

basis and a practical guideline to improve the power

of the TDT
G
. For demonstration, we will consider

three situations based on selection of phenotypic

values of parents or children in nuclear families each

with two children: (1) one child is of an extreme

phenotypic value, the other random; (2) two children

are extremely discordant ; (3) one parent is of an

extreme value. Other family members not specified

will be selected randomly with regard to their

phenotypic values.

2. Methods

First, we will introduce the TDT
G

of Xiong et al.

(1998) for QTL identification. Then we will derive the

non-centrality parameters (essential for our analytical

computation) for the TDT
G

statistic under the three

selective sampling schemes. Since the TDT
G

is a valid

test of linkage in the presence of population admixture

(Xiong et al., 1998), to demonstrate the effect of

selective sampling in a relatively simple way, we will

assume that the study population is randomly mating

so that Hardy–Weinberg equilibrium holds.

(i) The TDT
G

We assume that there are n nuclear families with at

least one parent being heterozygous for the marker

locus under study. Such families are here termed

informati�e families. Assume that there are two alleles

M and m at the marker under test. For the ith (i¯
1,…, n) informative nuclear family that has n

i
children,

we assume that the marker allele M is transmitted to

n
Mi

children from heterozygous parent(s). Let Y

denote the phenotypic value of the quantitative trait

under study. For the jth child in the set of n
Mi

children, let Y
Mij

be his}her phenotypic value. We can

denote n
mi

and Y
mil

similarly for the allele m. n
Mi

and

n
mi

can be simply counted based on the genotypes of

parents and children. The total numbers of children

receiving M and m alleles from heterozygous parents

are, respectively, n
M

¯3
n

i="
n
Mi

and n
m

¯3n

i="
n
mi

.

Then the mean phenotypic values among children

who receive M or m alleles from heterozygous parents

are, respectively,

Y{
M

¯
1

n
M

3
n

k="

3
nMk

j="

Y
Mkj

and

Y{
m

¯
1

n
m

3
n

k="

3
nmk

l="

Y
mkl

.

The variance in the observations in children

receiving the M allele is assumed to be the same as

that in children receiving the m allele. Define

S #¯
3
n

k="

3
nk

j="

((Y
Mkj

®Y{
M
)#­(Y

mkj
®Y{

m
)#)

n
M
­n

m
®2

.

Then the TDT
G

statistic can be computed as

TDT
G
¯

(Y{
M
®Y{

m
)#

E

F

1

n
M

­
1

n
m

G

H

S #

, (1)
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where ((1}n
M
)­(1}n

m
))S # is an unbiased estimator

of the variance of Y{
M
®Y{

m
(Xiong et al., 1998). With

large sample sizes, the TDT
G

approximately follows

a χ# distribution with 1 d.f.

(ii) Theory with selecti�e sampling for the TDT
G

In this paper we only present the results for the first

situation when the marker is a functional mutation of

the QTL under study. The second situation when the

marker locus is not at a QTL but is linked to and is in

linkage disequilibrium (LD) with a QTL has also been

studied (Deng & Li, unpublished, results available on

request) with the conclusions conforming to the first

situation. We will not consider the effects of back-

ground polygenes separately from random environ-

ments on the TDT
G
, as it has been demonstrated

(Deng et al., 2001) that the effects are minor with two

children sampled from each family, a situation to be

investigated here.

Define a QTL under study with two alleles Q and q.

Let p and p«¯1®p be the frequencies of the alleles Q

and q, respectively. Let a (" 0±0) be the mean

(genotypic value) for individuals of genotype QQ, let

d be that of Qq individuals, and let ®a be that of qq

individuals. d is equal to 0, a and ®a, respectively

under additive, dominant and recessive genetic effects.

Under partial dominant or partial recessive genetic

effects, ®a! d! a but d1 0. The additive genetic

variance of this locus is σ#
A
¯ 2pp«[a­(p«®p)d ]#, and

the dominant genetic variance is σ#
D
¯ (2pp«d )# (Fal-

coner, 1989). The total genetic variance due to this

QTL is σ#
G
¯σ#

A
­σ#

D
. We assume that the variance

due to all other QTLs and all random environmental

effects is σ#
e
. The heritability h# due to this QTL is

h#¯σ#
G
}(σ#

G
­σ#

e
). Under a genetic model (such as

additive, dominant and recessive), once three of the

four parameters of the h#, a and p at the QTL and σ#
e

are given, the fourth parameter can be computed easily

(Falconer, 1989; Deng et al., 2000a). The phenotypic

value of an ith individual in the population is

y
i
¯µ­G

i
­e

i
,

where µ is the mean baseline value of the quantitative

trait under study, G
i
is the genotypic value at the QTL

for the ith genotype, and e
i

represents a random

variable for all random environmental effects. G
i
is

equal to a, d and ®a respectively for genotypes of

QQ, Qq and qq. As in common practice, we can

assume that µ¯ 0, and e
i
follows a normal distribution

with mean 0 and variance σ#
e
. Let F(x) be the

cumulative distribution function (c.d.f.) of a normal

random variable x.

Let µ
Q

and σ#
Q

be the mean and variance, re-

spectively, of phenotypic values of the children who

receive the Q allele from heterozygous parents ; µ
q
and

σ#
q
are similarly defined for the q allele. Let n

Q
and n

q

respectively be the numbers of children who receive

the Q and q alleles from heterozygous parents. The

noncentrality parameter of the distribution of the

statistic TDT
G

is (Xiong, 1998)

λ¯
(µ

Q
®µ

q
)#

(σ#
Q
}n

Q
­σ#

q
}n

q
)
. (2)

To compute analytically the statistical power of the

TDT
G
, λ and thus µ

Q
, σ#

Q
, µ

q
, σ#

q
, n

Q
and n

q
should be

derived in terms of the parameters such as p, p«,
genetic effects (such as a and d ) under various selective

sampling schemes. Let g
o
, g

f
and g

m
, respectively,

denote the genotypes of children, fathers and mothers

in informative nuclear families for the TDT
G
. Then

within a nuclear family, conditional on the parental

genotypes of g
f
and g

m
, the mean value of all children

is

µ
"
¯E(Y r g

f
, g

m
)¯3

g
o

E(Y r g
o
, g

f
, g

m
)P(g

o
r g

f
, g

m
),

(3a)

where P denotes probability throughout. Over all the

informative nuclear families, the mean value of all the

children is

µ
#
¯3

g
f

3
g
m

P(g
f
, g

m
)*3

g
o

E(Y r g
o
, g

f
, g

m
)P(g

o
r g

f
, g

m
)

¯3
g
f

3
g
m

3
g
o

E(Y r g
o
, g

f
, g

m
)P(g

o
, g

f
, g

m
). (3b)

To focus on the main idea and its significance, we

will only outline our analytical derivation and the

results in the following. The tedious technical details

are available from the authors on request.

One child has an extremely low �alue and falls below

the bottom φ per cent of the phenotypic distribution

Let Qq
p

denote the event that at least one parent is

heterozygous, C
l
denote the event that at least one

child of the two in each nuclear family recruited has

an extremely low value, and Q
o
denote the event that

a heterozygous parent transmits the allele Q to an

offspring. The subscripts ‘p ’ and ‘o ’ denote respect-

ively the parental and offspring generations. By the

same derivation principle as in Equation 3, conditional

on Qq
p
, Q

o
and C

l
in informative nuclear families,

we have

µ
Q
¯3

g
f

3
g
m

3
g
o

E(Y r g
o
, g

f
, g

m
, Qq

p
, Q

o
, C

l
)

¬P(g
o
, g

f
, g

m
rQq

p
, Q

o
, C

l
), (4a)

σ#
Q
¯3

g
f

3
g
m

3
g
o

E(Y # r g
o
, g

f
, g

m
, Qq

p
, Q

o
, C

l
)

¬P(g
o
, g

f
, g

m
rQq

p
, Q

o
, C

l
)®µ#

Q
. (4b)

To derive µ
Q
, we consider two mutually exclusive

situations. First, the child who receives the allele Q
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has an extremely low phenotypic value (Y%Z
L
; the

event is denoted by C
Yl

) and the other child’s

phenotype is randomly selected. Second, the child

whose phenotype is being considered (here it is the

child who receives the allele Q) does not have an

extremely low phenotypic value (Y&Z
L
; the event is

denoted by C
Yn

) and the other child has an extremely

low phenotypic value (the event is denoted by C !
l
). The

second situation can be denoted as the joint events of

C
Yn

C !
l
. It can be seen that

P(C
l
)¯P(C

Yl
)­P(C

Yn
C !

l
).

Hence, we have

E(Y r g
o
, g

f
, g

m
, Qq

p
, Q

o
, C

l
)¯E(Y rC

Yl
, g

o
, Q

o
)

¬
P(C

Yl
r g

o
, Q

o
)

(P(C
Yl

r g
o
, Q

o
)­P(C

Yn
r g

o
Q

o
)P(C !

l
r g

f
, g

m
, Qq

p
))

­E(Y rC
Yn

C !
l
, g

o
, Q

o
)

¬
P(C

Yn
C !

l
r g

o
, g

f
, g

m
, Qq

p
, Q

o
)

(P(C
Yl

r g
o
, Q

o
)­P(C

Yn
r g

o
Q

o
)P(C !

l
r g

f
, g

m
, Qq

p
))
.

(5)

The threshold phenotypic value Z
L

for the bottom

φ per cent of the phenotypic distribution can be

computed by

P(g
o
, g

f
, g

m
rQq

p
, Q

o
, C

l
)¯

P(g
o
, g

f
, g

m
, Qq

p
, Q

o
, C

Yl
)­P(g

o
, g

f
, g

m
, Qq

p
, Q

o
, C

Yn
C !

l
)

3
g
f

3
g
m

3
g
o

P(g
o
, g

f
, g

m
, Qq

p
, Q

o
, C

l
)

. (8)

φ%¯Pr(Y%Z
L
)

¯Pr(Y%Z
L
rQQ)P

QQ

­Pr(Y%Z
L
rQq)P

Qq
­Pr(Y%Z

L
r qq)P

qq
. (6)

With Z
L

known, the terms in Equation 5 can be

expressed, respectively, as

E(Y rC
Yl

, g
o
, Q

o
)¯E(Y rC

Yl
, g

o.Q
)

¯
&

¢

ZL

x*f (x, µg
o.Q

, σ#
e
)dx

F(Z
L
, µg

o.Q

, σ#
e
)

, (7a)

µ
Q
¯3

g
f

3
g
m

3
g
o.Q

E

F

&ZL

−¢

xf (x, µg
o

, σ#
e
)dx­&

¢

ZL

xf (x, µg
o

, σ#
e
)dx*P(C !

l
r g

f
, g

m
, Qq

p
)

F(Z
L
, µg

o

, σ#
e
)­(1®F(Z

L
, µg

o

, σ#
e
))P(C !

l
r g

f
, g

m
, Qq

p
)

G

H

P(g
o
, g

f
, g

m
rQq

p
, Q

o
, C

l
). (9)

E(Y # r g
o
, g

f
, g

m
, Qq

p
, Q

o
, C

l
)

¯E(Y# rC
Yl

, g
o
, g

f
, g

m
, Qq

p
, Q

o
)

P(C
Yl

r g
o
, g

f
, g

m
, Qq

p
, Q

o
)

(P(C
Yl

r g
o
, g

f
, g

m
, Qq

p
, Q

o
)­P(C

Yn
C !

l
r g

o
, g

f
, g

m
, Qq

p
, Q

o
))

­E(Y # rC
Yn

C !
l
, g

o
, g

f
, g

m
, Qq

p
, Q

o
)

P(C
Yn

C !
l
r g

o
, g

f
, g

m
, Qq

p
, Q

o
)

(P(C
Yl

r g
o
, g

f
, g

m
, Qq

p
, Q

o
)­P(C

Yn
C !

l
r g

o
, g

f
, g

m
, Qq

p
, Q

o
))
, (10)

E(Y rC
Yn

, g
o
, Q

o
)¯E(Y rC

Yn
, g

o.Q
)

¯
&

¢

ZL

x*f (x, µg
o.Q

, σ#
e
)dx

1®F(Z
L
, µg

o.Q

, σ#
e
)

, (7b)

P(C
Yl

r g
o
, Q

o
)¯P(C

Yl
r g

o.Q
)¯F(Z

L
, µg

o.Q

, σ#
e
), (7c)

P(C
Yn

r g
o
, Q

o
)¯P(C

Yn
r g

o.Q
)

¯1®F(Z
L
, µg

o.Q

, σ#
e
), (7d)

where g
o.Q

is the genotype of the child who receives the

Q allele from a heterozygous parent. Hence, g
o.Q

can

only be one of the two genotypes, QQ and Qq. µg
o.Q

is

the genotypic value of the genotype QQ or Qq and

is a for the genotype QQ and d for Qq, respectively.

Given that at least one parent is heterozygous

in a nuclear family, the event (g
f
, g

m
, Qq

p
)¯

(QQ
f
, Qq

m
)U(QQ

m
, Qq

f
)U(Qq

f
, Qq

m
), where ‘U’ de-

notes a union in probability and the subscripts ‘ f ’

and ‘m ’ denote the father and the mother, respect-

ively. Conditional on the genotypes of parents,

P(C!
l
r g

f
, g

m
, Qq

p
), the probability that the child’s

phenotypic value Y%Z
L

(denoted by ‘ l ’ in the

subscript), can be computed. For example, if the

parents are of the genotypes QQ and Qq, we can have:

P(C !
l
r g

f
, g

m
, Qq

p
)¯ 0±5(F(Z

L
, a, σ#

e
)­F(Z

L
, d, σ#

e
)).

In Equation 4a,

Given genotypes of parents and the child who receives

a Q allele from a heterozygous parent, the probabilities

in the numerator of Equation 8 can be computed

easily. For example, if the parents and the child have

the genotypes qq, Qq and Qq, respectively, we have

P(g
o
, g

f
, g

m
, Qq

p
, Q

o
, C

Yl
)¯ pp«$F(Z

L
, d, σ#

e
),

and

P(g
o
, g

f
, g

m
, Qq

p
, Q

o
, C

Yn
C !

l
)

¯ pp«$(1®F(Z
L
, d, σ#

e
))3

g
o

P(C !
l
r g

o
)P(g

o
r qq

f
, Qq

m
).

With Equations 4a, 5, 7a–d and with the procedures

outlined above for Equation 8, we can compute µ
Q

analytically by the following equation:

To derive σ#
Q

in Equation 4b, we have
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where

E(Y # rC
Yl

, g
o
, g

f
, g

m
, Qq

p
, Q

o
)

¯E(Y # rC
Yl

, g
o.Q

)

¯
&ZL

−¢

x#f (x, g
o.Q

, σ#
e
)dx

F(Z
L
, g

o.Q
, σ#

e
)

, (11a)

E(Y # rC
Yn

C !
l
, g

o
, g

f
, g

m
, Qq

p
, Q

o
)

¯E(Y # rC
Yn

, g
o.Q

)

¯
&

¢

ZL

x#f (x, g
o.Q

, σ#
e
)dx

1®F(Z
L
, g

o.Q
, σ#

e
)

. (11b)

By Equations 4b, 5, 7c, 7d and 10–11, we have

σ#
Q
¯3

g
f

3
g
m

3
g
o.Q

E

F

&ZL

−¢

x#f (x, µg
o

, σ#
e
)dx­&

¢

ZL

x#f (x, µg
o

, σ#
e
)dx*P(C !

l
r g

f
, g

m
, Qq

p
)

F(Z
L
, µg

o

, σ#
e
)­(1®F(Z

L
, µg

o

, σ#
e
))P(C !

l
r g

f
, g

m
, Qq

p
)

G

H

*P(g
o
, g

f
, g

m
rQq

p
, Q

o
, C

l
). (12)

Similarly, we can derive the expression for µ
q
and σ#

q

as above for µ
Q

and σ#
Q
.

Finally, n
Q

and n
q

need to be derived, in order to

compute λ analytically. Let Ns be the total number of

the screened families to obtain n informative families

under the selective sampling scheme under consider-

ation. Let n
H

be the total number of heterozygous

parents in the sample. We have

n¯Ns*P(Qq
p
, C

l
)

¯Ns*[P(Qq
p
, Q

o
, C

l
)­P(Qq

p
, q

o
, C

l
)], (13)

where P(Qq
p
, Q

o
, C

l
) is the probability that at least

one parent is heterozygous (the event is denoted by

Qq
p
) and one child is of an extremely low value

(Y%Z
L
; the event is denoted by C

l
), and the

heterozygous parent transmits the allele Q to a child.

n
H

¯ n­n*
P(Qq

f
, Qq

m
, C

l
)
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p
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where
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Assuming that each nuclear family has J children (in

this study, J¯ 2), we have

n
Q
¯ Jn

H

P(Qq
p
, Q

o
, C

l
)

P(Qq
p
, Q

o
, C

l
)­P(Qq

p
, q

o
, C

l
)
, (16a)

n
q
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H
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, q

o
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l
)

P(Qq
p
, Q

o
, C

l
)­P(Qq

p
, q

o
, C

l
)
. (16b)

Specifying a significance level (α) and a statistical

power (η), we can, with the aid of a suitable statistical

software package (e.g. Wolfram, 1996), obtain the

value for the non-centrality parameter λ for the TDT
G

statistic. With the λ value and Equations 2, 9, 13–16,

we can compute the required sample sizes Ns, n and n
H

for specified α and η given parameter values (p, p«, a,

d, σ#
e
and φ) under the first selective sampling scheme

that each recruited family has two children and one

belongs to the bottom φ per cent of the phenotypic

distribution.

One child ’s phenotype belongs to the bottom φ per

cent and the other to the top ρ per cent of the

population distribution

One parent’s phenotype falls into bottom φ per cent

of the distribution

The analytical derivations for these two selective

sampling schemes are similar. The keys are to derive

the µ
Q
, σ#

Q
, µ

q
, σ#

q
, n

Q
and n

q
under a specific selective

sampling scheme, the results for which are given in the

Appendix. With these results, the statistical power can

be obtained as outlined above.

(iii) Computer simulations

To validate the above derivations and analytical

power computation, we perform computer simu-

lations. The validation of the power computation that

is based on the complex analytical derivation by simu-

lations is necessary; this is also true given the ap-

proximation of the test statistics to a χ# distribution.

The comparison of simulation and analytical results

can provide a mechanism to crosscheck and validate

the results from the two approaches. In the absence of

segregation distortion, parents of nuclear families

from random mating populations are simulated, in

which the p, p«, a, d and h# at the QTL and φ and}or

ρ and σ#
e
are specified. Only for nuclear families with

at least one parent heterozygous at the marker locus

are the parents’ phenotypes simulated. The simula-

tion for phenotypes based on genotypes and other
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parameters is standard and has been documented else-

where (e.g. Deng et al., 2000a). For the first two selec-

tive sampling schemes, two children are simulated for

their genotypes and phenotypes. The genotypes of

children are simulated according to random trans-

mission of alleles from parents to children. Once the

genotypes of children are simulated, their phenotypes

are simulated. Those nuclear families in which the

children meet the selection criterion for a specific

selective sampling scheme are retained for analyses.

For the third sampling scheme, only when one parent’s

phenotype is in the bottom φ per cent are the

children’s genotypes and phenotypes simulated. For

comparison of the statistical powers under random

sampling and selective sampling, nuclear families with

two children are also simulated without regard to the

phenotypes of family members – a situation that has

been focally investigated previously (Xiong et al.,

1998). Once the informative families are simulated for

a specific selective sampling scheme or random

sampling, the TDT
G

analyses (Equation 1) are

performed.

For a desired statistical power η and a specified

significance level α and for a specific sampling scheme,

we first compute the sample size (n) of informative

nuclear families needed by our analytical power

computation method. The analytical power com-

putation for random sampling can be implemented

by, for example, specifying φ¯100 in the first

sampling scheme. Then informative nuclear families

each with two children are simulated for the specific

selective sampling scheme or random sampling. The

TDT
G

is applied to the n nuclear families. When a

QTL is simulated, the simulated statistical power is

the proportion of times that the TDT
G

analyses are

significant in a number of simulations (10000 times

unless otherwise specified) performed. The statistical

power (η«) obtained in simulations under the signifi-

cance level α can be compared with the specified level

of η in the analytical power computation. Once our

analytical power computation for the TDT
G

is

validated by computer simulations, the investigation

of the power of the TDT
G

under various sampling

schemes for different other parameter values is

conducted by our analytical method. To validate the

TDT
G

under the various selective sampling schemes

considered, under a specified α, we also examine the

size (the type I error rate) in simulations (α«) with a

marker locus that is not linked to and}or is not in

linkage disequilibrium with any QTL.

3. Results

(i) The accuracy of our analytical power computation

Table 1 presents some representative data of our

extensive simulation studies for a range of parameter

Table 1. The accuracy of our analytical power

computation and the �alidity of the TDT
G

under

selecti�e sampling

Sampling scheme
Genetic
effect n (η«)

α«
(α¯ 0±05)

One child `B10% Recessive 175 (0±85) 0±053
Additive 113 (0±85) 0±047
Dominant 109 (0±83) 0±047

One child `B10%, Recessive 72 (0±75) 0±046
the other child Additive 55 (0±80) 0±055
`T30% Dominant 88 (0±81) 0±055

One parent `B10% Recessive 191 (0±79) 0±049
Additive 137 (0±79) 0±045
Dominant 187 (0±79) 0±053

Random sampling Recessive 170 (0±81) 0±052
Additive 141 (0±81) 0±045
Dominant 331 (0±78) 0±047

n is the number of informative families needed in a specific
sampling scheme in order to achieve 80% power (η) with
α¯10−% computed by our analytical approach and η« is the
power obtained by 10000 repeated simulations with the
sample size n. In the studies for this table, p¯ 0±7, h#¯ 0±1,
and a¯1. α« is the empirical size (type I error rate) for the
TDT

G
test obtained from 10000 repeated simulations when

the marker is not a QTL or is not linked to a QTL, or is not
in linkage disequilibrium with a QTL. It is the proportion of
the times that the TDT

G
analysis is not significant under the

specified significance level of α (¯ 0±05). In validating the
TDT

G
, the significance level of α¯ 0±05 is chosen to avoid

unnecessary excessive simulations for the α at much lower
levels such as α¯10−%. ‘` ’ denotes ‘belongs to’ ; ‘B10%’
denotes bottom 10% and ‘T30%’ denotes top 30% of the
phenotype distribution.

values with different genetic models under the three

selective sampling schemes and random sampling. It

can be seen that, for all the three typical models of

genetic effects at the QTL (recessive, additive and

dominant), the sample sizes (n) computed from our

analytical method under a specified statistical power

(η), if employed in computer simulations, can yield the

simulated statistical power (η«) that is very close to

the η. This is true for different sampling schemes

considered. Therefore, our analytical derivation and

the power computation for the TDT
G

under various

sampling schemes considered are validated by our

computer simulations.

(ii) The �alidity of the TDT
G

under selecti�e sampling

The last column of Table 1 presents the results of the

simulated significance level α« under the null hy-

pothesis that the marker locus is not linked to and}or

is not in linkage disequilibrium with a QTL. It can be

seen that, for various genetic effects at the QTL and

under all the sampling schemes investigated, the

simulated significance level is essentially equal to
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Table 2. Comparison of the TDT
G

and sib pair

linkage tests under selecti�e sampling

Genetic effect p

T10%B10%

RZ TDT
G

Recessive 0±1 19984 (205218) 120 (13897)
0±5 1565 (17769) 64 (3307)

Additive 0±1 1647 (19120) 18 (2211)
0±5 1464 (17166) 44 (2325)

Dominant 0±1 1567 (18153) 18 (2214)
0±5 1565 (17769) 64 (3307)

‘T10%B10%’ denotes the sampling scheme where one sib
belongs to the bottom 10% and the other to the top 10%
of the phenotypic distribution. ‘RZ’ denotes the linkage test
with extremely discordant sib pairs by the method of Risch
& Zhang (1995). The numbers in the RZ column are the
numbers of extremely discordant sib pairs (EDSP) and the
associated numbers of sib pairs needed to be screened to
obtain the EDSP required by the linkage test of Risch &
Zhang (1995) under the power of 80% and significance level
0±0001. These numbers were extracted from Risch & Zhang
(1996). The data for the TDT

G
are the required numbers of

informative nuclear families with EDSP (n) and the
associated number of nuclear families that need to be
screened (Ns) in order to achieve the required power (80%)
under the specified significance (0±0001) with the TDT

G

under the selective sampling scheme. These were obtained
by our analytical power computation and confirmed by
computer simulations. In the investigation for this table,
h#¯ 0±1, as in Risch & Zhang (1996) and Zhang & Risch
(1996), σ#

e
is set to 1, and a can be determined by the genetic

effects, p, h# at the QTL and σ#
e
.

the specified significance level α¯ 0±05, except for the

minor differences caused by sampling. Therefore, the

TDT
G

is valid and robust with selective sampling in

that the significance level achieved in practice is the

about same as that specified in the TDT
G

testing.

(iii) Comparison of the TDT
G

and a linkage test for

extremely discordant sib pairs

The TDT
G

is much more powerful than sib pair

linkage analyses in the absence of selective sampling

(Xiong et al., 1998). Selectively sampling can dra-

matically increase the power of sib pair linkage

analyses (e.g. Risch & Zhang, 1995, 1996). Therefore,

it is of interest to compare the powers of the TDT
G

and sib pair linkage analyses when selective sampling

is involved for both of the two approaches that may

employ the same type of sampled families. Here we

will use nuclear families with extremely discordant sib

pairs as an example for comparison. Note that

although extreme sampling for children is considered

in Allison (1997), Allison’s tests (TDT
Q"

–
%
) originally

only allow for nuclear family trios consisting of one

heterozygous parent and one child, and thus have a

restrictive limitation in practical application. There-

fore, we will only consider the comparison of the

TDT
G

with sib pair linkage analysis of Risch & Zhang

(1995, 1996) for extremely discordant sib pairs. It is

apparent from Table 2 that with extremely discordant

sib pairs, the TDT
G

is much more powerful than the

sib pair linkage analyses of Risch & Zhang (1995,

1996) in that the required sample sizes (for testing or

for screening) are much smaller across various

parameters and genetic models.

(iv) The effects of selecti�e sampling under �arious

sampling schemes

Compared with the random sampling scheme, the

three selective sampling schemes all increase the power

of the TDT
G

under dominant effects for the allele (Q)

that increase phenotypic values (plot c in Fig. 1 ; plots

c, f and i in Fig. 2) in that the numbers of required

informative nuclear families are fewer. Under recessive

and additive genetic effects for allele Q (plots a and b

in Fig. 1 ; plots a, b, d, e, g and h in Fig. 2), the selective

sampling considered may or may not increase the

power compared with random sampling. Extreme

sampling involving discordant sib pairs always in-

creases the statistical power. The extreme sampling

involving only one extreme child or one extreme

parent considered may have little effect on the power

(plots a and b in Fig. 1 ; plots b and e in Fig. 2) or even

suffer some minor loss of power (plot a in Fig. 1 ; plots

a and d in Fig. 2). However, simply due to the

symmetry of recessive and dominant genetic effects of

alleles Q and q, when extreme sampling through one

end of the phenotypic distribution does not increase

the power of QTL identification, extreme sampling

through the other end of the distribution for parents

or children will. This is confirmed by our computer

simulations. To be more specific, if under recessive

genetic effects of allele Q, extreme sampling through

one parent or one child with extremely low phenotypic

value does not increase the power, extreme sampling

through one parent or one child with extremely high

phenotypic values does increase the power substan-

tially. This is simply because when allele Q is recessive,

allele q has dominant genetic effects. Therefore, except

under additive genetic effect, appropriate selective

sampling can generally increase the power of QTL

identification.

Of particular interest is that with selective sampling,

when it can increase the power, the increase in the

TDT
G

power is most dramatic when the h# at the QTL

under study is relative small or intermediate (e.g. 0±05

or 0±10) (plots a–c in Fig. 1 ; plots c, f–i in Fig. 2).

Comparedwith random sampling, when it can increase

the power, the effect of selective sampling decreases

with an increasing h# at the QTL under study (plots

https://doi.org/10.1017/S0016672302005578 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672302005578


H.-W. Deng and J. Li 168

400

350

300

250

200

150

100

50

0

350

300

250

200

150

100

50

0

2000

1600

1200

800

400

0
0 0·15 0·3 0·45 0·6 0·75 0·9 0 0·15 0·3 0·45 0·6 0·75 0·9 0 0·15 0·3 0·45 0·6 0·75 0·9

p p p
ihg

0 0·1 0·2 0·3 0·4 0·5 0 0·1 0·2 0·3 0·4 0·5 0 0·1 0·2 0·3 0·4 0·5

0 0·1 0·2 0·3 0·4 0·5 0 0·1 0·2 0·3 0·4 0·5 0 0·1 0·2 0·3 0·4 0·5
h2h2 h2

cba

h2h2 h2

fed

DAR

L10%c L10%H30% L10%P

R A D

1
2

3

4

1

2

3

4

1

2

3

4

R

A

D

R

A

D

R

A

D

1

2

3

4

1

2

3

4

1

2

3

4

600

500

400

300

200

100

0

0

100

200

300

400

500

0

100

200

300

400

500

600

700300

250

200

150

100

50

0

250

200

150

100

50

0

180

160

140

120

100

80

60

40

20

0

n

n

n

n

n

n

n

n

n

Fig. 1. Comparison of the numbers (n) of informative families required to achieve 80% power under various sampling
schemes for nuclear families with two children under different heritabilities, genetic effects and the frequencies (p) of the
allele Q at the QTL. The marker is at the QTL, p¯ 0±7 and a¯1 ; various values of h# are achieved by varying the
magnitude of σ#

e
. α¯10−%. In the first sampling scheme, one child `B10%; in the second sampling scheme, one child

`B10% and the other child `T30%; in the third sampling scheme, one parent `B10%; in the fourth sampling scheme,
all family members are randomly recruited. The phenotypes of other unmentioned members of the nuclear families are
random. In Fig. 1, ‘1 ’, ‘2 ’, ‘3 ’, ‘4 ’ denote the first, second, third and fourth sampling schemes respectively. In Figs. 1

and 2, ‘A’, ‘D’ and ‘R’ denote additive, dominant and recessive genetic effects, respectively, at the QTL. Plots a–c
present comparisons of the selective sample schemes of 1–3 with random sampling for recessive, additive and dominant
genetic models, respectively. Plots d–f present the effects of the first, second and third sampling schemes under various
genetic models at the QTL. Plots g–i compare various sampling schemes under various frequencies (p) of the allele Q
and the QTL.
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Fig. 2. Comparison of n required to achieve 80% power for various sampling schemes under different selective sampling
stringency when the marker under test is a QTL. The selective stringency of sampling is measured by φ so that
individuals with extreme phenotypes are selected from the bottom φ% of the phenotypic distribution. In each plot, the
parameters given indicate the φ per cent chosen; ‘random’ indicates random sampling without considering extreme
phenotypic values. In the selective sampling scheme in plots a–c, one child `Bφ per cent is selected as proband for the
recruitment of nuclear families each with two children. In the selective sampling scheme in plots d–f, one child `Bφ
per cent and the other child `T30% are selected as probands for the recruitment. In the selective sampling scheme in
plots g–i, one parent `B10% is selected as proband for the recruitment. Unless otherwise specified, p¯ 0±7, a¯1 and
h#¯ 0±1.
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a–c in Fig. 1 ; plots c, f–i in Fig. 2). Among various

sampling schemes, extremely discordant sib pairs are

consistently the most powerful samples across different

genetic models (plots a–c in Fig. 1).

For the same selective sampling scheme, the power

depends on the mode (recessive, additive or dominant)

of the genetic effect at the QTL under study (plots d–f

in Fig. 1). Other things being equal, the power of the

TDT
G

depends on the allele Q frequency (p) at the

QTL (plots g–i in Fig. 1). With recessive genetic

effects, the power is relatively low when p is small and

increases with an increasing p in that the required

number of informative families (n) decreases with an

increasing p. The trend of the power with p is opposite

under dominant genetic effects at the QTL, which is

expected. Under additive genetic effect, the power is

the smallest (as reflected by the largest n) with

intermediate allele frequency p and increases with p

approaching 0 or 1. The sample sizes here are n’s (the

number of informative families required under a

specific sampling scheme), not N
s

(the number of

families that need to be screened in order to recruit n

informative families) as reported in tables 1–3 in

Xiong et al. (1998). As is apparent, when it can

increase the power (plots c, f–i in Fig. 2), the sample

size n required decreases (and thus the power increases)

with an increasing stringency of subject selection

(plots d–f in Fig. 2) for the parameter values

investigated when compared with random sampling.

4. Discussion

In this study we investigated how the sampling of

parents or children based on their extreme phenotypic

values selected from clinical databases would affect

the power of QTL identification by the TDT
G
. We

considered three selective sampling schemes based on

the selection of phenotypic values of parents or

children in nuclear families : (1) one child is of extreme

value, the other random; (2) two children are

extremely discordant ; (3) one parent is of extreme

value. Our study shows that the second sampling

scheme can always enhance the power for QTL

identification, sometimes dramatically so. The increase

in statistical power of the TDT is particularly dramatic

when h# at the QTL under test is small or intermediate

(e.g. 0±05 or 0±10). For the other two sampling

schemes, except under additive genetic effects, the

power may generally increase under selective sampling

from the appropriate end of the phenotypic dis-

tribution. Allele frequencies at the QTL are important

for determining the effect of selective sampling on

power of QTL identification. Therefore, clinical

records of extreme individuals may form powerful

resources for QTL identification by the TDT. Our

study should be useful for performing the TDT
G

efficiently in practice by taking advantage of ex-

tensively accumulated data that are enriched with

people of extreme phenotypic values. As a dem-

onstration of the effects of selective sampling on the

TDT, we investigated nuclear families each with two

children (sib pairs). If there are more than two

children in nuclear families, the phenotypic values of

the other sibs may play a role in determining the TDT

power, as has already been shown for disease

phenotypes (Chen & Deng, 2001).

Extensive records have been accumulated in clinics}
clinical studies for those individuals with extreme

phenotypes that are of health and clinical significance.

How to employ these records efficiently in gene

identification for complex traits has been under

extensive investigation for linkage analyses (e.g. Eaves

& Meyer, 1994; Risch & Zhang, 1995; Zhang &

Risch, 1996) and recently for TDT analyses for

disease gene identification (Whittaker & Lewis, 1998;

Chen & Deng, 2001). It has been shown that the TDT

may have much higher power than linkage analyses

(Risch & Merikangas, 1996; Allison, 1997; Xiong et

al., 1998) for testing the significance of particular

genes or genomic locations for complex traits. In

addition, the TDT analyses of QTL may have much

higher power with the TDT
G

in nuclear families with

more than one heterozygous parent and multiple

children (Xiong et al., 1998; Deng et al., 2001).

Therefore, our work in investigating the effect of

selective sampling on the power of Xiong et al.’s

(1998) TDT
G

should be important.

As is shown, with selective sampling the TDT
G

is

still valid in that it ensures the type I error rate

suffered in practice is the same as the specified

significance level in the TDT
G

testing. Importantly, it

is shown that under the three selective sampling

schemes investigated for parent or child(ren), the

power of the TDT
G

may be increased and sometimes

dramatically so for the QTL with relatively small h#.

This is of particular significance given that the greatest

challenge in QTL identification is the limited power of

all the current approaches in identifying QTLs with

small to intermediate h# values. It is shown that when

the marker is a QTL, the required sample size n for the

TDT
G

may be orders of magnitude smaller than that

for the sib pair linkage analyses for nuclear families

with extremely discordant sib pairs (Table 2). There-

fore, application of the TDT
G

with appropriate

selective sampling whenever possible is warranted in

practice for its validity and its large power. However,

the detailed sampling scheme to be adopted may

depend on practical issues at hand and on the

availability of extreme individuals and their ages (that

determine whether they can be recruited as parents or

children for studying nuclear families) and the

information on the likely genetic effects of the QTL.

While nuclear families with discordant sib pairs may

be consistently of the greatest power for the TDT
G
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analyses and always yield higher power than random

sampling, their recruitment may also be most difficult,

even with the availability of clinic records on extreme

individuals. However, selective sampling for only one

parent or only one child should be simple and

convenient with the aid of the accumulated clinic

records on extreme individuals and it may greatly

enhance the power except under additive genetic effect

of the QTL. Even under additive genetic effect of the

QTL when power is not gained significantly or even

may suffer some minor loss under selective sampling

for only one parent or only one child, the power is

generally not changed much. Hence, in the absence of

knowledge of the genetic effects at the QTL, selective

sampling for only one parent or only one child may

still be attempted with the accumulated clinical

records. When the QTL allele increasing the trait

value is dominant, extreme sampling of only one

parent or only one child through low phenotypic

value may greatly increase the power. When the QTL

allele increasing the trait value is recessive, extreme

sampling of only one parent or only one child through

high phenotypic value may greatly increase the power.

Hence, which selective sampling strategy to adopt

should depend on the individual investigator’s re-

sources and information about the genetic effects of

the QTL being studied.

The mechanisms by which selective sampling may

increase the power of the TDT
G

are as follows: (1)

Selective sampling may increase the number of

heterozygous parents in informative nuclear families

as revealed in our simulations. (2) Selective sampling

may increase the difference of the mean phenotypic

values of children who receive the Q and the q alleles

respectively and may also decrease the phenotypic

variances of the children who receive the Q and q

Appendix. The analytical results for two selective sampling schemes

One child ’s phenotype belongs to the bottom φ per cent and the other to the top ρ per cent of the population

distribution

Let the event that one of the two children belongs to the bottom φ per cent of the phenotypic distribution be

denoted as ‘C
l
’ and the event that the other child belongs to the top ρ per cent of the distribution be denoted

as ‘C!
h
’. Then:
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where the threshold phenotypic value Z
H

can be computed by the following if ρ is known:

ρ%¯Pr(Y&Z
H
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H
rQQ)P

QQ
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H
rQq)P

Qq
­Pr(Y&Z

H
r qq)P
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alleles respectively. This will then increase the value of

the TDT
G

statistic computed and thus increase the

power of the TDT
G
. It should be noted that with the

TDT
G
, not every kind of selective sampling scheme

can increase the power. For example, we (Deng & Li,

unpublished) investigated the power of selective

sampling when two sibs are extremely concordant for

trait values – a selective sampling strategy that has

been shown to increase the power of sib pair linkage

analyses (Risch & Zhang, 1995; Zhang & Risch, 1996,

1997). We found that concordant sib pairs are

generally not powerful samples for the TDT
G
analyses.

This should not come as a surprise since both sibs are

selected to be extremely concordant. Their phenotypic

values are selected to be so concordant that the

difference in the mean phenotypic values of the

children who receive the Q and q alleles respectively is

selected to be small. This reduces the difference in the

numerator for computing the TDT
G

statistic (Equa-

tion 1), thus diminishing the power of the TDT
G
.

However, this does not mean that extremely con-

cordant sib pairs are not useful for TDT analyses of

QTLs. A TDT statistic that is different from the TDT
G

but that can be applied to informative nuclear families

with more than one child may utilize nuclear families

with extremely concordant sib pairs efficiently. Such a

TDT test statistic is yet to be constructed and

investigated.
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One parent’s phenotype falls into bottom φ per cent of the distribution

Denote the event that one parent belongs to the bottom φ per cent of the distribution as ‘Pi ’. Conditional on

that each nuclear family has at least one heterozygous parent and at least one parent belonging to the bottom

φ per cent of the phenotypic distribution, we have
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To obtain the above µ
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, we have
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Denote the event that a father belongs to the bottom φ per cent and a mother is random with respect to her
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phenotype as P
fl
, and the event that the father does not belong to the bottom φ per cent and the mother belongs

to the bottom φ per cent as P
fn

P
ml

. We have in Equation 20a,

P(g
o
, g

f
, g

m
, Qq

p
, Q

o
, P

l
)¯P(g

f
)P(g

m
)P(g

o
r g

f
, g

m
, Q

o
)P(P

fl
r g

o
, g

f
, g

m
, Q

o
)

­P(g
f
)P(g

m
)P(g

o
r g

f
, g

m
, Q

o
)P(P

fl
P

ml
r g

o
, g

f
, g

m
, Q

o
).

For example, if the genotype of the child is QQ, and the parents are of the genotypes QQ and Qq, we have
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With the above two equations, we can obtain µ
Q

analytically. Similarly, we can obtain µ
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and σ#

q
analytically.
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