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Summary

We investigate how sampling of parents or children based on their extreme phenotypic values
selected from clinical databases would affect the power of identification of quantitative trait loci
(QTL) by a transmission disequilibrium test (TDT). We consider three selective sampling schemes
based on the selection of phenotypic values of parents or children in nuclear families: (1) two
children, one of extreme value, the other random; (2) two children extremely discordant; (3) one
parent of extreme value. Other family members not specified will be recruited randomly with
regard to phenotypic values. Our study shows that the second sampling scheme can always
enhance the power for QTL identification, sometimes dramatically so. The increase in the
statistical power of the TDT is particularly dramatic when A* at the QTL under test is small or
intermediate (e.g. 0-05 or 0-10). For the other two sampling schemes, under dominant effects at the
QTL, the power is always increased relative to random sampling; however, under recessive or
additive genetic effects, the power gain is generally minor or even decreased a little sometimes.
Allele frequencies at the QTL and the selection stringency are important for determining the effect
of selective sampling on the power of QTL identification. Our study is useful as a practical
guideline on how to perform the TDT efficiently in practice by taking advantage of the extensive
databases accumulated that are enriched with people of extreme phenotypic values.

1. Introduction

Mapping and identification of genes underlying
complex traits, especially those of primary health
importance, has been a challenge for geneticists. The
challenge is largely due to the limited power of and the
large samples required by many currently employed
approaches, such as traditional sib pair linkage studies
(Risch & Merikangas, 1996). A powerful approach,
the transmission disequilibrium test (TDT), has been
developed for identification of genes, originally for
complex diseases (Spielman et al., 1993), and has
recently been extended to quantitative traits (e.g.
Allison, 1997; Rabinowitz, 1997; Xiong et al., 1998).
The TDT is used widely in practice (Schaid, 1998). In
testing candidate genes for association with complex
traits, the TDT is not plagued by the problem of
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population admixture/stratification and can test for
linkage in the presence of evidence for association
(Ewens & Spielman, 1995; Spielman & Ewens, 1996).
When markers are at or very close to the genes of
complex traits, the TDT is much more powerful than
traditional sib pair linkage analyses (Risch & Meri-
kangas, 1996; Allison, 1997; Xiong et al., 1998).
However, the sample size required may still be too
large for application of the TDT in practice. This is
especially true for identifying those genes with
relatively small to intermediate effects. Therefore, it is
of great practical importance to develop sampling
schemes that can effectively reduce the sample sizes
required for the TDT.

Selective sampling based on phenotypic values or
disease status of family members (such as parents
and/or children) may greatly enhance the power of
traditional sib pair linkage analyses (Eaves & Meyer,
1994; Risch & Zhang, 1995; Zhang & Risch, 1996).
For the TDT of disease genes, ascertainment of
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nuclear families with consideration of the affected
status of parents will substantially increase the power
(Whittaker & Lewis, 1998; Chen & Deng, 2001). For
the TDT of QTL, the investigation (Allison, 1997,
Xiong et al., 1998) was largely for randomly ascer-
tained nuclear families without regard to the selection
of phenotypic values of family members. Although
Allison (1997) considered the sampling of extreme
children for his TDT,,, TDT; and TDT,,, sampling
with regard to parental phenotyplc values is not
considered and these TDT tests require family trios
consisting of one heterozygous parent, one homo-
zygous parent and only one child. Xiong et al. (1998)
developed a general TDT (TDT,,) for QTL identifica-
tion. The TDT,, allows for more than one child per
family and does not require only one parent to be
heterozygous. With multiple children from each
nuclear family, the power of the TDT, is greatly
increased (Xiong et al., 1998; Deng et al., 2001).
However, for the TDT,, the investigation of its
statistical power is conducted for randomly ascer-
tained nuclear families. The power of the TDT, is
unknown under various selective sampling schemes
that can be based on extreme phenotypic values of
parents or children.

For quantitative traits important for human health,
generally only extreme (low/high) values are of
primary clinical significance. For the past few decades,
extensive records have been accumulated for people
with extreme phenotypic values in clinics/clinical
studies for many quantitative traits (such as blood
pressure, bone mass and cholesterol level) (e.g. Deng
et al., 1998a, b, 20005, c¢). These extensive records of
individuals with extreme phenotypic values may form
convenient and powerful resources for recruitment of
parents or children for nuclear families for the TDT,,
analyses. Depending on the ages of the people in the
records, these people may form probands as children
or as parents for the nuclear families to form various
selective sampling schemes. Therefore, it is important
to investigate the effects of various selective sampling
schemes on the power of the TDT,,. The investigation
will provide a practical guideline on efficient im-
plementation of the TDT, (as an example of the
TDT) by taking advantage of existing data for people
with extreme phenotypes.

In this study we will investigate how selective
sampling of parents or children based on their extreme
values would affect the power of QTL identification
by the TDT,. The purpose is to provide a theoretical
basis and a practical guideline to improve the power
of the TDT. For demonstration, we will consider
three situations based on selection of phenotypic
values of parents or children in nuclear families each
with two children: (1) one child is of an extreme
phenotypic value, the other random; (2) two children
are extremely discordant; (3) one parent is of an
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extreme value. Other family members not specified
will be selected randomly with regard to their
phenotypic values.

2. Methods

First, we will introduce the TDT, of Xiong et al.
(1998) for QTL identification. Then we will derive the
non-centrality parameters (essential for our analytical
computation) for the TDT,, statistic under the three
selective sampling schemes. Since the TDT,, is a valid
test of linkage in the presence of population admixture
(Xiong et al., 1998), to demonstrate the effect of
selective sampling in a relatively simple way, we will
assume that the study population is randomly mating
so that Hardy—Weinberg equilibrium holds.

(i) The TDT,

We assume that there are n nuclear families with at
least one parent being heterozygous for the marker
locus under study. Such families are here termed
informative families. Assume that there are two alleles
M and m at the marker under test. For the ith (i =
1,..., n)informative nuclear family that has n, children,
we assume that the marker allele M is transmitted to
n,,; children from heterozygous parent(s). Let Y
denote the phenotypic value of the quantitative trait
under study. For the jth child in the set of n,,
children, let Y,,,; be his/her phenotypic value. We can
denote 7n,,, and Y,,,; similarly for the allele m. n,,, and
n,,; can be simply counted based on the genotypes of
parents and children. The total numbers of children
receiving M and m alleles from heterozygous parents
are, respectively, n,, = 2,, My and n,, i1
Then the mean phenotypic values among children
who receive M or m alleles from heterozygous parents
are, respectively,

n nUk
= Z E ka]
nw k=1j=1
and
n nmk
- E Z YmH
” k=11-1

The variance in the observations in children
receiving the M allele is assumed to be the same as
that in children receiving the m allele. Define

<

'k

Ei: (( YMch -

S'Z :k 1j=1

)7;1/1)2 + ( Ymk,j - )7m)2)

Ny + n, — 2

Then the TDT,, statistic can be computed as

V _V )2
TDTG — ()1];'\/[ 1Ym) , (1)
)
nﬂl nm
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where ((1/n,,)+(1/n,))S? is an unbiased estimator
of the variance of Y,,— Y, (Xiong et al., 1998). With
large sample sizes, the TDT, approximately follows
a y? distribution with 1 d.f.

(i1) Theory with selective sampling for the TDT

In this paper we only present the results for the first
situation when the marker is a functional mutation of
the QTL under study. The second situation when the
marker locus is not at a QTL but is linked to and is in
linkage disequilibrium (LD) with a QTL has also been
studied (Deng & Li, unpublished, results available on
request) with the conclusions conforming to the first
situation. We will not consider the effects of back-
ground polygenes separately from random environ-
ments on the TDT,, as it has been demonstrated
(Deng et al., 2001) that the effects are minor with two
children sampled from each family, a situation to be
investigated here.

Define a QTL under study with two alleles Q and q.
Let p and p” = 1 —p be the frequencies of the alleles Q
and q, respectively. Let a (> 0-0) be the mean
(genotypic value) for individuals of genotype QQ, let
d be that of Qq individuals, and let —a be that of qq
individuals. d is equal to 0, ¢ and —a, respectively
under additive, dominant and recessive genetic effects.
Under partial dominant or partial recessive genetic
effects, —a <d < a but d=+ 0. The additive genetic
variance of this locus is o2 = 2pp’[a+ (p’ — p)d]?, and
the dominant genetic variance is o} = (2pp’d)* (Fal-
coner, 1989). The total genetic variance due to this
QTL is % = 0% +0%. We assume that the variance
due to all other QTLs and all random environmental
effects is o2. The heritability 4* due to this QTL is
h*=ol/(cl+02). Under a genetic model (such as
additive, dominant and recessive), once three of the
four parameters of the 42, a and p at the QTL and o2
are given, the fourth parameter can be computed easily
(Falconer, 1989; Deng et al., 2000a). The phenotypic
value of an ith individual in the population is

yi=p+G,+e,

where p is the mean baseline value of the quantitative
trait under study, G, is the genotypic value at the QTL
for the ith genotype, and e, represents a random
variable for all random environmental effects. G, is
equal to a, d and —a respectively for genotypes of
QQ, Qq and qq. As in common practice, we can
assume that 4 = 0, and e, follows a normal distribution
with mean 0 and variance o2 Let F(x) be the
cumulative distribution function (c.d.f.) of a normal
random variable x.

Let s, and ¢, be the mean and variance, re-
spectively, of phenotypic values of the children who
receive the Q allele from heterozygous parents; x, and
o, are similarly defined for the q allele. Let n, and n,
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respectively be the numbers of children who receive
the Q and q alleles from heterozygous parents. The
noncentrality parameter of the distribution of the
statistic TDT,, is (Xiong, 1998)

_ (pe—py)®
N ((rZ/n;-l—(rg/nq)' )

To compute analytically the statistical power of the
TDT,, A and thus p,, o, u,, o2, n, and n, should be
derived in terms of the parameters such as p, p/,
genetic effects (such as @ and &) under various selective
sampling schemes. Let g,, g, and g, respectively,
denote the genotypes of children, fathers and mothers
in informative nuclear families for the TDT,. Then
within a nuclear family, conditional on the parental
genotypes of g, and g,,, the mean value of all children
is

lul = E(Y|gf9 gm) = EE(Y|g05 gf’ gm)P(ga |gf5 gm)a
8o

(3a)

where P denotes probability throughout. Over all the
informative nuclear families, the mean value of all the
children is

oy =22Pg, g, ) 2XEYg, & g.)PE,18 &)

8f &m 8o
=22 2EYg, & 8)P(E0 &> &) (3b)
&1 &m 8o

To focus on the main idea and its significance, we
will only outline our analytical derivation and the
results in the following. The tedious technical details
are available from the authors on request.

One child has an extremely low value and falls below
the bottom ¢ per cent of the phenotypic distribution

Let Qgq, denote the event that at least one parent is
heterozygous, C, denote the event that at least one
child of the two in each nuclear family recruited has
an extremely low value, and Q, denote the event that
a heterozygous parent transmits the allele Q to an
offspring. The subscripts ‘p’ and ‘o’ denote respect-
ively the parental and offspring generations. By the
same derivation principle as in Equation 3, conditional
on Qq,, Q, and C, in informative nuclear families,
we have

//“Q = ZZZE(Y|go’ gf’ gm’ qu’ Qo> Cl)

8 &m &o

X P(go’ gfb gm | qu7 Qoa Cl,)’ (43)
Ué = gEgEEEE(YZ|gm gfa gm’ qu’ Qo) Cl)

fém do

X P(gm gf’ gm | qu7 Qo? CZ)_/MZ (4b)

To derive p,, we consider two mutually exclusive
situations. First, the child who receives the allele Q


https://doi.org/10.1017/S0016672302005578

H.-W. Deng and J. Li

has an extremely low phenotypic value (Y < Z,; the
event is denoted by Cy,) and the other child’s
phenotype is randomly selected. Second, the child
whose phenotype is being considered (here it is the
child who receives the allele Q) does not have an
extremely low phenotypic value (Y = Z, ; the event is
denoted by C,,,) and the other child has an extremely
low phenotypic value (the event is denoted by C;). The
second situation can be denoted as the joint events of
C,,C;. It can be seen that

P(C) = P(C,,)+ P(C,,C)).
Hence, we have
E(Y|g, & &m» 94y Qo C)) = E(Y|Cy, &, Q)
o P(Cy18.,5 Q,)
(P(Cy, 18, Q)+ P(Cy, 1 8,0)P(C 18 s O4,))
+E(Y|Cy,Cl g, Q)
P(Cy,Cil80 & &> 94, Q)

X : .
(P(CYZ | go’ Qo) + P(CYn | goQo)P(CZ |gf’ gm’ qu))
)

The threshold phenotypic value Z, for the bottom

¢ per cent of the phenotypic distribution can be
computed by

P(gm gf’ gm | qus Qo? Cl) =

P(go’ gf> gm’ QCIW Qo’ CYI)+P(g07 gf’ gm’ qu Qa’ CYn,Cl/)
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E(Y| CYrN ga’ Qo) = E(Yl CYn’ go.Q)

f X5ty o 0

==L ) (7b)
1=FZ, pt, . 0D

P(Cy18,, Q) = P(Cy18,.0) = FZy, pty, » 02), (70)
P(CYn|go’ Qr;) = P(CYn |go.Q)
=1-KZ, Hg, o a?), (7d)

where g, , is the genotype of the child who receives the
Q allele from a heterozygous parent. Hence, g, , can
only be one of the two genotypes, QQ and Qq. Ie, o is
the genotypic value of the genotype QQ or Qq and
is a for the genotype QQ and d for Qq, respectively.

Given that at least one parent is heterozygous
in a nuclear family, the event (g, g,.0Qq,) =
(00,. 04,)U(Q0Q,,. 04)U(Qq,. 0g,), where ‘U’ de-
notes a union in probability and the subscripts ‘f”
and ‘m’ denote the father and the mother, respect-
ively. Conditional on the genotypes of parents,
P(C}\g; &, Qq,), the probability that the child’s
phenotypic value Y < Z, (denoted by ‘/” in the
subscript), can be computed. For example, if the
parents are of the genotypes QQ and Qq, we can have:

P(C118p &n» 94,) = OS(F(Z,, a, 07)+ H(Z,, d. 7).

In Equation 4a,

®)

gf &m 8o

$% = Pr(Y < Z,)
= PI'(Y< ZL|QQ)PQQ
FPH(Y < Z,] 0P, +Pr(Y < Z,149)P,,. (6)

With Z, known, the terms in Equation 5 can be
expressed, respectively, as

E(Y[Cy1, 8, Q) = E(Y|Cyp, 8,.0)

[t rtas
_u — (
F(ZL3 ILLgOAQD 0-2)

e

2L

222PE,. g8 04, O, C)

Given genotypes of parents and the child who receives
a Q allele from a heterozygous parent, the probabilities
in the numerator of Equation 8 can be computed
easily. For example, if the parents and the child have
the genotypes qq, Qq and Qq, respectively, we have

P(goﬁ gf) gm’ quﬂ Qo? CYZ) = pp/SF(Zln da 03)7
and

P(goa gfv gm’ quﬂ Qo’ CYnCl/)
8o
With Equations 4a, 5, 7a—d and with the procedures

outlined above for Equation 8, we can compute y,
analytically by the following equation:

Z, ©
J XX, g s Gi)derJ XX, pg )AX*P(C1 g, &0 O4)

MQ=ZZZ -

gf gmng

E(Y?|g, &5 &m» 94, O,» C))

= E(YZ | CYZD goﬂ gfﬁ gm’ qu’ Qo)

FZ,p,, o) +(1=FZ,, p, , o))P(C[ g & O4,)

P(go’ gf7 gm | qus Qoa Cl) (9)

To derive o7, in Equation 4b, we have

P(CYI | go’ gf" gms QQp’ Qo)

(P(CYl | gu’ gf’ gm’ qu’ Q{)) + P(CYnCZ | gu’ gf’ gm’ qu’ Q{)))

P(CYnCl/ |g05 gf7 gm’ qu9 Qo) (10)
(P(CYZ | gu’ gf’ gm’ qu’ Qo) +P(CY’VZC; | gu’ gf’ gm’ qu’ Qo))’

+E(Y2 | CYnCZ’ go’ gf’ gm,’ qu’ Qn)
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where

E( Y2 | CYZ? go) gf) gm’ QqI)D Qo)
= E( Y2| CYl’ go.Q)

ZL .
f (x, g, g o2)dx
_ e , (11a)
F(ZL’ go.Q’ O'?)

E( YZ | CYnCl/’ go’ gf’ gm’ qu’ Qa)
= E(Y2| Cyns go.Q)

J u xzf‘(xa go.Q> O-s)dx

zZ
L . 11b
1_F(ZL’ go.Q’ (73,) ( )

By Equations 4b, 5, 7c, 7d and 10-11, we have

Zy
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Specifying a significance level («) and a statistical
power (7), we can, with the aid of a suitable statistical
software package (e.g. Wolfram, 1996), obtain the
value for the non-centrality parameter A for the TDT,,
statistic. With the A value and Equations 2, 9, 13-16,
we can compute the required sample sizes Ns, n and n,,
for specified « and # given parameter values (p, p’, a,
d, o and ¢) under the first selective sampling scheme
that each recruited family has two children and one
belongs to the bottom ¢ per cent of the phenotypic
distribution.

One child’s phenotype belongs to the bottom ¢ per
cent and the other to the top p per cent of the
population distribution

Z;, %
f (e g )+ f (. 1y o) P(C, 1 8,0 0d,)

op=222 -

8t 8m8&o.Q
Similarly, we can derive the expression for s, and o
as above for s, and o,

Finally, n, and n, need to be derived, in order to
compute A analytically. Let Ns be the total number of
the screened families to obtain n informative families
under the selective sampling scheme under consider-
ation. Let n, be the total number of heterozygous
parents in the sample. We have

n= Ns*P(Qq,, C)
= Ns*[P(Qq,, Q,, C)+ P(Qq,, q,, C)], (13)

where P(Qq,, O,, C,) is the probability that at least
one parent is heterozygous (the event is denoted by
QOq,) and one child is of an extremely low value
(Y< Z,; the event is denoted by C,), and the
heterozygous parent transmits the allele Q to a child.

P(qu’ qu’ Cl)

P(Qq, C) 14

N, =n+n*

where

F(ZL5 ﬂgo’ U?)+(1 _F(ZL9 lugui 03))P(C; |gf9 gm9 qu)

*P(gm gf’ gm | qu’ Qo’ Cl) (12)

One parent’s phenotype falls into bottom ¢ per cent
of the distribution

The analytical derivations for these two selective
sampling schemes are similar. The keys are to derive
the u,, o5, p,» 02, n, and n, under a specific selective
sampling scheme, the results for which are given in the
Appendix. With these results, the statistical power can
be obtained as outlined above.

(iii) Computer simulations

To validate the above derivations and analytical
power computation, we perform computer simu-
lations. The validation of the power computation that
is based on the complex analytical derivation by simu-
lations is necessary; this is also true given the ap-
proximation of the test statistics to a y? distribution.
The comparison of simulation and analytical results
can provide a mechanism to crosscheck and validate

P(qu, 0q,,C) = P(qu, 0q,,)P(Cy,| Q%‘a QC],,[)-FP(qu, 0q,)P(C,,C/]| qus 04q,,)

XP(Cy,lg,)P(g,1 04, Oq,)

&o

— 4p2p/2

8o

Assuming that each nuclear family has J children (in
this study, J = 2), we have

P(qu’ Qo’ Cl)

n,=Jn , 16a
© HP(qu’ Qo’ CZ)+P(qu7 qm CZ) ( )
P(qu7 QU’ Cl) (16b)

n =Jn .
‘ "P(Qq,. 0,. C)+P(Q4q,, 4, C,)
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+2P(C1’n | go)P(go | qu’ qu)ZP(CI/ |go)P(go | Qq_f’ qu)

(15)

8o

the results from the two approaches. In the absence of
segregation distortion, parents of nuclear families
from random mating populations are simulated, in
which the p, p’, a, d and h* at the QTL and ¢ and/or
p and o2 are specified. Only for nuclear families with
at least one parent heterozygous at the marker locus
are the parents’ phenotypes simulated. The simula-
tion for phenotypes based on genotypes and other
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parameters is standard and has been documented else-
where (e.g. Deng et al., 2000 a). For the first two selec-
tive sampling schemes, two children are simulated for
their genotypes and phenotypes. The genotypes of
children are simulated according to random trans-
mission of alleles from parents to children. Once the
genotypes of children are simulated, their phenotypes
are simulated. Those nuclear families in which the
children meet the selection criterion for a specific
selective sampling scheme are retained for analyses.
For the third sampling scheme, only when one parent’s
phenotype is in the bottom ¢ per cent are the
children’s genotypes and phenotypes simulated. For
comparison of the statistical powers under random
sampling and selective sampling, nuclear families with
two children are also simulated without regard to the
phenotypes of family members — a situation that has
been focally investigated previously (Xiong et al.,
1998). Once the informative families are simulated for
a specific selective sampling scheme or random
sampling, the TDT, analyses (Equation 1) are
performed.

For a desired statistical power 5 and a specified
significance level & and for a specific sampling scheme,
we first compute the sample size (n) of informative
nuclear families needed by our analytical power
computation method. The analytical power com-
putation for random sampling can be implemented
by, for example, specifying ¢ = 100 in the first
sampling scheme. Then informative nuclear families
each with two children are simulated for the specific
selective sampling scheme or random sampling. The
TDT,, is applied to the n nuclear families. When a
QTL is simulated, the simulated statistical power is
the proportion of times that the TDT,, analyses are
significant in a number of simulations (10000 times
unless otherwise specified) performed. The statistical
power (’) obtained in simulations under the signifi-
cance level o can be compared with the specified level
of » in the analytical power computation. Once our
analytical power computation for the TDT, is
validated by computer simulations, the investigation
of the power of the TDT, under various sampling
schemes for different other parameter values is
conducted by our analytical method. To validate the
TDT,, under the various selective sampling schemes
considered, under a specified «, we also examine the
size (the type I error rate) in simulations («") with a
marker locus that is not linked to and/or is not in
linkage disequilibrium with any QTL.

3. Results
(1) The accuracy of our analytical power computation

Table 1 presents some representative data of our
extensive simulation studies for a range of parameter
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Table 1. The accuracy of our analytical power
computation and the validity of the TDT, under
selective sampling

’

Genetic a
effect n () (= 0-05)

Recessive 175 (0-85) 0-053
Additive 113 (0-85) 0047
Dominant 109 (0-83) 0-047

Sampling scheme

One childe B10 %

One childe B10%, Recessive 72 (0-75) 0-046
the other child Additive 55 (0-80) 0-055
eT30% Dominant 88 (0-81) 0-055

One parente B10% Recessive 191 (0-79) 0049

Additive 137 (0-79) 0-045

Dominant 187 (0-79) 0-053
Recessive 170 (0-81) 0-052
Additive 141 (0-81) 0-045
Dominant 331 (0-78) 0-047

Random sampling

n is the number of informative families needed in a specific
sampling scheme in order to achieve 80 % power () with
o = 107* computed by our analytical approach and " is the
power obtained by 10000 repeated simulations with the
sample size n. In the studies for this table, p = 0-7, h* = 0-1,
and a = 1. o’ is the empirical size (type I error rate) for the
TDT, test obtained from 10000 repeated simulations when
the marker is not a QTL or is not linked to a QTL, or is not
in linkage disequilibrium with a QTL. It is the proportion of
the times that the TDT,, analysis is not significant under the
specified significance level of a (= 0-05). In validating the
TDT,, the significance level of o = 0-05 is chosen to avoid
unnecessary excessive simulations for the « at much lower
levels such as o = 107*. ‘€’ denotes ‘belongs to’; ‘B10%”’
denotes bottom 10 % and ‘T30 %’ denotes top 30 % of the
phenotype distribution.

values with different genetic models under the three
selective sampling schemes and random sampling. It
can be seen that, for all the three typical models of
genetic effects at the QTL (recessive, additive and
dominant), the sample sizes (n) computed from our
analytical method under a specified statistical power
(1), if employed in computer simulations, can yield the
simulated statistical power (") that is very close to
the 5. This is true for different sampling schemes
considered. Therefore, our analytical derivation and
the power computation for the TDT, under various
sampling schemes considered are validated by our
computer simulations.

(1) The validity of the TDT,, under selective sampling

The last column of Table 1 presents the results of the
simulated significance level o’ under the null hy-
pothesis that the marker locus is not linked to and/or
is not in linkage disequilibrium with a QTL. It can be
seen that, for various genetic effects at the QTL and
under all the sampling schemes investigated, the
simulated significance level is essentially equal to
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Table 2. Comparison of the TDT, and sib pair
linkage tests under selective sampling

T10%B10 %
Genetic effect p RZ TDT,
Recessive 0-1 19984 (205218) 120 (13897)
05 1565 (17769) 64 (3307)
Additive 01 1647 (19120) 18 (2211)
05 1464 (17166) 44 (2325)
Dominant 01 1567 (18153) 18 (2214)
05 1565 (17769) 64 (3307)

‘T10%B10 %’ denotes the sampling scheme where one sib
belongs to the bottom 10 % and the other to the top 10%
of the phenotypic distribution. ‘RZ’ denotes the linkage test
with extremely discordant sib pairs by the method of Risch
& Zhang (1995). The numbers in the RZ column are the
numbers of extremely discordant sib pairs (EDSP) and the
associated numbers of sib pairs needed to be screened to
obtain the EDSP required by the linkage test of Risch &
Zhang (1995) under the power of 80 % and significance level
0-0001. These numbers were extracted from Risch & Zhang
(1996). The data for the TDT, are the required numbers of
informative nuclear families with EDSP (n) and the
associated number of nuclear families that need to be
screened (NVs) in order to achieve the required power (80 %)
under the specified significance (0-0001) with the TDT,
under the selective sampling scheme. These were obtained
by our analytical power computation and confirmed by
computer simulations. In the investigation for this table,
h* =01, as in Risch & Zhang (1996) and Zhang & Risch
(1996), o2 is set to 1, and @ can be determined by the genetic
effects, p, h* at the QTL and o2.

the specified significance level o = 0-05, except for the
minor differences caused by sampling. Therefore, the
TDT, is valid and robust with selective sampling in
that the significance level achieved in practice is the
about same as that specified in the TDT, testing.

(iii) Comparison of the TDT, and a linkage test for
extremely discordant sib pairs

The TDT, is much more powerful than sib pair
linkage analyses in the absence of selective sampling
(Xiong et al., 1998). Selectively sampling can dra-
matically increase the power of sib pair linkage
analyses (e.g. Risch & Zhang, 1995, 1996). Therefore,
it is of interest to compare the powers of the TDT
and sib pair linkage analyses when selective sampling
is involved for both of the two approaches that may
employ the same type of sampled families. Here we
will use nuclear families with extremely discordant sib
pairs as an example for comparison. Note that
although extreme sampling for children is considered
in Allison (1997), Allison’s tests (TDT, ,) originally
only allow for nuclear family trios consisting of one
heterozygous parent and one child, and thus have a
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restrictive limitation in practical application. There-
fore, we will only consider the comparison of the
TDT,, with sib pair linkage analysis of Risch & Zhang
(1995, 1996) for extremely discordant sib pairs. It is
apparent from Table 2 that with extremely discordant
sib pairs, the TDT,, is much more powerful than the
sib pair linkage analyses of Risch & Zhang (1995,
1996) in that the required sample sizes (for testing or
for screening) are much smaller across various
parameters and genetic models.

(iv) The effects of selective sampling under various
sampling schemes

Compared with the random sampling scheme, the
three selective sampling schemes all increase the power
of the TDT under dominant effects for the allele (Q)
that increase phenotypic values (plot ¢ in Fig. 1; plots
¢, fand 7 in Fig. 2) in that the numbers of required
informative nuclear families are fewer. Under recessive
and additive genetic effects for allele Q (plots ¢ and b
in Fig. 1; plots a, b, d, e, g and h in Fig. 2), the selective
sampling considered may or may not increase the
power compared with random sampling. Extreme
sampling involving discordant sib pairs always in-
creases the statistical power. The extreme sampling
involving only one extreme child or one extreme
parent considered may have little effect on the power
(plots a and b in Fig. 1; plots b and e in Fig. 2) or even
suffer some minor loss of power (plot @ in Fig. 1; plots
a and d in Fig. 2). However, simply due to the
symmetry of recessive and dominant genetic effects of
alleles Q and g, when extreme sampling through one
end of the phenotypic distribution does not increase
the power of QTL identification, extreme sampling
through the other end of the distribution for parents
or children will. This is confirmed by our computer
simulations. To be more specific, if under recessive
genetic effects of allele Q, extreme sampling through
one parent or one child with extremely low phenotypic
value does not increase the power, extreme sampling
through one parent or one child with extremely high
phenotypic values does increase the power substan-
tially. This is simply because when allele Q is recessive,
allele q has dominant genetic effects. Therefore, except
under additive genetic effect, appropriate selective
sampling can generally increase the power of QTL
identification.

Of particular interest is that with selective sampling,
when it can increase the power, the increase in the
TDT,, power is most dramatic when the 4* at the QTL
under study is relative small or intermediate (e.g. 0-05
or 0-10) (plots a—c in Fig. 1; plots ¢, f~i in Fig. 2).
Compared with random sampling, when it can increase
the power, the effect of selective sampling decreases
with an increasing /* at the QTL under study (plots


https://doi.org/10.1017/S0016672302005578

H.-W. Deng and J. Li 168
400, 300 A 700 D
350, 550, ——1 600 ——1
3004 -2 =2
200 500
250, 1 —&—3 ——3
o—4 400 ——4
n 2004 n1504 n
150, 300
1001
100/ 2001
50 30 100+
0 0 . . . - . 04
0 0 01 02 03 04 05 0 02 03