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SUMMABY

In a previous paper the theory of a model of electrophoretic profiles due
to Ohta & Kimura was considered. This model assumes a finite population
with a linear series of possible alleles with mutation between nearest types
but no selection. In the present paper a model with both mutation and
selection is constructed which results in a stable population distribution
closely fitting empirically observed features of the Ohta-Kimura model.
The problem of discriminating between selective and non-selective models
for electrophoretic models is considered.

1. INTRODUCTION

In a previous paper (Moran (1975)) a theory of electrophoretic profiles due to
Ohta & Kimura (1973) has been considered. In this theory we postulate a population
of N haploid individuals (gametes) of possible types Ait i = 0, +1 , +2, We
suppose these are selectively equal and that each Ai can mutate to Ai-X or Ai+1 at a
rate fix each in each generation. Let the number of gametes of type At in generation t
be nt (t) and write xt (t) = nt (t) N'1. As t increases the set of values {xi (£)} does not
settle down to a definite distribution but forms a tight group of non-zero values
which wanders all over the set of positive and negative integers, forming what may
be called a ' wandering distribution'. A more stable set of quantities is the set

Ck(t) = C_k(t) = Xxi(t)xi+k(t). (1)
i

Starting from any initial state it was shown that the expectations of these
quantities, EGk(t), converge as t tends to infinity to quantities which we denote by
ECk, and whose generating function is, to order 0{N~1), given by the formula

C(z) = 5S ukECk = {1 + 40 - 26{u + u-1)}-1

= AM" 1 , say, (2)

where 6 is defined to be equal to Nfiv However, it was also shown (Moran, 1975)
that the Ck do not converge in probability to the ECk as N increases (6 being fixed),
and in fact the variance of Gk converges to a non-zero quantity. A basic problem
in the practical study of observed polymorphisms of this general type is to be able
to discriminate between a non-selective model involving a wandering distribution
of the above type, and one which is the result of a balance between mutation and
selection.
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2. A MODEL BASED ON SELECTION

Selection might act in such a way as to stabilize the distribution about some
particular value of i which we can conventionally take as zero. We suppose more-
over that the selection acts on the gametes and not on zygotes. We shall show that
with a small amount of mutation and suitably chosen selection coefficients it is
possible to construct a mutation-selection model whose sole stationary state is
globally stable, and whose stationary values of

are equal to the values ofEOlc in the previous model for any given value of 6 =
We suppose that we have an effectively infinite population and that generations are
non-overlapping. Let each gamete At be capable of mutating to Ai_1 and Ai+1 each
with mutation rate /? (note that this /? has no relation to the /?x of the wandering
distribution model). No other types of mutation are allowed.

The relative fitness (i.e. selective value) of a gamete of type At is taken as s{ in
the sense that the si represent the relative contributions of the At to the next
generation before mutation takes place. Thus we assume selection occurs before
mutation.

If the xt (t) are the relative frequencies of the At in generation t, the values of
xi(t+i) are then clearly given by

*<(*+!) = (Xskxk(t))-i{(l-2J8)sixi(t)+flSi_1xi_1(t)+fisi+1xi+1(t)}. (3)
k

This is a bilinear recurrence relation and its theory is discussed elsewhere (Moran,
1977). If the 8{ are zero except for a finite set of values of i, and all alleles are accessible
from each other by some chain of mutations, it is not hard to show that there exists a
unique stationary population state {xt} which is globally stable. A more complicated
argument shows that this is also true if all

at > 0, if 1-2/3 > sv

and if
P > 0, s0 = 1 > S-L = s_x ^ s2 = s_2 Js ....

In the model we shall construct neither of these conditions is true but the conclusion
will still be shown to hold.

The set of quantities EGk denned by (2) does not arise from a set of fixed values
of the xt. We can, however, ask if there exists a set of quantities (denoted for clarity
by pt) which are such that

Pi > 0, Sp< = 1

= ECk for all k. (4)
k

i

Suppose this is true and also that pt = p_f. Consider the generating function

P(«) = i; uk
Pk = p(«-i). (5)

https://doi.org/10.1017/S0016672300016712 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300016712


Electrophoretic profiles in protein polymorphisms 49

Then we would have

G{u) = £ ECku
k = f^u)-1 = P^Piu-1)

(6)
We then have

P(u) = Mvj-i = {1 + 4:6- 26(u + u-1)}-^. (7)

This can be expanded in a convergent Laurent series since 20(1 + id)'1 < J, and the
resulting coefficients are non-negative and satisfy (4). Thus a set of pt satisfying
(4) does exist. For any particular value of 6 they can be found by contour integration
leading to the formula

pk = (27T)-1 f ''cosfc0{l+40-40cos0}-i<Z0) (8)
J 0

which may be evaluated numerically.
Such a set of values are not to be regarded as a set of gene frequencies to which

the gene frequencies of the wandering distribution converge. They are rather a set
of frequencies which, if they were the stationary frequencies of a stable model,
would result in a set of values of Ck which equal the expected values of the Ck in
the wandering distribution model. Our problem now is to consider how closely the
Pi given by (8) can be realized in a selection model, and in particular in a selection
model in which the mutation rates are realistically small.

We show that if the frequencies x{ are equal to the pt given by (8), then for all
sufficiently small values of fi there exists a set of constants st satisfying s0 = 1,
0 < sf < 1 for i 4= 0, and such that {xi = pt} is a globally stable solution of (3).

To do this we associate with (3) the set of equations

Pi = (i-WaiPi+fai-iPi-i+fat+iPi+i, (9)

where the at are now the unknowns. We shall find a solution of these equations such
that a0 > 1, and 0 < at < 1 for i + 0. If we then put st = fi^fl^1, these values of st

will satisfy (3) with the xt replaced by the p{ because S s ^ = a'^1T,aipi = a^1, since
(9) implies S a ^ i = 1.

Write

A(u) = io^B*. (10)

Then from (9)
P(u) = ( ( l -

so that, using (7),

A(u) = {l + 4:d-2d(u + u-1)}-l{(l-2P)+P(u + u-1)}-1. (11)
akPk wiH ̂ e obtained by integrating

cos k<f> {1 + 4/9 - 40 cos 0}-£ {1 - 2/?+2/? cos 0}-1

over the range (0 ^ <f> < 2n). 4.6 is a fixed positive quantity and ft < \. The integrand
for k = 0 is therefore greater than the integral (from (8)) for p0. Thus ao> 1. To
show that all the at > 0, we first observe that (11) is a multiple of

6Z)-1, (12)
4-2
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where for simplicity we have put
z = u + u-1, a = 20/(1 + 4(9), 6 =

We can write (12) as
{(1 - az) (1 + bz)2}~i = {1 - (a - 26) z - b(2a - b) z2 - a62z3}-i.

The coefficients of the powers of z in the expression in parentheses are all negative
so long as a > 26 so that, on expanding as a power series in z, all the coefficients will
be positive. Then expanding each power of z in powers oiu and u~x we see that all
the coefficients in A(u) are positive. Thus at > 0 for all i. On the other hand we can
now show that at < 1 for i 4= 0. From (9) we have

(l-*t)Pt = ^ - ^ i P i + ai-iPi-i + ai+iPi+i)-

Thus if we can prove that
-2aipi + ai_1pi_1 + ai+1pi+1 (13)

is positive for all i 4= 0, it will follow that af < 1.
Since (1 + 40)/20 > 2, this would be true if

(1 + 40) otpt - 28(ai_lPi_1 + ai+1p{+1) (14)
were negative.

The generating function of the quantities in (14) is clearly

This is proportional to
(l-az)J(l+6z)"1 (15)

using the same notation as above. It is then sufficient to prove that all the non-zero
powers of z in the expansion of (15) have negative coefficients. In fact we prove that
all the coefficients in the expansion of

a—
are negative, and to do this it is sufficient to prove the same fact for the numerator
in (16).

Now write

(l-az)*= 1+ £ aka
kzk.

Then ak < 0, and ak+1ak
x = (2k-1) (2k + 2)~1, for k ^ 1. Then (with a0 = 1)

(1 - az)i (1 - bz) = 1 + S (afc - or1 bak_x) a
kzk

I

and all the non-constant terms in this series will be negative if fi (and thus 6) is
sufficiently small. The constant term is zero and the term in z2 is

which is negative and greater in absolute value than bh2, so long as 6 is sufficiently
small. Thus the numerator in (16) has all its coefficients negative. We conclude that
at < 1 for all i 4= 0. Returning to the sf we therefore have sQ = 1, si < UQ1 < 1, for
all i 4= 0.
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Although we have found a set of values of st which makes (3) true for the values
of x$ = ipi given by (8) (for all sufficiently small yff) we have not yet shown that the
resulting /? and si define a mutation-selection model for which {pf} is a globally
stable solution. This would follow from the results proved in Moran (1977) if it were
known that s0 > sx ^ s2 $= s3 ^ This is in fact false in the present case.

A numerical experiment was carried out on the above theory. The pt were cal-
culated from (8) with 40 = iN^ equal to unity. This was done by numerical
integration on a desk computer for i = 0(0)7 using 40 ordinates on the range
0 s? § < 77. This gives, in particular, pt = 0-7457492, 0-1008419, 0-0203286,
0-0045463, for i = 0, 1, 2, 3. ft was chosen to be equal to 0-025. This is far higher
than the level of mutation rate to be expected in nature but the choice of a smaller
value would make the calculations more laborious. The of and s{ were then obtained
by similar numerical integration from (11). This gave sx = 0-806378, sx = 0-895206,
s2 = 894844, s3 = 0-899668, after which sf appeared to be monotonically increasing.
Thus the st in this example are not only not monotonically decreasing, but are not
even monotonically increasing after i = 1 either. However, we have shown above
that they are bounded by a constant less than unity.

However, we can still prove that the {j>J given by (8) do form a globally stable
solution of (3), i.e. that starting from any initial set xt(0) satisfying a^(0) ^ 0,
2:^(0) = 1, the frequencies x^t) at generation t will converge to the pt given by (8).
To do this we consider the associated set of recurrence relations for infinite sets of
quantities y^t),

y# + 1) = (1 - 2/?) SiVi(t) +^si_1yi_1(t) +/3si+1yi+1(t), (17)

where we put y^O) = a;f(0) for all i. Then at any generation (, the set {^(f)} will be
proportional to the set yt(t).

We consider (17) as a matrix recurrence relation, and use the theory of infinite
non-negative matrices due to Vere-Jones (1967) (see also Seneta (1973)). We write
y(t) for a column vector of quantities y^t), and write (17) as

y(t+l) = Ty{t), (18)

where T is a matrix of non-negative elements. Then T is primitive since for any
suffices (i,j) there exists a number t0 such that the (i, j)th elementof T* is greater
than zero for all t > t0. Furthermore, T has a right iB-invariant non-negative vector,
y0 say, such that

with R a positive constant. This is so because we can take y0 to be the column vector
of positive quantities p{ from (8), and R to be the quantity (Ss^)" 1 . Similarly T
has a left iJ-invariant positive vector y'x in the sense that

This is obtained by putting the elements of y[ equal to si
ipi and R again equal to

(Ss^i)"1- I t now follows from Criterion III of Vere-Jones (1967) that the matrix T
is .R-recurrent and ^-positive so that starting from any initial vector y(0) (equal to
a;(0)), y(t) is such that its components will be asymptotically proportional to the pit
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and therefore that the xt(t) will converge to the pt which is a globally stable solution
of (3).

We have thus shown that given any wandering distribution of the type con-
sidered at the beginning of this paper we can construct a globally stable model,
based on selection and mutation for which the quantities Sx1a;i+fc, in the stable
state, are exactly equal to the ECk of the wandering distribution model. Moreover,
this can be done for all small values of fi. In fact in practical cases we are concerned
with values of 6 which cluster round unity, say 0-01 < Q < 10, whereas the values
of P will be expected to be less than 10~4. We note also that in the selection model
if s0 is taken as unity, the values of the other s{ will differ from unity by quantities
of the same order as fi. This means that the selective differences required to maintain
the polymorphism in practice will be very small. An important consequence of this
is that if the initial state of the population is not the equilibrium one, the speed of
approach to equilibrium will be very small. This shows up very clearly in computer
simulations of the above model.

3. SOME BIOLOGICAL IMPLICATIONS

We now consider the biological implications of the above calculations. What we
have established is that given any wandering distribution model of the type con-
sidered at the beginning of this paper there corresponds a model with selection and
mutation for which the quantities Ea^a;i+fc are exactly equal in the stable constant
state to the expectations of the quantities Ck in the wandering distribution model.
Moreover, the mutation rate in the selection model can have any value less than a
positive constant which is much larger than any mutation rate is likely to be. The
implication of this result is that a knowledge of observed values of the Ck does not
provide any means of distinguishing between the two models. In principle such a
distinction would require at least a set of observations extended over a time period
long enough for the profile to change. However, even such a change would be
difficult to distinguish from a change in the selection pattern.

There is another important distinction between the two models. The behaviour
of the wandering distribution model depends essentially on a balance between the
mutation rate and the population size since it is the quantity 6 = 4:Nftx which
determines the expected values of the Ck. If the population were suddenly halved
the stable values of the quantities E(Gk) would be radically altered although this
might take many generations to occur. How many would be a function of ft and
could be roughly estimated from the recurrence relation given in equation (7) in
Moran (1975).

In sharp contrast to this situation, the values of lLxixiA.k in the stationary state
of selection-mutation model depend on a balance between mutation and selection
and are the same for all populations large enough for the observed values to be near
their expectations. Unlike the wandering distribution model, in this case the values
of the Hxixi+k converge in probability to their expectations as the population size
increases. Moreover, since observed mutation rates are small the selective differences
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required will be small also, very difficult to detect empirically, and making approach
to equilibrium very slow.

Thus discrimination between the two models is likely to be very difficult. There
is however one difference which might be used. If two large populations of the same
type, but of substantially different sizes, in the same environment could be observed
and if there was no genetic bridge between them, the shape of the electrophoretic
profile will depend on the population size for the wandering distribution model but
not for the selection-mutation model. This might provide a basis for discrimination.
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