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Presently, about 12% of the population is 65 years or older and by the year 2030 that figure is
expected to reach 21%. In order to promote the well-being of the elderly and to reduce the
costs associated with health care demands, increased longevity should be accompanied by
ageing attenuation. Energy restriction, which limits the amount of energy consumed to
60–70% of the daily intake, and intermittent fasting, which allows the food to be available
ad libitum every other day, extend the life span of mammals and prevent or delay the onset of
major age-related diseases, such as cancer, diabetes and cataracts. Recently, we have shown
that well-being can be achieved by resetting of the circadian clock and induction of robust
catabolic circadian rhythms via timed feeding. In addition, the clock mechanism regulates
metabolism and major metabolic proteins are key factors in the core clock mechanism.
Therefore, it is necessary to increase our understanding of circadian regulation over metab-
olism and longevity and to design new therapies based on this regulation. This review will
explore the present data in the field of circadian rhythms, ageing and metabolism.
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Circadian rhythms

Mammals have developed an endogenous circadian
clock located in the brain suprachiasmatic nuclei (SCN)
of the anterior hypothalamus that responds to the envir-
onmental light–dark cycle (Fig. 1). Light is absorbed
through the retina and this information is transmitted
to the SCN, which in turn relays the information via
neuronal connections or circulating humoral factors to
peripheral clocks, such as the liver, heart and lungs, regu-
lating cellular and physiological functions(1–3). The clock
mechanism in both SCN neurons and peripheral tissues
consists of CLOCK and BMAL1 (brain-muscle-Arnt-
like 1) proteins that heterodimerise and bind to E-box
sequences to mediate transcription of tissue-specific
genes, including Periods (Per1, Per2, Per3) and
Cryptochromes (Cry1, Cry2). PER and CRY constitute
part of the negative feedback loop, which inhibits
CLOCK:BMAL1-mediated transcription(1,4).

Chronodisruption and ageing

Disruption of the coordination between the endogenous
clock and the environment leads to symptoms of fatigue,
disorientation and insomnia. Night-shift workers have
disrupted circadian rhythms and they exhibit metabolic
disorders, hormone imbalance(5), psychological and
sleep disorders(6), and increased incidence of cancer and
malignant growth(5). Longevity in hamsters is decreased
with disruption of rhythmicity and is increased in older
animals given fetal SCN implants that restore high-
amplitude rhythms(7). Even chronic reversal of the exter-
nal light–dark cycle at weekly intervals results in a sign-
ificant decrease in the survival time of cardiomyopathic
hamsters(8).

It has been shown that circadian rhythms change with
normal ageing, including a shift in the phase and
decrease in amplitude(9,10). Deficiency of the CLOCK
protein significantly affects longevity, as the average
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lifespan of Clock−/− mice was reduced by 15% compared
with wild-type mice, while maximum life span was
reduced by more than 20%. CLOCK deficiency also
resulted in the development of cataracts and dermatitis,
two age-specific pathologies(11,12), at a much higher rate
than in wild-type mice(13). In addition, Bmal1−/− knock-
out mice have reduced life span and they display various
symptoms of premature ageing, including cataracts and
organ shrinkage(14). Per1,2−/− mice are morphologically
indistinguishable from wild-type animals at birth, but as
early as 12–14 months of age they start to develop fea-
tures of premature ageing, such as a faster decline in fer-
tility, loss of soft tissues and kyphosis(15,16).

It has been reported that old mice are approximately
20 times less sensitive to the synchronising effect of
light compared with young animals(17). When the SCN
becomes less sensitive, the endogenous period (τ)
becomes extremely important. A positive link between
τ close to 24 h and survival has been previously sug-
gested(7,18). According to this suggestion, τ longer or
shorter than 24 h necessitates a daily synchronisation to
external time cues (i.e. light–dark cycles) with a physio-
logical cost proportional to the deviation. This cost
might affect survival. We have recently shown that a
long-lived transgenic mouse has a τ of 24 h at a young
and old age compared with its short-lived genetic back-
ground whose τ is 23·5 h at young age and 25 h at old
age(19).

Circadian rhythms in metabolism

Obesity has become a serious and growing public health
problem(20). Attempts to understand the causes of obesity
and develop new therapeutic strategies have mostly
focused on the imbalance between energy expenditure
and energy intake. However, studies in the last decade
link energy regulation to the circadian clock at the
behavioural, physiological and molecular levels(21–24),
emphasising that the timing of food intake itself may
play a significant role in weight gain(25). Obesity, which
is characterised by the excess of fat accumulation in
white adipose tissue, has been related to irregular

sleep–wake schedules, high snacking frequency or social
jet lag known to disrupt the circadian clock(26).

The circadian clock regulates metabolism and energy
homeostasis in peripheral tissues(24,27,28). This is achieved
by mediating the expression and/or activity of certain
metabolic enzymes and transport systems(29,30) involved
in cholesterol metabolism, amino acid regulation, drug
and toxin metabolism, the citric acid cycle, and glycogen
and glucose metabolism(24,27,31–34). Moreover, lesions of
rat central clock in the SCN abolishes diurnal variations
in whole body glucose homeostasis(35), altering not only
rhythms in glucose utilisation rates but also endogenous
hepatic glucose production. Indeed, the SCN projects to
the pre-autonomic paraventricular nucleus neurons to
control hepatic glucose production(36). Similarly, glucose
uptake and the concentration of the primary cellular
metabolic currency ATP in the brain and peripheral tis-
sues have been found to fluctuate around the circadian
cycle(32,36,37). In addition, many hormones involved in
metabolism, such as insulin (31), glucagon(38), adiponec-
tin(39), corticosterone(40), leptin and ghrelin(41,42), have
been shown to exhibit circadian oscillation.

However, the most compelling connection between the
circadian clock and metabolism is achieved by genetic
knockout or mutated clock genes. Homozygous Clock
mutant mice have a greatly attenuated diurnal feeding
rhythm, are hyperphagic and obese, and develop a meta-
bolic syndrome of hyperleptinaemia, hyperlipidaemias,
hepatic steatosis and hyperglycaemia(22). Combination
of this mutation with the leptin knockout (ob/ob) resulted
in significantly heavier mice than the ob/ob phenotype(43),
emphasising the inter-relations between leptin and the
circadian clock(24,27,44). In addition, Bmal1−/− knockout
mice, similarly to Clock mutant mice, exhibit suppressed
diurnal variations in glucose and TAG as well as abol-
ished gluconeogenesis(45).

Moreover, several key metabolic factors have been
shown to participate in the core clock mechanism.
REV-ERBα, the negative regulator of Bmal1(46), is
induced during normal adipogenesis(47). The positive reg-
ulators of Bmal1 expression, retinoid-related orphan
receptor α and PPARα, regulate lipid metabolism(48,49).
In turn, CLOCK:BMAL1 heterodimer regulates the

Fig. 1. (Colour online) Effect of feeding diet regimens on circadian rhythms and health. SCN,
suprachiasmatic nuclei.
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expression of Rev-erbα, Pparα and Rora (retinoid-related
orphan receptor α)(21,46,48–51). PPARγ co-activator-1α, a
PPARγ transcriptional co-activator that regulates energy
metabolism, stimulates the expression of the clock genes,
Bmal1 and Rev-erbα, through co-activation of the retin-
oid-related orphan receptors; mice lacking PPARγ co-
activator-1α show abnormal diurnal rhythms of activity,
body temperature and metabolic rate(52). AMP-activated
protein kinase, a sensitive sensor of low energy and nutri-
ent state in the cell, leads to the degradation of PER and
CRY proteins(53,54). Degradation of the negative feed-
back loop leads to a phase advance in the circadian
expression pattern of clock genes in mice(55,56).
Mammalian target of rapamycin, which functions as a
sensor of cellular nutrient and energy levels, is regulated
by light in the SCN(57). One of the key factors in the
mammalian target of rapamycin pathway, protein 70
S6 kinase 1, rhythmically phosphorylates BMAL1 allow-
ing it to both associate with the translational machinery
and stimulate circadian oscillations of protein synthe-
sis(58). SIRT1, a key factor involved in metabolism and
life span, interacts directly with CLOCK and deacety-
lates BMAL1 and PER2(59–61).

Effect of restricted feeding on circadian rhythms

Limiting the time and duration of food availability
with no energy reduction is termed restricted feeding
(RF)(3,29,62,63). Animals which receive food ad libitum
every day at the same time for only a few hours, adjust
to the feeding period and consume their daily food
intake during that limited time(64–66). Restricting food
to a particular time of day has profound effects on the
behaviour and physiology of animals. Two to four
hours before the meal, the animals display food antici-
patory behaviour, which is demonstrated by an increase
in locomotor activity, body temperature, corticosterone
secretion, gastrointestinal motility and activity of digest-
ive enzymes(62,64,67,68), all are known output systems of
the circadian clock. RF is dominant over the SCN and
drives rhythms in arrhythmic and clock mutant mice
and animals with lesioned SCN, regardless of the light-
ing conditions(62,69–73). In most incidents, RF affects cir-
cadian oscillators in peripheral tissues, with no effect on
the central pacemaker in the SCN(3,29,63,71,72,74,75).
Thus, RF uncouples the SCN from the periphery(76).
We have shown that long-term daytime RF can increase
the amplitude of clock gene expression, increase expres-
sion of catabolic factors and reduce the levels of disease
markers leading to better health(77) (Fig. 1). RF diet
regimen resembles the month of Ramadan, as
Muslims abstain from eating and drinking during the
activity period. The average low levels of cholesterol
and TAG found during RF are in agreement with
those found during Ramadan(78,79). Aksungar
et al.(80) demonstrated that Ramadan fasting has
some positive effects on the inflammatory state and
on risk factors for CVD, such as C reactive protein
and homocysteine.

Effect of energy restriction on circadian rhythms

Calorie restriction (CR) refers to a dietary regimen low in
energy without malnutrition. CR restricts the amount of
energy to 60–75% of ad libitum-fed animals(81). It has
been documented that CR significantly extends the life
span of rodents by up to 50%(82,83). In addition to the
increase in life span, CR also delays the occurrence of
age-related diseases, such as cancer, diabetes and catar-
acts(83–86). Theories on how CR modulates ageing and
longevity abound, but the exact mechanism is still
unknown(83). The reduction of energy intake, and, as a
result, in oxidative stress, is considered the critical benefi-
cial factor in the CR diet regimen(83). It has been argued
that in mice, the oxidative stress theory can account for
age-related diseases, such as cancer, but not for longevity
per se(87).

As opposed to RF, CR entrains the clock in the
SCN(88–91), indicating that energy reduction could affect
the central oscillator. CR during the daytime affects the
temporal organisation of the SCN clockwork and circa-
dian outputs in mice under light–dark cycle. In addition,
CR affects photic responses of the circadian system, indi-
cating that energy metabolism modulates gating of
photic inputs in mammals(92). These findings suggest
that synchronisation of peripheral oscillators during
CR could be achieved directly due to the temporal eat-
ing, as has been reported for RF(71,74,75), or by synchro-
nising the SCN(88–90), which entrains the peripheral
tissues(93,94) (Fig. 1).

Effect of intermittent fasting on circadian rhythms

Intermittent fasting (IF) allows food to be available ad
libitum every other day. Similarly to energetically
restricted animals, IF-fed animals exhibit increased life
span as well as improved cardio- and neuro-protection
and increased resistance to cancer(95). One suggested
mechanism for its beneficial effects is the stimulation of
cellular stress pathways induced by the IF diet regi-
men(95,96). IF alters circadian rhythms depending on
the time of food introduction (Fig. 1). When food was
introduced during the light period, mice exhibited almost
arrhythmicity in clock gene expression in the liver.
Unlike daytime feeding, night-time feeding yielded
rhythms similar to those generated during ad libitum
feeding(97).

Effect of high-fat diet on circadian rhythms

Several studies have shown that a high-fat diet leads to
disruptions in locomotor activity in total darkness and
to elevated food intake during the rest phase under
light–dark conditions(98). These changes were also mani-
fested by disrupted clock gene expression in the hypo-
thalamus, liver and adipose tissue as well as altered
cycling of hormones in mice, rats and human sub-
jects(56,98–102). In addition, a high-fat diet induced a
phase delay in clock and clock-controlled genes(56,102)
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(Fig. 1). Combining high-fat diet with RF led to a leaner
phenotype although the energy intake was the same as
mice fed a low-fat diet(103). Altogether, these studies dem-
onstrate the importance of timing of feeding over its
content.

Effect of breakfast on circadian metabolism

Breakfast has previously been demonstrated to be of
major importance for the 24-h regulation of glucose(104).
Indeed, skipping breakfast has been shown to be asso-
ciated with weight gain and other adverse health out-
comes, including insulin resistance and increased risk
for developing type 2 diabetes. In contrast, consumption
of a high-energy breakfast and a low-energy dinner
resulted in a significant reduction of all-day postprandial
glycaemia and body weight(105–107). The importance of
breakfast has recently been demonstrated in type 2 dia-
betic patient who skipped breakfast and had increased
postprandial hyperglycaemia after both lunch and dinner
in association with impaired insulin response(108).

Conclusions

Disruptions in clock genes and/or circadian rhythms pro-
mote ageing and shorten life span, whereas appropriate
resetting of circadian rhythms leads to well-being and
increased longevity. Life span extension has been a
goal of research for several decades. CR, IF and RF
reset circadian rhythms and promote better health
(Fig. 1). In addition, breakfast consumption has been
shown to affect all-day metabolism. Therefore, it is
necessary to increase our understanding of circadian
regulation over metabolism and longevity and to design
new therapies based on this regulation.
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