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RADIALLY SYMMETRIC SOLUTIONS OF A CLASS OF
SINGULAR ELLIPTIC EQUATIONS

by JUAN A. GATICA*f, GASTON E. HERNANDEZ and P. WALTMANf

(Received 17th August 1988)

The boundary value problem

/(0)=0
MD=o

is studied with a view to obtaining the existence of positive solutions in C'([0, l])nC2((0,1)). The function /
is assumed to be singular in the second variable, with the singularity modeled after the special case
f(x,y) = a(x)y-",p>0.

This boundary value problem arises in the search of positive radially symmetric solutions to
Au + /(|x|,u)=0 xeQ

u/r=o
where fi is the open unit ball in R", centered at the origin, F is its boundary and |x| is the Euclidean norm of
x.

1980 Mathematics subject classification (1985 Revision): 35J65

1. Introduction

Radial symmetry occurs naturally in a variety of applied and geometric problems.
Even when the problem is not inherently symmetric such solutions are often sought as
the beginning of a perturbation argument (see also [9] for a different type of equation).
Their place in the theory has taken new importance in view of the recent results of
Gidas, Ni and Niremberg [6] and work in the direction of determining the existence of
positive radially symmetric solutions to equations of the form

Au + f(\x\,u) = 0,

where xelR* and \x\ is the Euclidean norm, has appeared in [1,3].
This paper deals with the existence and uniqueness of radially symmetric solutions of

a nonlinear boundary value problem

Au + /(|x|,u) = 0, xeQ (1.1)

u/r=o

where Q is open unit ball in RN and T is its boundary. The special case /(|x|,u) =
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a(|x|)u~p, with p in the open interval (0,1), was considered in [5]. This type of
nonlinearity for positive and negative exponents is well documented in physics [1, 2, 7,
8, 11, 12] (some of these papers base their applications on ordinary differential
equations). The negative exponent gives a nonlinear singularity which seems to thwart
the usual perturbation schemes or the more standard fixed point arguments; it should
be noted, however, that singular problems of this type, for ordinary differential
equations, have been studied in [7, 8, 10, 11], among others.

The search for radially symmetric solutions of (1.1) leads to the following problem in
ordinary differential equations:

^Z± y) = 0 (1.2)

= 0

which is the problem to be studied in this paper.
Concerning the function f(x, y), the following hypothesis will be adopted throughout:

(H-l) / : [0,1) x (0, oo)-»(0, oo) is continuous.

(H-2) f(x, y) is decreasing in y for each fixed x and integrable over [0,1] for each fixed
y-

(H-3)

lim f(x, y) = oo
y->0 +

y~* oo

both limits being uniform on compact subsets of (0,1).

(H-4) For every 0>O

$f(x,0(l-x))dx<oo.
o

Note that in the case f(x,y) = y~p, 0<p< 1, the integral condition is trivially satisfied.
In the case when f{x,y) = a(x)y~p, (H-4) holds for all 0>O if and only if it holds for
0=1.

By a solution of (1.2) we mean a function <f> in (^([O, l])nC2((0,l)) which satisfies the
boundary conditions and satisfies the differential equation on (0,1). Furthermore, we are
only interested in the existence of solutions to (1.2) which are positive on the interval
[0,1).
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The principal results take the form:

Theorem 1.1. Let (H-l)-(H-4) hold. Then Problem (1.2) has at least one positive
solution. Furthermore, the set of positive solutions is bounded in the uniform norm.

Theorem 1.2. //, in addition to (H-l)-(H-4), f{x,y) is locally Lipschitzian and strictly
decreasing in y then (1.2) has exactly one positive solution.

In the discussion that follows we will consider only the case n = 2 but the general case
follows in the same way. The basic idea is to convert Problem (1.2) into an integral
equation of the form

I

= \G{x,t)f{t,y{t))dt (1.3)
o

and seek a fixed point in an appropriate setting. Unfortunately, the fact that the
function f(x, y) is not defined for _y = 0 precludes a direct approach. Instead, one will
replace f{x, y) by fn(x, y) where /„ has a certain "geometric" property. It will be possible
to find a fixed point </>„ for (1.3) with / replaced by /„. The crucial arguments then
involve estimates of the set of fixed points {<£„: n = l,2,...} from which a fixed point of
(1.3) is obtained.

2. The set of fixed points

Let

-tln(r),
-tln(x), t ^ x ^

This is the Green function for the boundary value problem

y(O)=o

For N > 2 one would use

1

JV-2
1

N-2

tN~l(t2-N-l)
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Let X be the Banach space of continuous functions defined on [0,1] with the sup norm
and K the positive cone in X.

Define the set D by

D = {<p\<peX, 30>O3<p(x)^0(l-x),xe[O,1]}

and an operator T:D-*K by

T<p(x) = \G(x,t)f(t,<p(t))dt
o

with Tcp(0) defined as an improper integral. This operator is continuous and for cp e D

(Tcp)'(x) = - - {tf(t, <p(t)) dt, x e (0,1]
X o

and

= 0.

If cpeD, Tcp is a strictly decreasing function and (T<p)'(l)<0, so there exists afl>0 such
that (7» (x )^0 ( l -x ) . Thus T.D^D. (See [5] for a similar computation.) It follows
also that Tcp is twice differentiable on (0,1) with

(Tcp)"(x)=\ J tf(t, cp{t)) dt-f(x, cp(x)).
X 0

Lemma 2.1. If cpeD such that Tcp = cp, then cpeC([0, l])nC2((0,1)), and is a solution
of (1.2). Furthermore, if cp is any positive solution of (1.2) in C'([0,l])nC2((0,l)), then
cpeD and Tcp = cp.

Thus Theorem 1.1 will be proved if a fixed point of T can be found in D. If cpi cp2eD
then the closed order interval, denoted {cp^cp^}, is also contained in D and T is
compact on (cpucp2) (Ascoli).

Define a sequence of functions tpn on [0,1] by

Note that i^n(x)>0 for xe[0,1), i//n+1(x)^ipn(x) and lim,,^ î n(x) = 0, uniformly on
compact subsets of (0,1). Given the sequence {iAn(x)} define a sequence of functions of
two variables by

L(x, y) = f(x, max (y, i//n(x))
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and a sequence of mappings Tn:K->K by

(Tn<p)(x) = \G(x,t)fn(t,<p(t))dt.
o

Note that /„:((), 1) x [0,oo)->((), oo) and TnK<^D, n= 1,2,... . Tn is compact (since (7>) '
is bounded on any bounded subset of K), Tn(0)^0, and

Lemma 2.2 [5]. Let X be a Banach space, K a normal cone in X, D a subset of K
such that if x,y are elements of D, x^y, then <x,y> is contained in D. Let T:D-*K be a
decreasing mapping which is compact on any closed order interval contained in D. If there
exists xoeD such that T2x0 is defined and Tx0, T2x0 are such that T x o ^ x o , T 2 x 0 ^ x 0 ,
then T has a fixed point.

Since the nonnegative cone in X is normal, Lemma 2.2 implies that Tn has a fixed
point, (pn, which belongs to K. The hypotheses on / yield that <pn(x)>0 for xe[0,1). It
is from this sequence of fixed points of the operators Tn that a solution will be obtained.
The important properties of the set of fixed points {<pn} are contained in the next
section.

3. Two properties of the set of fixed points

In this section we provide two technical lemrnas which are important in carrying out
the proof of Theorem 1.1.

Lemma 3.1. The set of fixed points {cpn} satisfies

Lemma 3.2. There exists an R > 0 such that \\cpn\\ g R, n = 1,2,... .

Proof of Lemma 3.1. Suppose to the contrary <pn+l(0)<(pn(0) for some n, and hence
(pn+l{x)<(pn(x) immediately to the right of zero, say on [0,3). Since

^ - /„ + ,(X, <?„(

^ - fn+i(x,(pn+i{x)) = (p'^+l{x), xe[0,5),

and (p'n(0) = <p'n + l(0), it follows that (pn+l(x)<<pn(x) on [0,1]. However, since

<pn(x) = \G(x,t)fn(x,(pn(x))dx
o

I

S J G(x, t)fn+,(x, <pn
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this is a contradiction.

Proof of Lemma 3.2. Suppose to the contrary that

l im \\(pn\\ = l im (pn(0) = oo.
n-* oo n-* oo

Let un(x) = x(pn(x) and note that un is a function which is concave down with
Mn(0) = un(l) = 0, u'n(0) = 9n(0)- As in [10] (see also [4]), «„(*)^««„(*„) for x e [ a , l - a ] for
any a between 0 and 1/2, where zn is the unique maximum of un(x). For xe[a, 1 —a],

so that limn_00||wn|| = oo. By (H-3) one can choose A/1 = A/1(a) such that f{x,y)^l for
xe[a, 1— a] and y^N^ Since 11wn11 —• oo for each fixed a there exists iV2(<*) such that
(a/1 —<x)j|Mn||̂ Aft for n^N2, and hence ^(xJ^A/! forxe[a, 1— a] for n^N2.

From the definition of <pn one has that

<pn(x) = 7>n(x)

G(x,t)f{t,<pn{t))dt.
1 - a

The middle integral is easily estimated for n sufficiently large (by the above argument)
by M(a)[l —2a] where M(a) is the maximum of G on [a, 1 — a] x [a, 1 —a].

On [1—a, 1] it follows that un(x)^(l— x)/a)u(l— a) since u is concave down. Hence:

, , , 1—a ,. v/1— x
( ) ^ ( 1 )

1-a/ a „ , , \ / l-x

for n^
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Thus

f G(x,t)f(t,(pn(t))dt^ I G(x,t)f(t,K(l-t))dt
l-x l-x

^\G(x,t)f{t,K(1-t))dt

< 0 0

by hypothesis.
To estimate the integral on [0, a] let us recall that by Lemma 3.1 we have

(pn{O)^(pn+l(O) and we are assuming that rimn_00<pn(0) = oo. We will assume, without
loss of generality, that there exists n0>0 such that <pn(0)> n0 + 1 and for each « e N we
will let r\n be the unique element of (0,1) for which <pn{t]n) = 1. If it should happen that
infn6N »/„>() then we pick a = infneN^n and observe that by the continuity of / , f(t, 1)
must be bounded (as a function of t) in [0, a] and therefore, for n e N

J G(x, t)f(t, <pn(t)) dt g J G(x, t)f(t, 1) dt,
0 0

obtaining the contradiction that the functions q>n must be uniformly bounded.
The only case left is when infneN>jn=O. In this case, again by going to a subsequence

if necessary, it may be assumed without loss of generality that t]n->0 monotonically.
Then the following must occur:

<Pn + - <

Thus:
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and

x<p'm(x)Z-]tf(t,l)dt, fo
o

Thus:

Observe that c is independent of n. Now one has:

for some yn between 0 and r\n. Since (pn(0)>no + 1, we get

or

Choosing n so large as to have {no/r]n)>c yields a contradiction.
Since this was the last remaining case, the proof of Lemma 3.2 is complete.

4. Proof of the main results

Proof of Theorem 1.1. Note first that

= )G(x,t)fn(t,q>n{t))dt
0

*lG(x,t)fm{t,R)dt
o
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where R > 0 is given by Lemma 3.2.
Define #":[(), l]->[0, oo] by

and note that 3C e D and hence there exists a 90 > 0 such that %(x) 2; 00{ 1 — x). Abusing
notation, we let R denote the constant function on [0,1] so that (geo,R} is an order
interval where geo(x) = 6o(l-x). Clearly <g6o,K> is contained in D and geo^(pn^R,
n = l , 2 , . . . . Since T is compact on order intervals contained in D, {T\p,,}™=1 contains a
convergent subsequence (which we again label {Tcpn}"=1) so

l im Tq>n = <p*,

with (p*eD.
This (p* will be a solution to (1.2). One must show that

Since \imn_aoT(pn = <p*, one needs only that (pn(x) converges to <p*(x). This is contained
in the next lemma whose proof we defer until the end of the proof of Theorem 1.1.

Lemma 4.1. (pn(x) converges to cp*(x) (uniformly on compact subsets of (0,1)).

Proof of Theorem 1.1 (continued). Applying T to cp* yields that

T<p*(x) = \G(x,t)f(t,<p*(i))dt
o

= \G(x,t)f(t,\imcpn(t))dt
o

= \G(x,t)\imf(t,(pn(t))dt.
0 n-* oo

Since q>n{x)^.60(\ —x), f(t,y) is decreasing in y, and for each fixed y,

]G(x,t)f(t,60(l-t))dt<oo,
o
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the dominated convergence theorem allows one to take the limit outside the integral
sign. Hence,

7>*(x)=lim \G{x,i)f(t,<pn{t))dt
n-* oo 0

= lim T<pn(x)

= cp*(x).

Thus, q>* is the desired fixed point of T and the proof of existence in Theorem 1.1 is
complete (as soon as a proof of Lemma 4.1 is given).

The proof of the boundedness (in the supremum norm) of the set of positive solutions
proceeds in the same way as the proof of Lemma 3.2.

Proof of Lemma 4.1. Let Cs(0,1) be compact and let e>0. Pick ae(0,1/2) such
that Cs [a , 1 — a] and such that

-2[ln(a)ftf(t,90(l-t))dt+ ] tIn(t)f(t,0O( 1 -t))df]<e.

Pick M such that for n ^ M ij/n(x) ^60{l- x), x e [a, 1 - a]. For n ̂  M and x e [a, 1 - a]
one sees that

Tcpn - <pn(x) = J G(x, t) U(U <pn(t)) - f(t, max (<pn(t), ^
o

= I G(x, t) lf(t, (pn(t)) - f(t, max (<?„((), ^
o

Thus:

\T(pn(x)-(pn(x)\^2\]G(x,t)f(t,cpn(t))dt+ } G(x,t)f(t,cpn(t))dt~\
|_0 l - a J

J G(x,t)/(t,0o( 1 -0 ) *1 -
J
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Since xe [a, 1 —a], for te(0,a] we must have

and for te[l — a, 1],

G(x,r)=-rln(r).

Thus:

17>n(x) - cpn(x) | g - 2 Tin (a) ] tf(t, 90( l-t))dt+ j t i n (t)f(t, 60( 1 - 1 ) ) </t

L 0 1 - a

<£.

Since Cs(0,1) was an arbitrary compact set, the proof of Lemma 4.1 is complete.

Proof of Theorem 1.2. Suppose that there are two distinct solutions of (1.2), labelled
(Pi(x) and <p2(x). Observe that the Lipschitz condition implies that the initial value
problem is well posed for any xoe(0,1) and

This implies that q>l is not equal to q>2 on any interval. Furthermore, q>l(x)xp2{x) for
all xe(0,1) is not possible, since

<j»1(x) = jG(x,t)/(r,q»1(O)A
o

<]<Hx,t)f(t,<p2(t))dt =
0

Hence <px(x) and <p2(x) must cross in (0,1). Let 0<xl^x2^\ be any two consecutive
"crossings" with (p2(x)><py(x) for X j < x < x 2 . Then if w(x) = q>2(x)~<Pi(x) we have that
w(x)>0 on (x,,x2) and w(x,) = w(x2) = 0, concluding that there must exist a point of
maximum ^e(x, ,x2) . At any such point of maximum:

>o

https://doi.org/10.1017/S0013091500018101 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018101


180 JUAN A. GATICA, GASTON E. HERNANDEZ AND P. WALTMAN

and this contradicts the fact that E, is a maximum.
This completes the proof of Theorem 1.2.

REFERENCES

1. F. V. ATKINSON and L. A. PELETIER, Ground states of —Au = f(u) and the Emden-Fowler
equation, Arch. Rational Mech. Anal. 93 (1986), 103-107.

2. J. D. DIAZ, J. M. MOREL and L. OSWALD, An elliptic equation with singular nonlinearity,
Comm. Partial Differential Equations 12 (1987), 1333-1344.

3. L. ERBE and K. SCHMITT, On radial solutions of some semilinear elliptic equations, Diff. and
Int. Equations 1 (1988), 71-78.

4. J. A. GATICA, V. OLIKER and P. WALTMAN, Iterative procedures for nonlinear second order
boundary value problems (Emory University preprint, 1987).

5. J. A. GATICA, V. OLIKER and P. WALTMAN, Singular nonlinear boundary value problems for
second order differential equations, J. Differential Equations 79 (1989), 62-78.

6. B. GIDAS, WEI-MING NI and L. NIREMBERG, Symmetry of positive solutions of nonlinear
elliptic equations in R", Adv. Math Suppl. Stud. 7A (1981), 369-402.

7. A NACHMAN and A. CALLEGARI, A nonlinear boundary value problem in the theory of
pseudoplastic fluids, SI AM J. Appl. Math. 38 (1980), 275-281.

8. R. D. NUSSBAUM and C. A. STUART, A singular bifurcation problem, J. London Math. Soc. (2)
14(1976), 31-38.

9. V. I. OLIKER, Near radially symmetric solutions of an inverse problem in geometric optics,
Inverse Problems 3 (1987), 743-756.

10. C. A. STUART, Concave solutions of singular non-linear differential equations, Math. Z. 136
(1974), 117-135.

11. S. TALIAFERRO, A nonlinear singular boundary value problem, Nonlinear Anal. 3 (1979),
897-904.

12. J. S. W. WONG, On the generalized Emden-Fowler equation, SI AM Rev. 17 (1975), 339-360.

J. A. GATICA and G. E. HERNANDEZ

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF IOWA

IOWA CITY, IOWA 52242

U.S.A.

P. WALTMAN
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

EMORY UNIVERSITY

ATLANTA, GEORGIA 30322
U.S.A.

https://doi.org/10.1017/S0013091500018101 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018101

