On γ-transformations of series

By Tapeshwari Prasad Nigam.

Received 28th June, 1939. Read 25th November, 1939.
The theorems given here deal with the efficiency, mutual consistency, and regularity of γ-transformations ${ }^{1}$.
§1. Theorem 1. The necessary and sufficient conditions that γ^{-} matrices are efficient for all divergent series whose partial sums are bounded, are

$$
\begin{equation*}
\lim _{k \rightarrow \infty} g_{k}(a)=0,(a \text { fixed }) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \sum_{k=1}^{\infty}\left|\Delta g_{k}(a)\right|=0 \tag{2}
\end{equation*}
$$

where $\Delta g_{k}(a) \equiv g_{k}(a)-g_{k+1}(a)$.
Since $\left(g_{k}(a)\right)$ is a γ-matrix we have

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|\Delta g_{k}(a)\right| \leqq M \text { independently of } a \tag{3}
\end{equation*}
$$

$\lim _{a \rightarrow \infty} g_{k}(a)=1$ for each fixed k.
The proof of the theorem is based on the following lemma:-
The necessary and sufficient conditions that $\Sigma d_{k} c_{k}$ may be convergent whenever $s_{k}=\sum_{i=1}^{k} c_{i}$ is bounded are

$$
\begin{align*}
& \lim _{k \rightarrow \infty} d_{k}=0 \tag{5}\\
& \sum_{k=1}^{\infty}\left|\Delta d_{k}\right| \text { is convergent } . \tag{6}
\end{align*}
$$

Since

$$
\sigma_{n} \equiv \sum_{k=1}^{n} d_{k} c_{k:}=\sum_{k=1}^{n-1} s_{k}\left(\Delta d_{k}\right)+s_{n} d_{n},
$$

the conditions are obviously sufficient. The necessity of (6) is established as in Abel's Lemma ${ }^{2}$. If we take $c_{k}=(-1)^{k}$, we see

[^0]that $\sum_{k=1}^{\infty} d_{k}(-1)^{k}$ is divergent when $\lim _{k \rightarrow \infty} d_{k} \neq 0$. (5) is therefore
necessary.
Thus
$$
\sigma \equiv \lim _{n \rightarrow \infty} \sigma_{n}=\sum_{k=1}^{\infty}\left[\Delta d_{k}\right] s_{k} .
$$

Hence for particular values of a we have

$$
\begin{equation*}
\gamma(a) \equiv \sum_{k=1}^{\infty} g_{k}(a) c_{k}=\sum_{k=1}^{\infty}\left[\Delta g_{k}(a)\right] s_{k} \tag{7}
\end{equation*}
$$

$\lim _{a \rightarrow \infty} \gamma(a)$ exists by (2), s_{k} being bounded. The conditions are therefore sufficient.
(1) is necessary in view of (5) already proved necessary. We use (7) to prove the necessity of (2). If (2) does not hold, we can select a real increasing sequence $\left\{a_{n}\right\}$ such that $\sum_{k=1}^{\infty}\left|\Delta g^{\prime}{ }_{k}\left(a_{n}\right)\right|$ or $\sum_{k=1}^{\infty}\left|\Delta g^{\prime \prime}{ }_{k}\left(a_{n}\right)\right|$ (or both) is greater than $4 \lambda>0$, where $g_{k}(a)=g_{k}^{\prime}(a)+i g_{k}^{\prime \prime}(a)$. Suppose the first.

Put $\Delta g_{k}^{\prime}\left(a_{n}\right)=a_{n k} . \quad$ Then $\sum_{k=1}^{\infty}\left|a_{n k}\right|>4 \lambda . \quad$ Choose a value n_{1} of n and determine, by (3), p_{1} such that

$$
\sum_{k=p_{1}+1}^{\infty}\left|a_{n_{1} k}\right|<\lambda / 2
$$

We will construct a real sequence s_{k} such that $\left|s_{k}\right| \leqq 1$. Suppose $s_{k}=\operatorname{sgn}\left(a_{n_{1} k}\right), \quad\left(1 \leqq k \leqq p_{1}\right)$. Then $\left|T_{n_{1}}\right|>3 \lambda$ where $T_{n}=R\left\{\gamma\left(a_{n}\right)\right\}$. Next choose, by (4), $n_{2}>n_{1}$ such that $\sum_{k=1}^{p_{1}}\left|a_{n_{2} k}\right|<\lambda / 2$ and determine, as before, $p_{2}>p_{1}$ such that $\sum_{k=p_{i}+1}^{\infty}\left|a_{n_{2} k}\right|<\lambda / 2$.

Take $s_{k}=0$ for $p_{1}<k \leqq p_{2}$. Then $\left|T_{n_{2}}\right|<\lambda$. Next choose $n_{3}>n_{2}$ such that

$$
\sum_{k=1}^{p_{2}}\left|a_{n_{3} k}\right|<\lambda / 2
$$

and determine $p_{3}>p_{2}$ such that

$$
\sum_{k=p_{3}+1}^{\infty}\left|a_{n_{\mathrm{s}} k}\right|<\lambda / 2
$$

Take $s_{k}=\operatorname{sgn}\left(\alpha_{n_{3} k}\right)$ for $p_{2}<k \leqq p_{3}$. Now

$$
T_{n_{3}}=\sum_{k=1}^{p_{2}} \alpha_{n_{3} k} s_{k}+\sum_{k=p_{z}+1}^{p_{3}}\left|\alpha_{n_{3} k}\right|+\sum_{k=p_{3}^{-}+1}^{\infty} \alpha_{n_{3} k} s_{k} .
$$

Therefore

$$
\left|T_{n_{3}}\right| \geqq \sum_{k=1}^{\infty}\left|a_{n_{s} k}\right|-2 \sum_{k=1}^{p_{n}}\left|a_{n_{3} k}\right|-2 \sum_{k=p_{3}+1}^{\infty}\left|a_{n_{\mathrm{a}} k}\right|>2 \lambda
$$

Continuing in this way we have $\left|T_{n_{r}}\right|>2 \lambda$ for odd r and $\left|T_{n_{r}}\right|<\lambda$ for even r. Therefore $\gamma\left(a_{n}\right)$ diverges and (2) is necessary.

Theorem 2. Every indefinitely divergent series of complex constants has for its generalised sum any given complex constant.

By an indefinitely divergent series we mean a series for which there are at least 2 distinct limiting values of its partial sums s_{k}. Suppose L^{\prime} and $L^{\prime \prime}$ are any two limiting values of s_{k}.

Let the given complex constant be s. Take suffixes $k^{\prime}{ }_{n}, k^{\prime \prime}{ }_{n}\left(>k_{n}^{\prime}\right)$ such that $s_{k^{\prime} n} \rightarrow L^{\prime}$ and $s_{k^{\prime \prime} n} \rightarrow L^{\prime \prime}$, where $s_{k^{\prime \prime}{ }_{n}} \neq s_{k^{\prime} n}$, and determine the γ-matrix by putting

$$
\begin{aligned}
g_{n k} & =1 & & \left(1 \leqq k \leqq k_{n}^{\prime}\right) \\
& =\left(s-s_{k_{n}^{\prime}}\right) /\left(s_{k_{n}^{\prime \prime}}-s_{k_{n}^{\prime}}\right) & & \left(k_{n}^{\prime}<k \leqq k_{n}^{\prime \prime}\right) \\
& =0 & & \left(k>k_{n}^{\prime \prime}\right) .
\end{aligned}
$$

Then

$$
\sum_{k=1}^{\infty} g_{n k} c_{k}=s_{k_{n}^{\prime}}+\left\{\left(s-s_{k_{n}^{\prime}}\right) /\left(s_{k^{\prime \prime}}-s_{k_{n}^{\prime}}\right)\right\}\left(s_{k^{\prime \prime} n}-s_{k_{n}^{\prime}}\right)=s
$$

As an example of a definitely divergent series that can be evaluated to any complex constant s we take the series

$$
1^{r}+2^{r}+3^{r}+\ldots, \quad r=0,1,2, \ldots
$$

and the γ-matrix

$$
\begin{aligned}
g_{n k} & =1-\frac{k S_{n-1}^{(r)}}{\overline{S_{n-1}^{(r+1)}}} & & (1 \leqq k<n) \\
& =\frac{s}{n^{r}} & & (k=n) \\
& =0 & & (k>n),
\end{aligned}
$$

where $S_{n}^{(r)}=1^{r}+2^{r}+3^{r}+\ldots+n^{r}$.
§2. Let G and G^{\prime} be two γ-matrices which evaluate the divergent series Σc_{k}.

Suppose that

$$
\begin{align*}
\gamma_{n} & =\sum_{k=1}^{x} g_{n k} c_{k} \rightarrow \gamma \tag{8}\\
\gamma_{n}^{\prime} & =\sum_{k=1}^{\infty} g_{n k}^{\prime} c_{k} \rightarrow \gamma^{\prime} \tag{9}
\end{align*}
$$

Let us find conditions that $\gamma=\gamma^{\prime}$.
I. If ($g_{n k}$) has an inverse with respect to c_{k}, that is, if (8) can be solved for c_{k},
(9) becomes

$$
\begin{align*}
c_{k} & =\sum_{m} \bar{g}_{k m} \gamma_{m} \\
\gamma_{n}^{\prime} & =\sum_{k} g_{n k}^{\prime}{ }_{m} \sum_{m} \bar{g}_{k m} \gamma_{m} . \tag{10}
\end{align*}
$$

If the order of summation can be changed, we have

$$
\gamma_{n}^{\prime}=\sum_{m}\left(\sum_{k} g_{n k}^{\prime} \bar{g}_{k m}\right) \gamma_{m},
$$

and so we have constructed a sequence transformation leading from one of the transforms to the other. Now the necessary and sufficient condition that the convergent sequence $\left\{\gamma_{m}\right\}$ should be transformed into another tending to the same value is that $a_{n m}=\sum_{k} g^{\prime}{ }_{n k} \dot{g}_{k m}$ be a T-matrix.

We notice that (8) can be solved for c_{k} if $\left(g_{n k}\right)$ is row-finite and has a row-finite left reciprocal. If $\left(g_{n k}^{\prime}\right)$ is also row-finite, the order of summation in (10) can be changed. Hence
Theorem 3. If (i) $\left(g_{n k}\right)$ and $\left(g_{n k}^{\prime}\right)$ are row-finite and (ii) ($g_{n k}$) has rowfinite left reciprocal $\left(\bar{g}_{k m}\right)$, then $\left(g_{n k}\right)$ and $\left(g_{n k}^{\prime}\right)$ are mutually consistent (for every c_{k}) if and only if $\left(\sum_{k=1}^{\infty} g_{n k}^{\prime} \bar{g}_{k m}\right)$ is a T-matrix.
Corollary 3.1. When $\left(g^{\prime}{ }_{n k}\right)$ is a reciprocal of $\left(g_{n k}\right)$, the theorem shows that the matrix square of $\left(g_{n k}^{\prime}\right)$ should be a T-matrix.
Corollary 3.2. The necessary and sufficient condition that G^{\prime} includes G is that $\left(\sum_{k=1}^{\infty} g^{\prime}{ }_{n k} \bar{g}_{k m}\right)$ is a T-matrix, G^{\prime} and G being subject to the conditions of the theorem.
Corollary 3.3. When G and G^{\prime} satisfy the conditions of the theorem, they are equivalent if and only if $\left(\sum_{k=1}^{\infty} g_{n k}^{\prime} \bar{g}_{k m}\right)$ and $\left(\sum_{k=1}^{\infty} g_{n k} \bar{g}_{k m}^{\prime}\right)$ are T-matrices.
II. Whether or not $\left(g_{n k}\right)$ has an inverse with respect to c_{k}, we proceed as follows:-

We transform the sequence $\left\{\gamma^{\prime}{ }_{n}\right\}$ by a T-matrix A. The transformed sequence is

$$
\begin{align*}
\gamma_{n}^{\prime \prime} & =\sum_{m} a_{n m} \gamma_{m}^{\prime} \rightarrow \gamma^{\prime \prime} \\
& =\sum_{m} a_{n m} \sum_{k} g_{m k}^{\prime} c_{k} . \tag{11}
\end{align*}
$$

If the order of summation can be changed, we have

$$
\gamma_{n}^{\prime \prime}=\sum_{k}\left(\sum_{m} a_{n m} g_{m k}^{\prime}\right) c_{k}
$$

Now $\gamma^{\prime \prime}$ is necessarily equal to γ^{\prime} and $\gamma=\gamma^{\prime \prime}$ if

$$
\begin{equation*}
\left(g_{n k}\right)=\left(\underset{m}{\sum} a_{n m} g_{m k}^{\prime}\right) \tag{12}
\end{equation*}
$$

The order of summation in (11) can be changed if A and G^{\prime} are row-finite and therefore, from (12), G must also be row-finite. Hence Theorem 4, If G, G^{\prime} are row-finite, G and G^{\prime} are mutually consistent if $G=A G^{\prime}$, where the product is of the matrix kind and A is a row-finite T-matrix.

Corollary 4.1. Gincludes G^{\prime} if $G=A G^{\prime}, G, G^{\prime}$ und A being subject to the conditions of the theorem.
Corollary 4.2. G and G^{\prime} are equivalent if $G^{\prime}=A G^{\prime}$ and $G^{\prime}=B G$, where G and G^{\prime} are row-finite γ-matrices, A and B row-finite T-matrices. If we transform γ_{n} and γ_{n}^{\prime} by T-matrices B and B^{\prime} respectively, we easily get as in II above, the following theorem:-
Theorem 5. If G and G^{\prime} are row-finite γ-matrices and B and B^{\prime} are row-finite T-matrices, G and G^{\prime} are mutually consistent if $B G=B^{\prime} G^{\prime}$, the product on each side being a matrix one.

Since $\left(g_{n k}-g_{n, k+1}\right)$ and $\left(g_{n k}^{\prime}-g_{n, k+1}^{\prime}\right)$ are T-matrices ${ }^{1}$, we have Corollary 5.1. If two row-finite γ-matrices $\left(g_{n k}\right)$ and $\left(g_{n k}^{\prime}\right)$ satisfy

$$
\sum_{l}\left(g_{n l}-g_{n, l+1}\right) g_{l k}^{\prime}=\sum_{l}\left(g_{n l}^{\prime}-g_{n, l+1}^{\prime}\right) g_{l k}
$$

they are mutually consistent for every series they evaluate.
Theorem. 6. The necessary and sufficient conditions that a row-finite γ-matrix $\left(g_{n k}\right)$ should be regular are that (i) $\left(\sum_{k=1}^{\infty} g_{n k} \bar{g}_{k, m+1}\right)$, and (ii) $\left(\sum_{k=1}^{\infty} g_{n, k+1} \bar{g}_{k+1, m+1}\right)$ are T-matrices.

This follows from Corollary 3.3.
I have great pleasure in expressing my thanks to Dr P. Dienes for his interest during the preparation of this note.
${ }^{1}$ See VII, p. 399 of D after noting that G and G are row-finite.

Birkbeck College

London.

[^0]: ${ }^{1}$ All these terms and others used here are explained in P. Dienes, The Taylor Series (Oxford), 1931, Chapter 12. A knowledge of this chapter is assumed. The bork will be referied to as D.
 ${ }^{2}$ See p. 394 of D.

