On γ -transformations of series

By TAPESHWARI PRASAD NIGAM.

Received 28th June, 1939. Read 25th November, 1939.

The theorems given here deal with the efficiency, mutual consistency, and regularity of γ -transformations¹.

§1. THEOREM 1. The necessary and sufficient conditions that γ -matrices are efficient for all divergent series whose partial sums are bounded, are

(1)
$$\lim_{k \to \infty} g_k(a) = 0, \ (a \text{ fixed})$$

(2)
$$\lim_{a\to\infty} \sum_{k=1}^{\infty} |\Delta g_k(a)| = 0,$$

where $\Delta g_k(a) \equiv g_k(a) - g_{k+1}(a)$.

Since $(g_k(a))$ is a γ -matrix we have

(3)
$$\sum_{k=1}^{\infty} |\Delta g_k(a)| \leq M \text{ independently of } a,$$

0,

(4)
$$\lim_{a \to \infty} g_k(a) = 1 \text{ for each fixed } k.$$

The proof of the theorem is based on the following lemma:-

The necessary and sufficient conditions that $\sum d_k c_k$ may be convergent

whenever $s_k = \sum_{i=1}^k c_i$ is bounded are

(5)
$$\lim_{k \to \infty} d_k =$$

(6)
$$\sum_{k=1}^{\infty} |\Delta d_k| \text{ is convergent.}$$

Since

$$\sigma_n \equiv \sum_{k=1}^n d_k c_k = \sum_{k=1}^{n-1} s_k \left(\Delta d_k\right) + s_n d_n,$$

the conditions are obviously sufficient. The necessity of (6) is established as in Abel's Lemma². If we take $c_k = (-1)^k$, we see

² See p. 394 of D.

¹ All these terms and others used here are explained in P. Dienes, *The Taylor Series* (Oxford), 1931, Chapter 12. A knowledge of this chapter is assumed. The book will be referred to as D.

that $\sum_{k=1}^{\infty} d_k (-1)^k$ is divergent when $\lim_{k \to \infty} d_k \neq 0$. (5) is therefore necessary.

Thus

$$\sigma \equiv \lim_{n \to \infty} \sigma_n = \sum_{k=1}^{\infty} [\Delta d_k] s_k.$$

Hence for particular values of a we have

(7)
$$\gamma(a) \equiv \sum_{k=1}^{\infty} g_k(a) c_k = \sum_{k=1}^{\infty} [\Delta g_k(a)] s_k.$$

 $\lim_{a \to \infty} \gamma(a) \text{ exists by (2), } s_k \text{ being bounded.} \quad \text{The conditions are therefore sufficient.}$

(1) is necessary in view of (5) already proved necessary. We use (7) to prove the necessity of (2). If (2) does not hold, we can select a real increasing sequence $\{a_n\}$ such that $\sum_{k=1}^{\infty} |\Delta g'_k(a_n)|$ or $\sum_{k=1}^{\infty} |\Delta g''_k(a_n)|$ (or both) is greater than $4\lambda > 0$, where $g_k(a) = g'_k(a) + ig''_k(a)$. Suppose the first.

Put $\Delta g'_k(a_n) = a_{nk}$. Then $\sum_{k=1}^{\infty} |a_{nk}| > 4\lambda$. Choose a value n_1 of n

and determine, by (3), p_1 such that

$$\sum_{k=p_1+1}^{\infty} |\alpha_{n_1k}| < \lambda/2.$$

We will construct a real sequence s_k such that $|s_k| \leq 1$. Suppose $s_k = sgn(a_{n_1k})$, $(1 \leq k \leq p_1)$. Then $|T_{n_1}| > 3\lambda$ where $T_n = R\{\gamma(a_n)\}$. Next choose, by (4), $n_2 > n_1$ such that $\sum_{k=1}^{p_1} |a_{n_1k}| < \lambda/2$ and determine,

as before, $p_2 > p_1$ such that $\sum_{k=p_2+1}^{\infty} |a_{n_2k}| < \lambda/2$.

Take $s_k = 0$ for $p_1 < k \leq p_2$. Then $|T_{n_2}| < \lambda$. Next choose $n_3 > n_2$ such that

$$\sum_{k=1}^{p_2} |\alpha_{n_s k}| < \lambda/2,$$

and determine $p_3 > p_2$ such that

$$\sum_{k=p_3+1}^{\infty} |a_{n,k}| < \lambda/2.$$

Take $s_k = sgn(a_{n_3k})$ for $p_2 < k \leq p_3$. Now

$$T_{n_s} = \sum_{k=1}^{p_s} a_{n_s k} s_k + \sum_{k=p_s+1}^{p_s} |a_{n_s k}| + \sum_{k=p_s-1}^{\infty} a_{n_s k} s_k.$$

124

Therefore

$$|T_{n_3}| \ge \sum_{k=1}^{\infty} |a_{n_3k}| - 2\sum_{k=1}^{p_2} |a_{n_3k}| - 2\sum_{k=p_3+1}^{\infty} |a_{n_3k}| > 2\lambda.$$

Continuing in this way we have $|T_{n_r}| > 2\lambda$ for odd r and $|T_{n_r}| < \lambda$ for even r. Therefore $\gamma(a_n)$ diverges and (2) is necessary.

THEOREM 2. Every indefinitely divergent series of complex constants has for its generalised sum any given complex constant.

By an indefinitely divergent series we mean a series for which there are at least 2 distinct limiting values of its partial sums s_k . Suppose L' and L'' are any two limiting values of s_k .

Let the given complex constant be s. Take suffixes k'_n , $k''_n (>k'_n)$ such that $s_{k'_n} \rightarrow L'$ and $s_{k''_n} \rightarrow L''$, where $s_{k''_n} \neq s_{k'_n}$, and determine the γ -matrix by putting

$$g_{nk} = 1 \qquad (1 \le k \le k'_n) = (s - s_{k'_n})/(s_{k''_n} - s_{k'_n}) \qquad (k'_n < k \le k''_n) = 0 \qquad (k > k''_n).$$

Then

$$\sum_{k=1}^{\infty} g_{nk} c_k = s_{k'_n} + \{ (s - s_{k'_n}) / (s_{k''_n} - s_{k'_n}) \} (s_{k''_n} - s_{k'_n}) = s.$$

As an example of a definitely divergent series that can be evaluated to any complex constant s we take the series

$$1^r + 2^r + 3^r + \ldots, r = 0, 1, 2, \ldots$$

and the γ -matrix

$$g_{nk} = 1 - \frac{k S_{n-1}^{(r)}}{S_{n-1}^{(r+1)}} \qquad (1 \le k < n)$$

= $\frac{s}{n^r}$ $(k = n)$
= 0 $(k > n),$

where $S_n^{(r)} = 1^r + 2^r + 3^r + \ldots + n^r$.

§2. Let G and G' be two γ -matrices which evaluate the divergent series $\sum c_k$.

Suppose that

(8)
$$\gamma_n = \sum_{k=1}^{\infty} g_{nk} c_k \Rightarrow \gamma$$

(9)
$$\gamma'_{n} = \sum_{k=1}^{\infty} g'_{nk} c_{k} \rightarrow \gamma'.$$

Let us find conditions that $\gamma = \gamma'$.

I. If (g_{nk}) has an inverse with respect to c_k , that is, if (8) can be solved for c_k ,

$$c_k = \sum_m \bar{g}_{km} \gamma_m.$$

(9) becomes

(10) $\gamma'_n = \sum_k g'_{nk} \sum_m \tilde{g}_{km} \gamma_{m*}$

If the order of summation can be changed, we have

$$\gamma'_n = \sum_m (\sum_k g'_{nk} \, \tilde{g}_{km}) \, \gamma_m,$$

and so we have constructed a sequence transformation leading from one of the transforms to the other. Now the necessary and sufficient condition that the convergent sequence $\{\gamma_m\}$ should be transformed into another tending to the same value is that $a_{nm} = \sum_k g'_{nk} \tilde{g}_{km}$ be a T-matrix.

We notice that (8) can be solved for c_k if (g_{nk}) is row-finite and has a row-finite left reciprocal. If (g'_{nk}) is also row-finite, the order of summation in (10) can be changed. Hence

THEOREM 3. If (i) (g_{nk}) and (g'_{nk}) are row-finite and (ii) (g_{nk}) has rowfinite left reciprocal (\bar{g}_{km}) , then (g_{nk}) and (g'_{nk}) are mutually consistent (for every c_k) if and only if $(\sum_{k=1}^{\infty} g'_{nk} \bar{g}_{km})$ is a T-matrix.

COROLLARY 3.1. When (g'_{nk}) is a reciprocal of (g_{nk}) , the theorem shows that the matrix square of (g'_{nk}) should be a T-matrix.

COROLLARY 3.2. The necessary and sufficient condition that G' includes G is that $(\sum_{k=1}^{\infty} g'_{nk} \bar{g}_{km})$ is a T-matrix, G' and G being subject to the conditions of the theorem.

COROLLARY 3.3. When G and G' satisfy the conditions of the theorem, they are equivalent if and only if $(\sum_{k=1}^{\infty} g'_{nk} \bar{g}_{km})$ and $(\sum_{k=1}^{\infty} g_{nk} \bar{g}'_{km})$ are T-matrices.

II. Whether or not (g_{nk}) has an inverse with respect to c_k , we proceed as follows:—

We transform the sequence $\{\gamma'_n\}$ by a *T*-matrix *A*. The transformed sequence is

(11)
$$\gamma''_{n} = \sum_{m} a_{nm} \gamma'_{m} \rightarrow \gamma''_{m}$$
$$= \sum_{m} a_{nm} \sum_{k} g'_{mk} c_{k}.$$

https://doi.org/10.1017/S0013091500024615 Published online by Cambridge University Press

126

If the order of summation can be changed, we have

$$\gamma''_n = \sum_k \left(\sum_m a_{nm} g'_{mk} \right) c_k.$$

Now $\gamma^{\prime\prime}$ is necessarily equal to γ^\prime and $\gamma=\gamma^{\prime\prime}$ if

(12)
$$(g_{nk}) - (\sum_{m} a_{nm} g'_{mk}).$$

The order of summation in (11) can be changed if A and G' are row-finite and therefore, from (12), G must also be row-finite. Hence

THEOREM 4. If G, G' are row-finite, G and G' are mutually consistent if G = AG', where the product is of the matrix kind and A is a row-finite T-matrix.

COROLLARY 4.1. G includes G' if G = AG', G, G' and A being subject to the conditions of the theorem.

COROLLARY 4.2. G and G' are equivalent if G = AG' and G' = BG, where G and G' are row-finite γ -matrices, A and B row-finite T-matrices. If we transform γ_n and γ'_n by T-matrices B and B' respectively, we easily get as in II above, the following theorem:—

THEOREM 5. If G and G' are row-finite γ -matrices and B and B' are row-finite T-matrices, G and G' are mutually consistent if BG = B'G', the product on each side being a matrix one.

Since $(g_{nk} - g_{n, k+1})$ and $(g'_{nk} - g'_{n, k+1})$ are *T*-matrices¹, we have COROLLARY 5.1. If two row-finite γ -matrices (g_{nk}) and (g'_{nk}) satisfy

$$\sum_{l} (g_{nl} - g_{n, l+1}) g'_{lk} = \sum_{l} (g'_{nl} - g'_{n, l+1}) g_{lk}$$

they are mutually consistent for every series they evaluate.

THEOREM. 6. The necessary and sufficient conditions that a row-finite γ -matrix (g_{nk}) should be regular are that (i) $(\sum_{k=1}^{\infty} g_{nk} \, \tilde{g}_{k,m+1})$, and (ii) $(\sum_{k=1}^{\infty} g_{n,k+1} \, \tilde{g}_{k+1,m+1})$ are T-matrices.

This follows from Corollary 3.3.

I have great pleasure in expressing my thanks to Dr P. Dienes for his interest during the preparation of this note.

¹ See VII, p. 399 of D after noting that G and G' are row-finite.

BIRKBECK COLLEGE LONDON.