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If R is a ring and S is a semigroup, the corresponding semigroup ring is denoted by
R[S\ A ring is semiprime if it has no nonzero nilpotent ideals. A semigroup S is a
semilattice P of semigroups Sa if there exists a homomorphism <p of S onto the semilattice
P such that Sa= oup'1 for each a e P.

In [4] J. Weissglass proves the following result.

THEOREM. Suppose that R is a commutative ring with identity element and that S is a
commutative semigroup such that a power of each element lies in a subgroup. Then R[S] is
semiprime if and only if S is a semilattice P of groups Sa, and R[Sa] is semiprime for each
aeP.

Then Weissglass asks [4, Question 9, page 477] if the commutativity of R can be
removed from the hypothesis of his theorem. The purpose of this note is to answer his
question affirmatively.

Given a ring R and a semigroup S, the support of x = £ rsseR[S], denoted by
seS

supp x, is defined to be the set {seS rsj= 0}. For a set X, |X| denotes the cardinality of X.

LEMMA 1. Let R be a ring with identity element, and let S be a commutative semigroup.
Assume that the group G is an ideal of S and that every element of S has a power in G. Let
A be a nonzero ideal of R[S] such that A D R[G] = 0. Then there exists a nonzero element

y = Yi riSj e A (rt e R, Sj e S) such that yrSj = 0 for each reR and each j£n.
i= J

Proof. Let m = min{j | 0^ i s A and |(supp x)f l (S- G)\ = /}. Since A n R [ G ] = 0,
n

then m i l . Let y = /_, r^eA— {0} be chosen such that
i = l

{sus2,. • .,sm} = (suppy)n(S-G)

and

{s m + 1 , . . . , s n }sG if m<n.

Let k be a positive integer such that k^m, and consider the condition yst = 0 for ;' < k.
This condition is vacuously satisfied when k = 1; so assume that the condition holds for
some k s l . Since a power, say s'k, of sk is in the ideal G of S, then ys'keR[G]. But
ys^eA, since ye A. Hence ys'k=0. Thus there is a least nonnegative integer h such that
ys£+1=O. (If h = 0, let S " = 1 G R for notational convenience.) Then by the choice of m
and h, we have that s^Jj, s2sk,..., smsjj are distinct elements of S- G, and SJS|JG G for
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( > m. Since S is commutative,
n \ / n \

Lt riSiSkjSjSk~ \ L riSi)SjSk ~"yS/S(c ~ U

for / < k. Thus, if we replace s; by SJS£ in our original expression for y, we may assume that

y = YJ ffS; e A — {0}, Sj e S - G for i < m, steG for i > m, and ys, = 0 for / < k. By induc-

tion, we may assume that ysy = 0 for j < m. Since G is an ideal of S, we also have

ys, e A D R[G] = 0 for each ; > m.
Let j e { 1 , . . . , n). Write T = {SjSj \i = l,..., n} and, for each I e T, let I, = {(" | s^ = t}.

Since ysy = 0, we have that, for all teT, ]T r; = 0. Hence, for all r e I?,

Let P be a semilattice whose natural order is indicated by <, and let S be a
semilattice P of semigroups Sa. Then there exist ideal extensions Da of Sa (a e P) and
homomorphisms <pa(3 :Sa —>Dp ( j 3 s a ) satisfying the following conditions:

(a) <paa is the identity map on Sa;
(b) (Sa<pa,ap)(Sp<pp;C(p) £ Sa(3;
(c) if a /3>% then for all aeSa and b e S p , [(a(pa;ap)(b<p(3>a(3)]<pa(3jT=(a<pa,7)(b<Ppj7);
(d) S is the disjoint union of the Sa ( a e P ) ;
(e) if a e Sa and b e Sp, then multiplication in S is determined by

For more details, see Section III.7 of [2]. We note that each <paj(3 has a natural extension
to a ring homomorphism from R[Sa] to

Z rss-> £ rs(s<pa,p).

We also denote this extension by <pa>(3 for convenience.

LEMMA 2. Let R be a ring with identity element, and let S be a semilattice P of
n

commutative semigroups Sa. Let aeP and y = X ris. e^[S<r] be such that yrs, = 0 for each

reR and each j^n. Then the principal ideal B of R[S] generated by y satisfies B 2 = 0.
Proof. Every element of B2 is a sum of terms, each of which contains at least one of

the following factors: y2 or y. rs. y, where reR and seSa for some as P.
n

But y2 = 2J yjSj = 0 by our choice of y. Moreover, if r e R and s e.Sa then, since SatT
i = l
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is commutative and <pa>ao. is a homomorphism, we have

Z ffSj). rs. Z r-Sj

= Z ^(Sjcp^JCscp

= Z '•irr/((sisJ-)<p<r,aa)(s<pa,aJ
i.J

[ n i i n \ \ "I

I ( ( I ^ i ^ j k . a . (s<Pa,aJ
j = l V V i = l ' ' J

= Z ( y ( " / ) S j ) < P ° ^ KS<Pc«,acr) = 0
L y = l J

by our choice of y.
It follows that B2 = 0 as desired.

LEMMA 3. Let R be a ring with identity element, and let S be a semilattice P of
commutative semigroups Sa. Let creP, and assume that the group G is an ideal of S .̂ Let A
be a nilpotent ideal of RiS^] such that A2 = 0. Then the principal ideal C of R[S] generated
by any element of AC)R[G] satisfies C2 = 0.

n

Proof. Let x = X r^j e A Pi R[G] with {s1; s2, • • •, sn} s G, and let x generate C. Since
i = l

x2 = 0, then every element of C2 is a sum of terms, each of which contains a factor of the
form x. rs. x, where reR and seSa for some aeP. Let e be the identity element of G,
let r e R , and let seSa for some a e P. Since Sacr is commutative and tpViCUT is a
homomorphism, we have

= [ ( Z '"i'TjSiSjj <p ,,,„„. J(S(pa,a

= ( Z ^

= 0.

It follows that C2 = 0 as desired.

We are now ready for our main result.
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THEOREM. Let R be a ring with identity element, and let S be a commutative semigroup
such that a power of each element of S lies in a subgroup. Then R[S] is semiprime if and
only if S is a semilattice P of groups Sa, and R[Sa] is semiprime for each aeP.

Proof. By [1, §4.3, Exercise 5] the hypothesis on S forces S to be a semilattice P of
semigroups Sa, where each Sa contains a group ideal Ga such that SJGa is a nil
semigroup.

Let R[S] be semiprime. Suppose that there exists creP such that RCS ]̂ is not
semiprime. Then RfS^] contains a nonzero nilpotent ideal A such that A2 = 0. If
A!~\R[Gfr] = 0, then R[S] has a nonzero nilpotent ideal B by Lemmas 1 and 2; if
A D R [ G J ^ 0 , then R[S] has a nonzero nilpotent ideal C by Lemma 3. Consequently,
each R[So.] must be semiprime to avoid a contradiction. It now follows from [4, Lemma 4]
that each Sa is a group.

The converse follows from [3, Theorem 1] or [4, Corollary 1].
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