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We present a deep probabilistic convolutional neural network (PCNN) model for predicting
local values of small-scale mixing properties in stratified turbulent flows, namely the
dissipation rates of turbulent kinetic energy and density variance, ε and χ . Inputs to the
PCNN are vertical columns of velocity and density gradients, motivated by data typically
available from microstructure profilers in the ocean. The architecture is designed to enable
the model to capture several characteristic features of stratified turbulence, in particular the
dependence of small-scale isotropy on the buoyancy Reynolds number Reb := ε/(νN2),
where ν is the kinematic viscosity and N is the background buoyancy frequency, the
correlation between suitably locally averaged density gradients and turbulence intensity
and the importance of capturing the tails of the probability distribution functions of values
of dissipation. Empirically modified versions of commonly used isotropic models for ε

and χ that depend only on vertical derivatives of density and velocity are proposed based
on the asymptotic regimes Reb � 1 and Reb � 1, and serve as an instructive benchmark
for comparison with the data-driven approach. When trained and tested on a simulation
of stratified decaying turbulence which accesses a range of turbulent regimes (associated
with differing values of Reb), the PCNN outperforms assumptions of isotropy significantly
as Reb decreases, and additionally demonstrates improvements over the fitted empirical
models. A differential sensitivity analysis of the PCNN facilitates a comparison with the
theoretical models and provides a physical interpretation of the features enabling it to make
improved predictions.
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1. Introduction

Turbulence is ubiquitous in the stably stratified ocean, where it facilitates the vertical
mixing of water masses, thus playing a vital role in determining global transport of
scalars such as heat, carbon and nutrients (Ivey, Winters & Koseff 2008; Talley et al.
2016). Observational estimates of small-scale turbulence quantities may be obtained using
measurements of fluctuating density (or temperature, assuming a linear equation of state
for a single dynamic scalar) and velocity fields captured by microstructure profilers, small
probes that descend vertically through a column of water to depths of up to 6000 m and
that have been deployed across much of the ocean (Waterhouse et al. 2014). The primary
quantities of interest for diagnosing mixing rates are the rate of dissipation of density
variance χ and the rate of dissipation of turbulent kinetic energy ε (defined below).
Calculating precise values of ε and χ requires that nine spatial derivatives of velocities
and three spatial derivatives of density be resolved simultaneously, and so in practice
theoretical ‘surrogate’ models are commonly invoked which require only derivatives in
a single coordinate direction (typically the vertical). Our focus here is on estimating ε

and χ given exact values of these vertical derivatives alone as notionally measured by
an idealised microstructure profiler. This facilitates a study of the underlying stratified
turbulence dynamics and is a step toward improved mixing parameterisations ‘output’
from ocean measurement ‘inputs’, although it does not address other causes of uncertainty
in obtaining accurate and robust in situ measurements of ε and χ , due for example to
uncertainties in the mapping between the raw measurements and the vertical gradients of
velocity and density (Gregg et al. 2018).

The majority of models for ε and χ are based on the fundamental assumption that
turbulence is homogeneous and isotropic at small scales, although there have been efforts
to model dissipation in stratified turbulence by use of a suitable proxy that captures
the modifying influence of the stratification (Weinstock 1981; Fossum, Wingstedt &
Reif 2013). We appeal to modern data-driven tools to supplement and extend existing
theoretical models for ε and χ in the anisotropic stratified turbulent regime. Data-driven
methods have become popular for the modelling of fluid flows due to their inherent
ability to capture complex spatio-temporal dynamics (Salehipour & Peltier 2019; Brunton,
Noack & Koumoutsakos 2020) and reveal insights into flow physics (Callaham et al.
2021; Couchman et al. 2021). They are also seeing widespread use for closure modelling,
for example improving sub-grid parameterisation schemes in simulations of turbulence
(Maulik et al. 2019; Portwood et al. 2021; Subel et al. 2021) and large-scale models of the
atmosphere and ocean (Rasp, Pritchard & Gentine 2018; Bolton & Zanna 2019). Bayesian
models that can provide uncertainty estimates as opposed to standard deterministic
predictions are appealing in these settings as they give an important measure of model
reliability and can accurately reproduce higher-order moments of a distribution of values
over a set of data (Maulik et al. 2020; Barnes & Barnes 2021; Guillaumin & Zanna 2021).

Deep neural network models for determining the relationship between physical
observables can be essentially described as the substitution of an equation whose
functional form and accompanying parameters are based on known physical constraints for
an equation whose functional form is determined by optimising an extremely large number
of parameters using data obtained from measurements of the system: this results in what is
commonly referred to as a ‘black-box algorithm’. In cases where the underlying physical
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processes are not fully understood, or not fully representable using a limited subset of
system observables, these deep learning methods often result in greatly improved accuracy
over traditional physics-based methods. This is, however, at the expense of generalisability
to data from similar but distinct systems, where knowledge of how the underlying physics
is encoded into a traditional theoretical model can be used to adapt it. Since they consist
of such a large number of parameters – leaving the physics somewhat intractable – it is
not obvious how to adapt deep learning models in the same way. To try to overcome this
difficulty, either some information about the physics can be encoded into the architecture
of the model a priori (such models are often referred to as ‘physics-informed’) (Ling,
Kurzawski & Templeton 2016; Zanna & Bolton 2020; Beucler et al. 2021), or a highly
general model can be analysed a posteriori to ‘discover’ physically relevant features (Toms,
Barnes & Ebert-Uphoff 2020; Portwood et al. 2021).

Since exact observational measurements of ε and χ are not feasible at present for testing
our methodology, we consider direct numerical simulations (DNS) of stably stratified
turbulence (SST) as a model flow for the turbulence length and time scales of the ocean, the
relevance of which is supported by a modest but increasing body of observations (Riley &
Lindborg 2008). Broadly, such flows can be characterised by suitable Reynolds and Froude
numbers, Reh and Frh, as well as the Prandtl number Pr, defined here as

Reh = UhLh

ν
, Frh = Uh

LhN
, Pr = ν

κ
. (1.1a–c)

Here, Uh and Lh are horizontal velocity and length scales, N is a characteristic buoyancy
frequency associated with the ambient stratification, ν is the kinematic viscosity and κ is
the thermal diffusivity. The SST regime is then a turbulent flow regime where buoyancy
effects due to the presence of a background density stratification have a leading-order
influence on the flow, which corresponds to Reh � 1 and Frh � 1. As Frh decreases below
O(1), horizontal motions tends to decouple into thin vertical layers with large horizontal
extent, with the resulting vertical shearing being an important mechanism for generating
turbulence (Lilly 1983). The resulting ‘pancake’ layers are predicted to evolve with vertical
length scale Uh/N (Billant & Chomaz 2001), a behaviour that has been observed in
experiments (e.g. Lin & Pao 1979; Spedding 1997), as well as in both forced and freely
decaying DNS (e.g. Riley & de Bruyn Kops 2003; Brethouwer et al. 2007).

The SST regime exhibits anisotropy across a range of scales (Lang & Waite 2019),
the largest of which is set by the vertical layered structure described above and whose
existence is predicted by the value of Frh. Whether anisotropy persists at the smallest
scales of motion (sometimes referred to as return to isotropy; Lumley & Newman 1977),
thus affecting the way in which models for ε and χ depend on individual velocity and
density derivatives, depends on the existence of an inertial range between these scales and
the length scale of motion below which eddies evolve without being influenced by the
stratification (Gargett, Osborn & Nasmyth 1984). For the velocity field, the breadth of the
inertial range is characterised by an emergent Reynolds number, which for stratified flows
is most commonly defined as the buoyancy Reynolds number

Reb := ε

νN2 . (1.2)

If Reb � 1, scaling arguments and simulation results indicate that ε will be dominated
by vertical shear (Riley, Metcalfe & Weissman 1981; Godoy-Diana, Chomaz & Billant
2004; de Bruyn Kops & Riley 2019). On the other hand, when Reb � 1 and turbulence
is locally almost isotropic, one can appeal to symmetry arguments to relate directly the
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horizontal and vertical spatial derivatives of velocity and density, thus simplifying the
expression for ε and χ (see e.g. Pope 2000). Several numerical studies quantify the degree
of small-scale isotropy in SST as a function of Reb (Hebert & de Bruyn Kops 2006; de
Bruyn Kops 2015) from which we conclude that SST will be close to isotropic at the small
scales if Reb ≈ 50 or larger. Importantly, there are many regions of the ocean in which it
is estimated Reb < 50 (e.g. Moum 1996; Jackson & Rehmann 2014; Scheifele et al. 2018),
with potentially significant consequences for the accuracy of isotropic models for ε. When
Pr > 1, density fluctuations are expected on smaller scales than those of velocity leading
to the emergence of a viscous–convective subrange. Nonetheless, it may still be argued
that the isotropic inertial range in the density field has the same high wavenumber cutoff
as that of the velocity field (Batchelor 1959), and thus the breadth is again governed by
Reb. We note that technically even for Reb � 1 the scalar derivatives cannot be exactly
isotropic if there is a mean gradient (Warhaft 2000), although this detail will not be of
practical importance for our purposes here. When only measurements of the density field
are available, the buoyancy Reynolds number is sometimes replaced by the parameter
Pr−1Cx, where Cx = |∇ρ|2/(∂ρ̄/∂z)2 is the Cox number for a flow with turbulent density
fluctuations ρ about a background density profile ρ̄(z) (Dillon & Caldwell 1980).

Mean values of ε and χ can be accurately computed from single velocity and scalar
derivatives if, by some method, the anisotropy in the velocity and scalar fields is known.
This is the basis of the majority of existing models, e.g. estimating the dissipation rates
by assuming isotropy. In practice, since Reb itself depends on ε, it is not possible to
diagnose precisely a turbulent regime given a limited subset of derivatives of velocity and
density. Moreover, while the mean dissipation rates may be accurate based on assumptions
of isotropy, the distribution of local values ε0 and χ0 (hereafter differentiated from
appropriately averaged mean values ε and χ using a subscript 0) will not be. Using
simulations of almost perfectly homogeneous isotropic turbulence, Almalkie & de Bruyn
Kops (2012b) show that the probability density function (p.d.f.) of any of the velocity
derivatives have nearly exponential left tails rather than the approximately log-normal tail
assumed by Kolmogorov (1962) for the local dissipation rate, that is actually also widely
observed in simulation data.

Motivated by the discussion above, in this work our primary aim will be to build highly
general models for estimating local (ε0, χ0) and mean values (ε, χ ) of the dissipation
rates, that can make accurate predictions across a range of turbulent regimes described
by different values of Reb. We construct and train a probabilistic convolutional neural
network (PCNN) model to compute local values of dissipation ε0 and χ0 within vertical
fluid columns, motivated by available observational data collected by microstructure
profilers. The architecture of the model is constructed based on the fundamental physical
arguments that vertical gradients of velocity and density should be strongly correlated and
of leading-order importance for determining local dissipation rates in stratified turbulence,
crucially both locally and non-locally (for example, whether or not a particular region of
fluid supports energetic turbulence is likely to depend at least on the local shear as well
as some surrounding background density gradient) (Caulfield 2021). The probabilistic
component is included based on the emerging importance of accurately predicting the
tails of the distributions of values of small-scale mixing properties (Cael & Mashayek
2021; Couchman et al. 2021).

The data-driven models may be used as an effective tool revealing the fundamental
limitations of theoretical models for local stratified turbulent flow properties derived based
on global statistics. For this purpose, it will be important to compare the data-driven
models with strict benchmarks whose functional form incorporates as many of the
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currently known fluid dynamical constraints as possible. Therefore we also propose new
empirically derived theoretical models for calculating ε0 and χ0 using the same inputs
based on the knowledge that the local isotropy of the flow is primarily determined by the
buoyancy Reynolds number Reb, which here serve as a helpful baseline to compare with
the deep learning model, but may also be considered practical substitutes for isotropic
models in their own right. A comparison between the theoretical and PCNN models
provides some interesting insights into the limitations of using mean quantities rather than
local information for predicting mixing properties of stratified turbulent flows. Moreover,
we analyse the structure of the optimised deep learning models to attempt to interpret
which features give rise to improvements in accuracy over physics-based theoretical
models.

To achieve our primary aim, the remainder of this paper is organised as follows. In § 2
we outline the key features of the DNS used throughout and describe how assumptions
of isotropy may be used to construct models for ε and χ . We also present empirically
determined theoretical models for ε and χ based on the value of a suitable proxy for the
buoyancy Reynolds number Reb, and introduce the probabilistic deep learning model to
be evaluated against the theoretical models. Qualitative and quantitative comparisons are
shown in § 3, and an analysis and interpretation of the deep learning model is carried out
in § 4. We discuss some of the wider implications of the results and conclude in § 6.

2. Methods

2.1. Simulations and theory
Much of the ocean thermocline is believed to be in a ‘strongly stratified turbulence’ regime
characterised by large Reynolds number and relatively small Froude number (Moum 1996;
Brethouwer et al. 2007), defined by (1.1a–c), or in their ‘turbulent’ form by eliminating
the horizontal length scale Lh in favour of a measured turbulent dissipation via the relation
ε = U3

h/Lh, as

Ret = U4
h/(νε), Frt = ε/(NU2

h). (2.1a,b)

For a flow with zero mean shear such as will be considered here, Uh is taken to be the
root mean squared (r.m.s.) velocity and ε is volume averaged over the flow domain. In
order to obtain a dataset of stratified turbulence that is broadly representative of a diverse
and continuously evolving ocean environment, we appeal to DNS of decaying, strongly
stratified turbulence with a large dynamic range accommodating motions on a wide range
of spatial scales (de Bruyn Kops & Riley 2019). Simulations are carried out by solving
the Navier–Stokes equations with the non-hydrostatic Boussinesq approximation, in the
dimensionless form

∂u
∂t

+ u · ∇u = −
(

1
Fr

)2

ρez − ∇p + 1
Re

∇2u, (2.2)

∇ · u = 0, (2.3)

∂ρ

∂t
+ u · ∇ρ − w = 1

RePr
∇2ρ. (2.4)

The dimensionless parameters Re, Pr and Fr are defined by

Re = U0L0

ν
, Fr = U0

NL0
, Pr = ν

κ
. (2.5a–c)
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Here, U0 and L0 are characteristic (horizontal) velocity and length scales of the flow in
its initialised state, ν and κ are the momentum and density diffusivities and N is the
(imposed and uniform) background buoyancy frequency. Density is non-dimensionalised
using the scale −L0N2ρa/g, where g is the acceleration due to gravity and ρa is a reference
density, whilst time is non-dimensionalised using the scale L0/U0. Note that ρ is defined
as a departure from an imposed uniform background density gradient, so that the total
dimensionless density ρt can be written (up to a constant reference density) as ρt = ρ + z.

Equations (2.2)–(2.4) are solved in a triply periodic domain using a pseudospectral
method, with a third-order Adams–Bashforth method used to advance the equations in
time and a 2/3 method of truncation for dealiasing fields. Simulations are initialised with
the velocity fields in a state of homogeneous, isotropic turbulence. This is achieved by
first performing unstratified simulations which are forced to match an empirical spectrum
suggested by Pope (2000), using the method described in Almalkie & de Bruyn Kops
(2012b). Once suitable conditions have been achieved, a gravitational field is imposed on
the density stratification and forcing is switched off, leaving turbulence to decay freely.
With the stratification applied, the flow evolves with a natural time scale given by the
buoyancy period TB = 2π/N. As discussed by de Bruyn Kops & Riley (2019), it is often
instructive to observe the flow in terms of the number of buoyancy periods T after the
stratification has been imposed.

The evolution of turbulence and its interaction with the background density stratification
is dynamically rich and motions on a variety of length scales emerge which may be used
to describe the instantaneous state of the flow. The largest-scale horizontal motions in the
flow are described by the integral length scale Lh calculated here from the r.m.s. velocities
using the method described in appendix E of Comte-Bellot & Corrsin (1971). This
characterises the largest eddies which inject energy into turbulent motions. A turbulent
cascade drives this energy down scale until it is dissipated as heat at the Kolmogorov scale
LK (or, for the density field, the Batchelor scale LB). Two intermediate scales that arise due
to the presence of the stratification are the buoyancy scale Lb and the Ozmidov scale LO.
The buoyancy scale is a vertical scale describing the height of the pancake layers that form,
whilst the Ozmidov scale describes the size of the largest eddies which are unaffected by
the stratification. These length scales are defined as follows:

LK = (ν3/ε)1/4, LB = LK/Pr1/2, Lb = Uh/N, LO = (ε/N3)1/2. (2.6a–d)

De Bruyn Kops & Riley (2019) perform four simulations for various Fr and Re at Pr = 1.
Here, we use data from a modified version of the simulation with largest Re which has
Pr = 7 to be more representative of the ocean in regions where heat is the primary
stratifying agent. Further details may be found in Riley, Couchman & de Bruyn Kops
(2023). The Froude and Reynolds numbers for the simulation are Fr = 1.1 and Re = 2480.
To obtain an appropriate rate of decay of turbulence, the horizontal domain size Lx = Ly
is chosen to initially accommodate roughly 84 integral length scales Lh, with the vertical
extent Lz = Lx/2. To resolve motions adequately at the Batchelor scale LB, this requires a
maximum resolution of Nx = Ny = 12 880, Nz = Nx/2. We take fully three-dimensional
snapshots of the velocity and density fields (evenly sparsed by a factor of two in each
coordinate direction for computational ease) at various time points T = 0.5, 1, 2, 4, 6, 7.7
during the flow evolution. This covers an extent of time over which the turbulence decays
from being highly energetic and almost isotropic, to a near quasi-horizontal regime in
which flow fields have the structure of thin horizontal layers, characteristic of stratified
turbulence. The evolution of non-dimensional parameters Frh, Reh, Frt, Ret and Reb
describing the instantaneous state of the turbulence at each time point are given in table 1.
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T Reh Frh Ret Frt Reb LK/Δ

0.5 2480 0.175 5880 0.118 81.2 1.1
1 1910 0.122 8200 0.0604 29.9 1.4
2 2020 0.0877 14660 0.0253 9.40 1.9
4 2390 0.0527 23850 0.0119 3.38 2.5
6 2390 0.0425 29030 0.0084 2.05 2.8
7.7 2430 0.0390 32270 0.0068 1.48 3.0

Table 1. Non-dimensional parameters for the simulation used at various numbers of buoyancy periods T
following the introduction of the stratification. Note at T = 0.5 we have Reh = Re0 = 2480 and Frh = Fr0 =
0.175. Here, Δ = Lx/(Nx/2) is the grid spacing of the snapshots, which are evenly sparsed by a factor of 2 in
each coordinate direction from the DNS resolution.

2.2. Dissipation rates and isotropic models
The local (dimensionless) instantaneous rate of turbulent energy dissipation ε0 is defined
as

ε0 = 2
Re

sijsij, sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.7)

where the ui represent turbulent velocity fluctuations. The corresponding local rate of
potential energy dissipation χ0 is defined as

χ0 = 1
RePr

(
1
Fr

)2
∂ρ

∂xj

∂ρ

∂xj
. (2.8)

As noted in the introduction, measuring the exact value of ε0 and χ0 requires that all spatial
derivatives of the velocity and density fields be resolved, a task that is difficult even for
laboratory flows, and certainly not possible at present in the context of oceanographic
data. Thus it is common to make simplifying assumptions about the turbulence in order to
proceed. If one assumes that turbulence is both homogeneous and isotropic, then averaging
over some sufficient region, both expressions above can be written in terms of a single
derivative. Microstructure profilers usually measure vertical derivatives, hence here we
will consider the following isotropic models for ε0 and χ0:

εiso
0 = 15

4Re
S2; S2 :=

(
∂u
∂z

)2

+
(

∂v

∂z

)2

, (2.9)

χ iso
0 = 3

Re Pr

(
1
Fr

)2 (
∂ρ

∂z

)2

. (2.10)

Here, S2 is the (squared) local vertical shear. As pointed out by Almalkie & de Bruyn Kops
(2012b), these models are exact in the means (which here we take to be a spatial volume
average denoted by angle brackets 〈·〉) when turbulence is perfectly isotropic, but even in
this idealised situation there may be significant differences in the frequency distributions
of local values.

2.3. An empirical model
Equations (2.9) and (2.10) are only appropriate (strictly in the mean sense) provided that
there exists an inertial range of scales above the Kolmogorov scale LK (or equivalently
for χ , the Batchelor scale LB) within which the flow is close to isotropic. Noting that
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we can write Reb = (LO/LK)4/3, whether or not such a range exists at small scales is
primarily dependent on the value of the buoyancy Reynolds number, making this the
most important parameter for determining the accuracy of the isotropic models above.
Observational evidence supporting this hypothesis dates back to the measurements of
Gargett et al. (1984), with many recent DNS confirming the agreement with the theory
(see, e.g. de Bruyn Kops & Riley 2019; Lang & Waite 2019; Portwood, de Bruyn Kops &
Caulfield 2019). Lang & Waite (2019) demonstrate that the primary effect of the Froude
number Frh in this context is to control the larger-scale anisotropy. Therefore, even in
a strongly stratified flow with Frh � 1, (2.9) and (2.10) are still expected to be accurate
provided Reb is sufficiently large.

When Reb becomes small, buoyancy starts to dominate inertia at even the smallest
vertical scales, prohibiting the formation of an inertial range. Consequently, the relative
magnitudes of the velocity and density derivatives in (2.7) and (2.8) are expected to
be substantially different from those predicted by isotropy, eventually being dominated
by the vertical derivative terms in the limit Reb � 1 as demonstrated (at least for ε)
numerically and experimentally by, e.g. de Bruyn Kops & Riley (2019), Hebert & de Bruyn
Kops (2006), Praud, Fincham & Sommeria (2005) and Fincham, Maxworthy & Spedding
(1996). Therefore, as suggested by Hebert & de Bruyn Kops (2006), it is reasonable to
suppose that the ratios ε/S2 and χ/(∂ρ/∂z)2 should be a function of Reb, giving a natural
way of constructing models for ε and χ in stratified flows that take only vertical derivatives
of velocity and density as inputs. The caveat of models constructed in this way is is that
the additional required input Reb is itself by definition a function of the desired output ε.

To circumvent this issue, we appeal to a surrogate buoyancy Reynolds number

ReS
b = −Fr2 〈S2〉

〈∂ρt/∂z〉 , (2.11)

which at least varies monotonically with Reb (and which we note is implicitly invoked via
the isotropic assumption when working with observational data).

We wish to derive a local model for ε0 and χ0 that now depends on ReS
b as well

as S2 and ∂ρ/∂z. An important subtlety to note is the introduction of some ambiguity
in defining a suitable surrogate buoyancy Reynolds number in the local picture due to
how the (assumed) spatial averaging in (2.11) is interpreted. Such ambiguities can have
appreciable effects on subsequently diagnosed turbulent statistics in stratified flows, as has
been discussed by Arthur et al. (2017) and Lewin & Caulfield (2021). Because it describes
anisotropy, which is inherently a non-local flow property, here we assume the ‘true’ ReS

b
is a bulk value averaged over the domain i.e. ReS

b = Fr2〈S2〉 (since 〈∂ρt/∂z〉 = −1 by
construction). Of course, in the observational setting where measurements are limited,
a representative bulk value may be computed by averaging a suitably large section of a
vertical profile, over a scale at least as big as the Ozmidov scale LO. However, this method
may be ineffective when the flow is spatially separated into dynamically distinct regions as
discussed by Portwood et al. (2016). This issue is circumvented by the data-driven model
we present in § 2.4, which implicitly ‘learns’ the relevant non-local region of influence on
local dissipation rates. With a suitably defined ReS

b, we propose the following model:

ε
emp
0 = f (ReS

b)

Re
S2, (2.12)

χ
emp
0 = g(ReS

b)

RePrFr2

(
∂ρ

∂z

)2

, (2.13)
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Isotropy

Data

Figure 1. Values of the ratios (a) Reε/(〈S2〉) and (b) Re Pr Fr2χ/(〈ρ2
z 〉) for different values of the surrogate

buoyancy Reynolds number ReS
b. Here, ReS

b is computed by interpreting the averaging in (2.11) as over the
entire domain. The solid blue lines represent the empirical model functions (2.12) and (2.13), whilst the
dashed lines represent the isotropic ratios from (2.9) and (2.10). Black markers represent the true values
obtained from domain-averaged DNS quantities. The Jupyter notebook for producing the figure can be found
https://www.cambridge.org/S0022112023006791/JFM-Notebooks/files/Fig1/fig1.ipynb.

where f (ReS
b) and g(ReS

b) are functions to be determined empirically, based on theoretical
constraints. For ReS

b � 1 the flow is locally isotropic and, in the mean sense, we should
have f → 15/4, g → 3, as in (2.9) and (2.10). For ReS

b � 1, horizontal diffusion becomes
negligible and we therefore have f → 1, g → 1 (Riley et al. 1981; Godoy-Diana et al.
2004; de Bruyn Kops & Riley 2019). Data from the decaying turbulence simulation
indicate a roughly linear transition from the viscously dominated ReS

b � 1 regime to
the isotropic ReS

b � 1 regime, as shown in figure 1. Therefore, to match the required
asymptotic behaviour and linear transition region, we propose the following models for
the dimensionless functions f and g:

f (ReS
b) = 19

8 + 11
8 tanh(a log ReS

b − b), (2.14)

g(ReS
b) = 2 + tanh(c log ReS

b − d). (2.15)

Here, the constants b and d loosely represent the transition value between stratified
turbulent and stratified viscous regimes, whilst a and c characterise the width of the
transition region. These can be specified by a simple least-squares optimisation procedure
that compares the functional approximations with the DNS data at the values of ReS

b
indicated in figure 1: it is found that empirical values of a = 1, b = 0.8 and c = d =
0.9 give an extremely close qualitative fit of the empirical function curves with the
domain-averaged data, as can be seen in the figure. Note that in general a /= c and b /= d
due to the difference in the smallest scales of motion caused by a non-unity Prandtl number
Pr = 7, although in practice we see that these differences are relatively small (and largely
insignificant).

There have been a limited number of attempts to model the influence of strong
anisotropy on dissipation rates ε and χ . Weinstock (1981) proposes a modified model for
ε in stratified turbulence that depends on r.m.s. vertical velocities 〈w2〉 and the buoyancy
frequency N. Fossum et al. (2013) instead suggest a model for ε in terms of χ , pointing
out that χ itself may be replaced by vertical density derivatives via a suitable tuning
coefficient. To our knowledge, the empirical models (2.12) and (2.13) constitute a first
attempt to construct an explicit theoretical model for dissipation rates during the transition
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S2ρz
2

log10 ε

PCNN

Hidden layers

DNS

N(μ, σ)

Figure 2. Schematic outlining the process of obtaining data from the DNS in vertical column format and the
PCNN model architecture.

of such a flow from a near-isotropic to a buoyancy-dominated regime based on vertical
derivatives of velocity and density only. Based on the theoretical scaling arguments
discussed above, the functional forms of f and g are expected to remain independent of
flow configuration, with the relevant asymptotic behaviour and linear transition having
been observed in a number of previous forced and freely evolving DNS studies, e.g. Lang
& Waite (2019), Brethouwer et al. (2007) and Hebert & de Bruyn Kops (2006). The
transition value of ReS

b and width of the transition region represented by the values of
a, b, c and d also appear to be roughly consistent across studies, although a more detailed
investigation would be required to quantitatively verify this. Here, (2.12) and (2.13) serve
as useful comparative benchmarks for the data-driven model outlined below that are more
strict than the isotropic models (2.9) and (2.10).

2.4. Constructing a data-driven model

2.4.1. Model architecture
Here, we construct a general model for computing local values of ε0 and χ0 from
measurements of vertical derivatives of velocity and density, without explicitly appealing
to arguments that rely on mean averaged quantities used for deriving the theoretical models
above. We restrict ourselves to mimicking the oceanographic microstructure scenario
where only vertical column measurements are available. To facilitate a comparison
between this approach and the explicit theoretical models described above, we allow
ε0 to depend on local values of S2 and χ0 to depend on local values of (∂ρ/∂z)2.
We additionally allow both ε0 and χ0 to depend on the local value of the background
(total) density gradient field ∂ρt/∂z, which is suggested to be correlated with χ and
ε in stratified turbulent flows in the sense that regions that are, or are close to being,
statically unstable (positive background density gradient) are more likely to support
more energetic turbulence (Portwood et al. 2016; Caulfield 2021). We anticipate that the
precise dependencies on the inputs will be a function of the interaction of turbulence
with buoyancy effects as would normally be characterised by the buoyancy Reynolds
number, which we assume is unavailable as an input. We also might expect non-local
correlations between the inputs with themselves and each other to be important. Finally,
to capture the tails of the p.d.f.s of values of ε0 and χ0 accurately over a given region, it is
beneficial to introduce a statistical component to the model whereby outputs are sampled
from a distribution rather than predicted deterministically. This motivates the following
log-normal models for local values of ε0 and χ0:

log10 ε0(z) ∼ N (με, σε); (2.16)

log10 χ0(z) ∼ N (μχ, σχ), (2.17)
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A data-driven method for modelling dissipation rates

where the means and variances of the distributions μa and σa are functions of the inputs,
which we write generally as Xa and Y , for a = ε, χ . We have Xε = S2 and Xχ = (∂ρ/∂z)2,
whilst Y = ∂ρt/∂z is the same for both models. The functions μa and σa are to be
determined, or ‘learned’ from the data

μa = μa({Xa(z + δ)}δ∈[−α,α], {Y(z + δ)}δ∈[−α,α]), (2.18)

σa = σa({Xa(z + δ)}δ∈[−α,α], {Ya(z + δ)}δ∈[−α,α]). (2.19)

The interval [−α, α], where α is a user-specified constant, represents the vertical height of
the surrounding window of input values that the local output can depend on. We choose to
make predictions of the logarithm of dissipation values for improved convergence during
model training. Note that, because the μa and σa are functions of the inputs, the global
distribution of outputs (i.e. over an entire vertical column) is not necessarily constrained
itself to be log-normal, although in practice this is a classical theoretical prediction
for isotropic turbulence (Kolmogorov 1962; Oboukhov 1962) and has been found to be
accurate in many stratified decaying turbulent flows (de Bruyn Kops & Riley 2019).

The task is now to choose a functional form for μa and σa. We use a deep convolutional
neural network which consists of several layers, each being a nonlinear function of outputs
from the previous layer with j parameters βL

j within each layer L (weights and biases)
whose values are determined through an iterative optimisation procedure. Convolutional
layers have a unique functional form which is highly suited to identifying structures or
patterns in images, making them a natural choice for our model whose inputs are vertical
columns of data with spatial structures over multiple different length scales. With the
eventual outputs from the model being sampled from a distribution whose parameters are
learnt by the network, we refer to the entire architecture as a PCNN, falling in a broader
class of Bayesian deep learning frameworks known as mixture density networks.

We can write the inputs to the network in discrete form as {Xa(z + δ)}δ∈[−α,α] =
X a = {Xa1, Xa2, . . . , Xam}, {Y(z + δ)}δ∈[−α,α] = Y = {Y1, Y2, . . . , Ym}, where the Xai and
Yi represent m equispaced values sampled in the interval z ∈ [−α, α]. This is of course
the natural representation for DNS where values of physical fields are discretely sampled
at each grid point, and for oceanographic data where values are sampled at a particular
frequency as the microstructure probe descends in the water column. Finally then, we
write our data-driven neural network model as

log10 εNN
0 (z) ∼ PCNNε(X ε, Y ;βL

j , α), (2.20)

log10 χNN
0 (z) ∼ PCNNχ(Xχ , Y ; γ L

j , α), (2.21)

where βL
j and γ L

j are trainable parameters. The PCNN used here comprises three fully
connected convolutional layers with 32 filters and a kernel with a vertical height of 3 grid
points, with a max-pooling layer between the second and third convolutional layers to
reduce the dimensionality. The outputs from the convolutional layers are reshaped and fed
into a dense layer which outputs values for μa and σa. For activation functions, we use
the standard rectified linear unit, or ReLU, function in all layers. In total, there are roughly
60 000 training parameters to be optimised by fitting to the data.

2.4.2. Dataset and training
A schematic outlining the process of transforming the input columns from the DNS into
local outputs of ε0 is shown in figure 2. The model for χ0 has an identical internal structure
(highlighted in grey in the figure). To build the training dataset, we randomly sample
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vertical columns of data from the three-dimensional field of the simulation described in
table 1 at time steps T = 0.5, 1, 2, 4, 7.7, to give a total of approximately n = 150 000
training samples. Note we intentionally withhold the time step T = 6 for testing. The
chosen height 2α of input columns is a free parameter; for a fixed grid spacing this is
determined by the number of grid points in the column m. Here, we take m = 50, which
is largely justified by the sensitivity analysis detailed in § 4 demonstrating that outputs
are relatively insensitive to inputs outside of this surrounding radius. A more thorough
analysis can be found in the supplementary material available at https://doi.org/10.1017/
jfm.2023.679. We then compute scaled values of local shear and vertical density gradients
for each grid point within the columns

Xε = 1
Re

S2; Xχ = 1
RePr

(
1
Fr

)2 (
∂ρ

∂z

)2

; (2.22a,b)

Y = 1√
RePr

(
1
Fr

)
∂ρt

∂z
. (2.23)

The resulting inputs are written as X j
a = {X j

a1, . . . , X j
am} and Y j = {Y j

1, . . . , Y j
m}, whilst

the labels are denoted ε
j
0 and χ

j
0 . The labels are the exact values of the local dissipation

defined in (2.7) evaluated at the midpoint of the input column, to be compared against
model predictions. The prefactors of Re, Fr and Pr in front of Xa and Y are chosen based
on dimensional considerations with (2.7) and (2.8), so that the model can be evaluated
on data from simulations with different Re, Fr and Pr. Indeed, using dimensional inputs
in a black-box model such as ours results in the undesirable situation of outputs whose
physical dimensions are unknown. Note that, in our notation, X j

ai denotes the value of the
ith grid point from input X j

a, where the superscript j ∈ {1, . . . , n} indexes each individual
data column.

The test set is a separate dataset from the same simulation used to assess qualitatively
and quantitatively the performance of the network, which comprises two-dimensional
(2-D) vertical snapshots of the flow at each time step obtained by sampling 250
horizontally adjacent columns, scaled in the same way as above. These columns can be
fed through the network successively to obtain a model output of the entire 2-D snapshot.
By design, the test set does not contain any columns of data previously sampled for the
training set, and also contains data from the entirely unseen time step T = 6 as noted
above.

The training and test data are normalised to improve convergence rates during model
training (cf. ‘whitening’ in the machine learning literature, for instance LeCun et al. 2012)

X j
a �→ (X j

a − X̄)/ΣXa, (2.24)

Y j �→ Y j/ΣY . (2.25)

Here, X̄ represents the mean of the inputs X a, and ΣXa and ΣY are similarly the standard
deviations of the inputs X a and Y . These statistics are computed over the training set only
as is standard practice. Note that we intentionally do not scale Y by its mean value. This
is because the sign of the total vertical density derivative indicates whether a given grid
point is in a statically stable density region (∂ρt/∂z < 0) or a statically unstable density
region (∂ρt/∂z > 0). The static stability of a region of stratified turbulent flow has been
previously linked to the intensity of turbulence and therefore ε; this is a dynamical feature
we would like to be able to test for in our model.
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A data-driven method for modelling dissipation rates

Training is carried out by iteratively optimising a specified loss function L which
measures the accuracy of model predictions over batches of training data that are
successively and then repeatedly fed through the network. For the PCNN which predicts
a distribution of outputs, we use a negative log-likelihood loss function which is a
quantitative measure of the difference between the frequency distribution (or p.d.f.) of
outputs and distribution of true labels over the batch

L =
∑

j∈ batch

log p j. (2.26)

Here, p j is the value of the probability density function of the predicted distribution
N (μ j, σ j) of dissipation for column j evaluated at the true label ε j. The Adam optimiser
(Kingma & Ba 2014) with a learning rate of 0.005 is used to perform stochastic gradient
descent. Good convergence was found after approximately 200 epochs (evaluations on
each batch), which took around 5 minutes using TensorFlow on an NVIDIA Volta V100
GPU.

3. Results

3.1. Model deployment
Outputs ε0 and χ0 from the PCNN can be evaluated on the test data by either performing a
single pass of inputs through the network to obtain a single output sample at each location
in space, or by performing multiple passes of the same inputs through the network to
generate an ensemble of outputs and taking the pointwise mean. As we will see, which
of these two approaches is most powerful depends on the chosen metric used to evaluate
model skill.

The isotropic models (2.9) and (2.10) and empirical models (2.12) and (2.13) are
evaluated pointwise within each input column of data to obtain local predictions that may
be compared with those of the PCNN. For the empirical models, the values of 〈S2〉 and
〈∂ρt/∂z〉 used in computing the surrogate buoyancy Reynolds number ReS

b defined in (2.11)
are computed by averaging over values within the input column corresponding to each
point. Unlike the PCNN, both theoretical models are derived based on assumptions about
the mean flow, but may be used still be used straightforwardly as described to make local
predictions.

3.2. Qualitative results
A qualitative picture of outputs for ε0 from the PCNN is shown in figure 3. The
PCNN and empirical model (2.12) are evaluated on a 2-D snapshot from the test set
at the time step T = 6 which is not seen during training. Single sample predictions
from the PCNN are compared with the mean predictions from a 50-member ensemble.
At T = 6, the surrogate buoyancy Reynolds number has dropped to ReS

b = 2.05.
Turbulence is still present, however, the flow is dominated by a vertical layered
structure, with thin regions of higher dissipation in between ‘quieter’, more quiescent
regions.

The empirical model (2.12) is designed to match the domain-averaged value of ε at each
time step. In general the qualitative large-scale intermittency in the form of the vertical
layers at low Reb is well captured in terms of the shape and location of the dissipative
layers as can be seen in panel (e), however, the quantitative magnitude of the local values
of dissipation is clearly not well captured by this model as shown in panel ( f ) which shows
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Figure 3. The left panel shows a 2-D vertical snapshot of kinetic energy dissipation ε0 from the DNS
at time T = 6, where red and blue colours represent higher and lower values of dissipation, respectively.
The middle and right panels show values of ε predicted by the PCNN and empirical model (2.12) and
their corresponding local errors. Panels (a) and (b) are predictions for a single sample of outputs from
the PCNN; (c) and (d) are mean values calculated over an ensemble of 50 predictions; (e) and ( f ) are
predictions from the empirical model (2.12). The Jupyter notebook for producing the figure can be found
https://www.cambridge.org/S0022112023006791/JFM-Notebooks/files/Fig3/fig3.ipynb.

a strong spatial structure in the local prediction errors. In particular, the empirical model
under-predicts values of dissipation in the quiescent blue regions by around 2 orders of
magnitude. This is suggestive of the fact that the local dynamics within the dissipative
layers and quiescent regions is distinct, a feature which has been proposed to be typical of
stratified turbulence (Portwood et al. 2016; Caulfield 2021).

Both the single sample and ensemble mean PCNN models accurately reproduce the
large-scale spatial structure of the flow. Moreover, they do not suffer from the same
extreme local errors, and in this sense are preferable to the empirical model. It is interesting
to compare between the two PCNN outputs in panels (a,b) and (c,d), respectively. The
single sample PCNN outputs are more locally intermittent resulting in a grainy structure,
although the large-scale features of the flow are clearly still well reproduced in both
location and magnitude. As a result, the local errors are quite uniform in space. The
mean ensemble PCNN outputs appear more washed out since the extreme high or low
values of dissipation have been averaged out. This has one advantage that, at least through
cursory examination, the local errors appear the smallest in general out of the three models
shown.

Predictions on the same vertical slice for χ0 are shown in figure 4. Due to the fact
that the Prandtl number Pr = 7 so that density diffuses more slowly than momentum,
structures are present at smaller scales than for ε0. These smallest-scale structures are still
well reproduced by the network, and just as before the large-scale anisotropy is accurately
predicted. The local errors follow a similar pattern to the ε0 case. The main noticeable
difference between the PCNN for ε0 and χ0 is that the ensemble mean predictions
for χ0 are qualitatively superior in the sense that the extreme values appear better
predicted.
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Figure 4. The same as figure 3 but this time showing predictions of χ0. Red and green colours correspond
to higher and lower values, respectively. The Jupyter notebook for producing the figure can be found
https://www.cambridge.org/S0022112023006791/JFM-Notebooks/files/Fig4/fig4.ipynb.

3.3. Quantitative results

3.3.1. Distributions
We can form a more quantitative picture of the distribution of ε0 by plotting the p.d.f.s
of values at each time step. We note that each single sample of outputs from the PCNN
produces an almost identical p.d.f., with the variation being predominantly in the spatial
distribution of the values. Figure 5 shows the p.d.f.s for each model vs the DNS data at
time steps T = 1 and T = 7.7, where the flow is close to isotropic and approaching viscous
domination, respectively.

At T = 1, shown in figure 5(a), the isotropic model (2.9) and empirical model (2.12)
coincide almost exactly as is to be expected since Reb ≈ 30 is sufficiently large for
an inertial range to exist. However, even though they almost precisely match the DNS
mean, there are still significant differences in the shape of the distribution, which is
a well-documented feature in isotropic turbulence even without stratification (see, e.g.
Hosokawa, Oide & Yamamoto 1996; Zhou & Antonia 2000; Cleve, Greiner & Sreenivasan
2003; Almalkie & de Bruyn Kops 2012b). A single sample of outputs from the PCNN
matches the true DNS distribution almost exactly, with small deviations only at the extreme
tails. This is particularly notable given that even models for the dissipation rate based on
multiple velocity derivatives do not have the same shaped p.d.f. as that of dissipation rate
itself (Almalkie & de Bruyn Kops 2012b). The effect of averaging over multiple ensemble
members becomes clear looking at the distribution of predicted values, which is much
narrower than the DNS distribution.

At T = 7.7, shown in figure 5(b), there is now a clear difference between the isotropic
and empirical models which is to be expected at small Reb. Even so, the fact that
the empirical model is modified to match the mean does not change the shape of the
distribution and the tails are still too wide compared with the DNS, which explains the
differences in extreme values seen qualitatively in figure 3. Again, the single sample
of PCNN outputs almost exactly matches the DNS distribution, whilst the presence
of larger-scale layer structures in the flow means that the right tail of mean ensemble
predictions is also a closer match to the DNS.
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Figure 5. The p.d.f.s of log10 ε0 evaluated on a 2-D vertical slice from the test set at times (a) T = 1 and
(b) T = 7.7. The black crosses represent the DNS data, whilst the coloured lines represent predictions from
the PCNN (both a single sample and a mean over 50 ensemble members) and theoretical models (2.9) and
(2.12) as indicated. Note the logarithmic y-axis. The Jupyter notebook for producing the figure can be found
https://www.cambridge.org/S0022112023006791/JFM-Notebooks/files/Fig5/fig5.ipynb.

100

(a) (b)

10–1

10–2

p
.d

.f
.

10–3

100

10–1

10–2

10–3

–4 –2

log10 χ0

0 2 –6 –4

log10 χ0

–2 0

Figure 6. The same as figure 5 but for χ0. The Jupyter notebook for producing the figure can be
found https://www.cambridge.org/S0022112023006791/JFM-Notebooks/files/Fig6/fig6.ipynb. (a) T = 1 and
(b) T = 7.7.

It is worth pointing out here that the PCNN is trained on data from all time steps
simultaneously, and is given no explicit indication as to which time step a given input
column has come from. Therefore, the fact that it is able to reproduce both the precise
shape and location of the distribution of dissipation values as turbulence decays over time
without being fed any explicit information about this decay is quite striking. In particular, it
is more powerful than even the fitted empirical model in that it learns the transition of local
flow statistics from a near-isotropic to a viscous-dominated regime whilst simultaneously
accurately matching the evolution of the distribution of local structures as they evolve with
time.

The equivalent results for χ0 are shown in figure 6 and show a similar general pattern,
although there are some notable differences. In general, the distributions of values for χ0
are wider than they are for ε0 which is to be expected for Pr > 1 due to the presence of
smaller-scale spatial structures. The ensemble PCNN for χ0 more closely reproduces the
DNS distribution at T = 1 and T = 7.7 than the equivalent model for ε0, particularly in the
right tail. This matches the qualitative pictures in figure 4. We hypothesise that this could
be due the presence of sharper interfaces in the χ0 field which are better captured by the
convolution operator in the PCNN. We also point out that even the single sample PCNN
output does not quite capture the left-hand tail of the distribution at T = 7.7, although for
practical purposes this is unlikely to be of major importance as the left tail is associated
with very weak mixing.
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3.3.2. Mean relative error metrics
We look at two quantitative measures of prediction error: the mean absolute error
measured pointwise over a given vertical slice, and the mean absolute error of the column
averaged values over the vertical slice, both normalised by the global mean

Lpointwise = 1
n

n∑
j=1

m∑
i=1

|μi
j − yi

truej
|

m∑
i=1

|yi
truej

|
, (3.1)

Lcolumns = 1
n

n∑
j=1

∣∣∣∣∣
m∑

i=1

(μi
j − yi

truej
)

∣∣∣∣∣
m∑

i=1

|yi
truej

|
. (3.2)

Here, μi
j are the means of the learnt local output distributions as described in § 2.4.1, n is

the number of columns and m is the number of grid points within each column. Loosely
speaking, these represent local and global measures of prediction error, respectively, where
here ‘global’ refers to a column of data from the test set. An error of 1 then corresponds
to a value that is, on average, 100 % of the column mean value.

Errors for ε0 are shown in figure 7, plotted vs the corresponding (snapshot mean) Reb for
each time step. As expected, the isotropic model decreases in skill as Reb decreases. The
maximum mean relative error approaches twice the mean dissipation value for Reb ∼ 1.
The PCNN models perform essentially as well as the isotropic model for high Reb,
and actually show a slight decrease in error as Reb decreases, leading to significant
improvements over the assumption of isotropy. The single sample PCNN predictions give
similar errors to the empirical model (2.12), whilst the column mean predictions are
actually slightly better than the predictions from the ensemble mean PCNN for most time
steps, highlighting a potential advantage of accurately predicting the left and right tails
of the distribution of values of ε0. On the other hand, the ensemble mean predictions
lead to a reasonable improvement for the pointwise values of ε0. This is indicative of the
difficulty of predicting small-scale turbulence intermittency: there are inevitable trade-offs
to be made in accurately capturing the complete distribution of dissipation whilst also
attempting to capture the spatial structure of this distribution completely.

Errors for χ0 are shown in figure 8. The errors for the isotropic model (2.10) are less
severe at low Reb than the equivalent model for ε0. This is likely due to Pr > 1, which
gives rise to a wider range of scales between the Ozmidov scale LO and the dissipation
scale, which for χ is the Batchelor scale LB = LK/Pr1/2. Therefore isotropy might be
expected to be a reasonable assumption for χ at smaller values of Reb than for ε. The
performance of the PCNN models is once again at least as good as, or better than, the
empirical models, most noticeably for the column mean predictions at small Reb, where
anisotropy is more marked.

4. Interpretation

We have seen that the data-driven PCNN models for ε0 and χ0 are at least as good as
the proposed empirical models in making accurate predictions for the column mean, and
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Figure 7. Mean relative error in ε0 over the test set for the PCNN and theoretical models plotted against the
logarithm of the buoyancy Reynolds number Gn. Panel (a) shows the mean error computed pointwise over each
2-D vertical snapshot, whilst (b) shows the mean error of column-averaged values of ε0. The points from left to
right are in order of decreasing time step (i.e. the left-most point is T = 8). The Jupyter notebook for producing
the figure can be found https://www.cambridge.org/S0022112023006791/JFM-Notebooks/files/Fig7/fig7.ipynb.
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Figure 8. The same as figure 7 but for χ0. Note the difference in y-axis limits between the two figures. The
Jupyter notebook for producing the figure can be found https://www.cambridge.org/S0022112023006791/JFM-
Notebooks/files/Fig8/fig8.ipynb. (a) Pointwise error and (b) column mean error.

they also offer an improvement in terms of the p.d.f.s of outputs and local pointwise
prediction skill. Since the data-driven and theoretical models share common inputs, this
motivates two immediate questions. Firstly, what are the functional similarities between
these models? Secondly, what differences in the PCNN architecture allow it to outperform
the theoretical models according to the performance metrics discussed above?

We can analyse the sensitivity of the predictions of ε0 and χ0 to the pointwise inputs to
the network by exploring the gradients of the models at their predicted outputs. Calculating
the gradients of the outputs with respect to the inputs at high numerical precision is
made possible by the automatic differentiation capability of the Tensorflow framework
which is used to perform gradient-based optimisation during training. This form of local
gradient-based sensitivity analysis enables some comparison with the theoretical models
(2.12) and (2.13). For complex image recognition tasks with deeper networks this method
can be noisy and even unstable which has led to the development of methods such as
layerwise relevance propagation as an improved method for handling output sensitivity
(Montavon et al. 2017). Indeed, this method has been exploited in several geophysical
settings (see for example Toms et al. 2020; Wang, Yuval & O’Gorman 2022). Here, we
find it is sufficiently revealing for our purposes to perform a simple differential sensitivity
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Figure 9. Distribution of sensitivities (a) D j
Xε

and (b) D j
Y defined in (4.1) and (4.2) for outputs of ε

j
0 at each

time step in the test set as indicated by the colours, where here the inputs are Xε = (∂u/∂z)2 and Y = ∂ρt/∂z.
The dashed lines in panel (a) represent the isotropic and viscous-dominated values of 15/4 and 1, respectively.
The Jupyter notebook for producing the figure can be found https://www.cambridge.org/S0022112023006791/
JFM-Notebooks/files/Fig9/fig9.ipynb.

analysis of the network, as has been previously exploited in data-driven models for fluid
dynamical systems (Gilpin et al. 2018; Portwood et al. 2021).

Since values of χ0 and ε0 predicted by the network depend non-locally on the inputs,
we pose that a reasonable comparison with the (purely local) functional forms used in
the theoretical isotropic and empirical models can be obtained by summing over the
derivatives of the mean PCNN outputs with respect to each point within the input column,
for each of the two input variables. That is, we look at the values of

D j
Xa

=
∑

i

∂ε
j
0

∂X j
ai

= ln(10)ε
j
0

∑
i

∂μ j

∂X j
ai

, (4.1)

D j
Y =

∑
i

∂ε
j
0

∂Y j
i

= ln(10)ε
j
0

∑
i

∂μ j

∂Y j
i

, (4.2)

where we recall that the μ j = log10 ε
j
0 are the means of the output distributions learnt

by the network as described in § 2.4.1 and the chain rule has been used to facilitate a
direct comparison of the PCNN with the isotropic and empirical models. For predictions
of ε0, note that the isotropic model (2.9) has by definition D j

Xε
= 15/4, D j

Y = 0, whilst the

empirical model (2.12) has D j
Xε

= f (ReS
b), D j

Y = 0. The asymptotic limits are D j
Xε

= 15/4
for ReS

b � 1 and DXε = 1 for ReS
b � 1. For the PCNN, recall the inputs are Xε = S2 and

Y = ∂ρt/∂z.
The distributions of values of D j

Xa
and D j

Y evaluated on the test set for each time step
are plotted in figure 9. Looking first at DXε in figure 9(a), we see that the distribution of
sensitivities moves to the left as T increases, matching what we expect physically. There
is a reasonable spread in the distribution of values, indicating that the precise function
mapping the inputs to the outputs varies locally. Looking at figure 9(b), we can see from
the distribution of D j

Y that there is a strong relative dependence on the background density
gradient Y = ∂ρt/∂z, particularly when the flow is more energetic at the earlier time steps.
Clearly, the value of ∂ρt/∂z is important for determining the value of ε0. We can see that,
since in general D j

Y > 0, positive values of ∂ρt/∂z are associated with larger values of
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ε0. Such points are statically unstable and so this directly supports the physical argument
that these regions are important for determining where turbulence is most energetic, as
presented by Portwood et al. (2016). Indeed, this feature of the PCNN makes it functionally
distinct from the theoretical models and may explain why the centres of the distributions
of D j

Xε
in panel (a) do not closely match the asymptotic limits for the first and last time

steps T = 0.5 and T = 7.7.
We can probe this behaviour in more detail by looking at the non-local influence of the

grid points in the column, i.e. looking at the local derivatives

d j
Xai

= ∂μ j

∂X j
ai

, d j
Yi

= ∂μ j

∂Y j
i

. (4.3a,b)

The theoretical models for ε0 are entirely local i.e. d j
Xεi

is only non-zero at i = m/2, so that
the prediction at each location depends only on the value of the inputs at that location. The
PCNN is constructed to allow a non-local influence of the input columns on the outputs
(which are the values of ε0 at the centre of each input column). For each value of ε0 in
a row of data taken from the vertical test data snapshots, we plot the values of the local
sensitivities d j

Xεi
and d j

Yi
. This generates a heat map showing the sensitivities with respect

to each grid point within the input columns, shown in figure 10. Since both inputs Xε = S2

and Y = ∂ρT/∂z have been established to be of similar importance for determining the
value of ε0, it is interesting to see the difference in their region of influence here. We
see that ε0 depends almost entirely locally on the shear inputs, but that there is a strong
non-local influence of the background density gradient. This is entirely consistent with
the hypothesis that the static stability of some suitably filtered background density field
is important for determining characteristics of turbulence (Portwood et al. 2016; Caulfield
2021). Here, the ‘filter’ is represented by the convolution operator and has been learnt
objectively and implicitly by the PCNN.

Turning to the predictions for χ0, the isotropic model (2.10) has D j
Xχ

= 3, D j
Y = 0 and

the empirical model (2.13) has D j
Xχ

= g(ReS
b), D j

Y = 0. The asymptotic limits are D j
Xχ

=
3 for ReS

b � 1 and D j
Xχ

= 1 for ReS
b � 1. Here, the PCNN has inputs Xχ = (∂ρ/∂z)2

and Y = ∂ρt/∂z. The distributions of values of DXa and DY evaluated on the test set for
each time step are plotted in figure 11. In general, the patterns in the distributions of DXa
are similar to those for ε; however, there is a noticeable difference in that the centres
of the distributions are now strongly aligned with the asymptotic limits for T = 0.5 and
T = 7.7. This time, there is a less clear functional dependence on the total background
density gradient ∂ρt/∂z. This is indicative of the fact that indeed χ0 and ε0 are not always
locally correlated, as discussed in more detail by Caulfield (2021) for example. Indeed,
a comparison between figures 9(b) and 11(b) suggests that regions where they differ are
functionally dependent on ∂ρt/∂z i.e. they are regions where local overturnings generate
statically unstable regions with larger ε0. These regions are often seen to be bounded above
and below by interfaces of larger χ0 leading to enhanced mixing efficiencies (Lewin &
Caulfield 2021; VanDine, Pham & Sarkar 2021). Note that we do not produce an analogous
plot corresponding to figure 10 since the values of the local sensitivities are much more
noisy.

Finally, it is important to point out that the sensitivity analysis here by no means proves
the existence of physical mechanisms underlying the functional relationships in the data,
and indeed, using purely data-driven approaches to ‘discover’ new physics is still an open
problem (Gilpin et al. 2018). However, we argue that our approach here of comparing
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Figure 10. Sensitivities: d j
Xεi

, shown in left column (a–c); and d j
Yi

shown in right column (d–f ) for a row

of predicted values of ε
j
0 within a vertical slice of test data to each of the grid points within the column of

input data used to make the prediction. The corresponding time steps are: (a,d) T = 0.5; (b,e) T = 4; (c, f )
T = 8. The PCNN makes predictions of the central value of dissipation within a column consisting of 50
grid points; in this way, the contour plots represent a heat map of the non-local influence of the surrounding
grid points on the predicted central value for adjacent columns within the test set. A Gaussian filter has been
applied to smooth out noise. The right-hand plot for each panel represents the average over all of the adjacent
columns shown, normalised by the maximum value. The Jupyter notebook for producing the figure can be
found https://www.cambridge.org/S0022112023006791/JFM-Notebooks/files/Fig10/fig10.ipynb.

−5 0 5 10
0

0.2

0.4

0.6

0

0.2

0.4

0.6

p
.d
.f.

(a) (b)

−1 0 1 2
DX DY

Figure 11. The same as figure 9 but for χ , where this time the inputs to the PCNN are Xχ = (∂ρ/∂z)2 and
Y = ∂ρt/∂z. The dashed lines in panel (a) represent the isotropic and layered viscous-dominated values of 3 and
1, respectively. Note the different axis limits between panels (a) and (b). The Jupyter notebook for producing the
figure can be found https://www.cambridge.org/S0022112023006791/JFM-Notebooks/files/Fig11/fig11.ipynb.

a data-driven model with a theoretical model highlights some of the limitations of the
construction of the latter, and lends support towards emerging hypotheses surrounding the
relationship between the density and velocity fields in a stratified turbulent fluid (Portwood
et al. 2016; Caulfield 2021).

5. Towards improved models for local turbulent statistics in stratified flows

The data-driven models proposed above target two fundamental limitations of existing
models of small-scale dissipation rates in stratified turbulent flows. Firstly, flow fields
at small scales may be strongly anisotropic due to the influence of buoyancy. Secondly,
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models derived using averaged flow statistics are not guaranteed to be accurate below
the averaging scale. As we have argued during the construction of the empirical models,
the first limitation can in principle be addressed in theoretical models by making the
reasonable assumption that the level of (small-scale) anisotropy is a function of the
buoyancy Reynolds number, or in practice, some appropriate measurable surrogate such
as ReS

b. The decaying flow we have considered can be considered as an isolated turbulent
patch within a larger-scale flow meaning ReS

b is a reasonable proxy for the flow anisotropy,
at least when averaged over a sufficiently large spatial region. Making accurate local
predictions on scales smaller than this averaging region is still difficult, however, as
is indicated by the distributions of local χ0 and ε0 predicted by the empirical models.
The data-driven models demonstrate that this can be improved upon by incorporating a
probabilistic component that more accurately captures small-scale intermittency.

Defining an appropriate ReS
b may be considerably more complicated when the flow

consists of distinct spatially separated regions between which the influence of buoyancy
varies. In this situation, a value of ReS

b calculated using an imprecisely diagnosed turbulent
patch may result in the misrepresentation of smaller-scale local mixing events, as has been
discussed in the context of mixing efficiency by Arthur et al. (2017) and Smyth & Moum
(2000b). Portwood et al. (2016) introduce a robust patch identification method for such
flows based on a thresholding procedure applied to the (suitably filtered) background
density field. This motivated the architecture for the data-driven model, which was
shown to detect an appropriate local region of influence of the background density field
automatically without the need to specify a relevant filter width.

5.1. Generalisation
Motivated by the discussion above, we now evaluate the performance of the data-driven
and empirical models on an entirely different flow configuration not seen during the
training process. We use data from a statistically steady, forced simulation of stratified
turbulence where the forcing is implemented using the scheme described in Almalkie &
de Bruyn Kops (2012a) but the Prandtl number has been raised from Pr = 1 to Pr = 7
to match the training data here. Further details regarding the basic features of the Pr = 1
flow can be found in Portwood et al. (2016) and Couchman, de Bruyn Kops & Caulfield
(2023). The bulk Froude, Reynolds and buoyancy Reynolds numbers are Fr = 0.11,
Re = 4100, Reb = 50, although, as noted by Portwood et al. (2016), the flow separates
into dynamically distinct regions with significant variations in the corresponding flow
parameters. This results in a wider spread of values of ε0 and χ0 than the decaying flow
considered above.

As before, we evaluate the PCNN and empirical models on a 2-D vertical snapshot
from the forced simulation. We are interested in whether empirical and data-driven models
are capable of appropriately differentiating the local dynamics in the flow. For each grid
cell, we notionally compute a surrounding ‘patch’ buoyancy Reynolds number Reloc

b =
ReFr2〈ε0〉 by taking the average over a surrounding vertical region with extent given by
the Taylor length scale computed from the bulk flow statistics as suggested by Portwood
et al. (2016). By conditioning each cell according to Reloc

b being greater or less than a
nominal threshold value of 20, the p.d.f. of local ε0 values can be separated about the
mean into contributions from regions that are more strongly or more weakly influenced by
buoyancy at small scales, demonstrated in figure 12(a). We note that this threshold value
is consistent with the widely reported estimate of O(10) at which motions start to become
strongly anisotropic at small scales: for the flow we are considering, roughly half of the
domain falls under this regime.
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Figure 12. Solid curves show the p.d.f.s of log10 ε0 over a 2-D vertical snapshot of the forced simulation
described in the text. Panel (a) shows true DNS values, (b) PCNN predictions and (c) empirical model
predictions. Dashed and dotted curves represent the conditionally averaged p.d.f.s constructed from grid points
that have Reloc

b greater than or less than 20, which by construction sum together to give the total distribution.
Vertical lines show the means of the respective distributions. The Jupyter notebook for producing the figure
can be found https://www.cambridge.org/S0022112023006791/JFM-Notebooks/files/Fig12/fig12.ipynb.

Figure 12 demonstrates that the PCNN is capable of making accurate predictions
on an unseen, substantially different flow configuration, at least with regards to the
general shape and mean of the predicted p.d.f.s. This provides further evidence that
the data-driven model has indeed learnt the general important underlying behaviour of
a stratified turbulent system at moderate buoyancy Reynolds number. The performance
compared with the empirical model is less qualitatively clear, although the data-driven
model is certainly at least as accurate. More promisingly, when conditioned on Reloc

b ,
the data-driven model is seen to differentiate between the corresponding flow regimes
more accurately than the empirical model, with the latter producing a less distinctive split
between the respective conditional p.d.f.s. In particular, the regions with smaller Reloc

b are
better captured by the data-driven model. This is again indicative of the local importance
of buoyancy on small-scale motions that is captured by the data-driven model by using
local vertical density gradient inputs, but not by the empirical model which is limited to
the input of a larger-scale surrogate buoyancy Reynolds number ReS

b.

5.2. Limitations and improvements
It is worth pointing out here that it is a well-known limitation of neural network-based
model architectures that they do not handle out-of-distribution evaluation well, that is,
when given inputs that fall outside the span of the training dataset. Lang & Waite
(2019) argue that only one parameter, namely Reb, is necessary for describing small-scale
anisotropy in a stratified turbulent flow. Therefore, for the purposes of generalisation
here, there is an implicit assumption that all stratified turbulent flows affected at leading
order by buoyancy at small scales exhibit universal local similarity (specifically, at scales
sufficiently below the buoyancy scale Lb) whose variation with Reb is captured by the
decaying DNS described in § 2.1 used to train the model. This is not an unreasonable
assumption since the DNS covers the majority of the transition from near-isotropic
turbulence to a viscous-dominated regime where buoyancy effects at small scales are
important, but does mean that, for example, a network trained on only snapshots with
Reb > 10 would not be expected to make accurate predictions on snapshots that fall in the
viscous-dominated regime. Importantly, however, this does not preclude the possibility
that the network has learnt useful and relevant physical relationships in the data within
the range it was trained on. Of course, present computational limitations restrict the range
of buoyancy Reynolds numbers it is possible to achieve at low Froude number for such a
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decaying simulation, so it is perhaps unsurprising that the data-driven model is unable
to completely replicate the forced simulation data above given that a wider range of
local Reb are accessed in this flow configuration, providing better estimates for regions
with Reb < 20 which fall more centrally within the regimes encompassed by the training
data. In principle, however, it is reasonable to expect a model trained on data spanning
a sufficiently wide range of Reb to be robust when evaluated on unseen data that can be
described locally by a familiar dynamical regime.

6. Discussion and conclusions

Presently, no exact measurements of ε or χ exist in the ocean. Therefore data-driven
models that are trained and/or evaluated on observational data are restricted to ‘ground
truth’ values which are in fact estimates obtained from making significant simplifying
assumptions (typically involving isotropy) about the turbulence. Such models may
nonetheless be useful for making predictions on observations that do not accurately
capture turbulence microstructure (such as, for example, Argo float data as reported by
Waterhouse et al. 2014). Relevant here is the approach of Mashayek et al. (2022), who
show that machine learning techniques can outperform classical fine structure methods
for estimating diapycnal diffusivity which are used when microstructure measurements
are not available. In this work, we adopt a different approach and instead look at
the errors in the microstructure data themselves by using data from DNS of strongly
stratified turbulence designed to reproduce conditions similar, or at least analogous to
those found in the ocean interior. This has the advantage of allowing us to compare
model predictions with exact values of turbulence statistics computed from the data,
thus targeting directly the simplifying assumptions about turbulence used to obtain these
statistics from microstructure measurements.

The primary aim of this work has been to demonstrate the efficacy of a novel deep
learning algorithm for making localised predictions of dissipation of kinetic energy and
scalar variance ε0 and χ0 from vertical column inputs of shear and density gradients.
The resulting PCNN has an architecture constructed based on key physical considerations,
including the evolving relationship between vertical shear and density gradients in
the decaying stratified turbulent regime, the potential importance of statically unstable
overturning regions indicated by positive density gradient and its non-local influence,
and the statistical relevance of ‘extreme’ events corresponding to the tails of the input
and output distributions. We also presented modified versions of isotropic models for ε0
and χ0 based on an empirical joining of two theoretically derived asymptotic regimes
according to the value of the buoyancy Reynolds number Reb � 1 or Reb � 1. The
PCNNs were trained on discrete snapshots from a dataset of initially isotropic decaying
strongly stratified turbulence with zero mean shear, covering a range of values of Reb.
For applicability to other similar flows such as statistically stationary forced stratified
turbulence, there is an implicit assumption that all stratified turbulent flows can be at least
locally described as being in a regime described by some suitably spatially averaged Reb
according to the non-local influence of the background density gradient, as suggested by
Portwood et al. (2016). The performance of the PCNN on unseen data from the DNS of
forced stratified turbulence introduced in § 5 appears consistent with this hypothesis.

When tested on unseen data from the DNS, the PCNN models performed significantly
better than commonly used isotropic models, and equally as well as the empirical models
in terms of column-averaged value prediction. Moreover, these data-driven models had
additional advantages over the empirical models in that they were able to make more
accurate local predictions and much better capture the shape of the distribution of values
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over multiple columns of data. The process of constructing the data-driven models
alongside the physically motivated empirical models was useful for highlighting the
limitations of theoretical turbulence models which rely on suitably averaged turbulence
parameters, namely that they do not accurately model local distributions below the
averaging scale and additionally may be biased when the averaging region spans
dynamically distinct regions of the flow.

A differential sensitivity analysis of the network revealed some of the functional
similarities and differences between the PCNN models and the theoretical models.
Of particular note was the importance of non-local background density gradients for
determining local values of ε0 in a manner that is entirely consistent with the hypothesis
that regions of static instability correspond to those of more energetic turbulence. The
fact that this same correlation was not observed for χ0 is indicative of the differences in
local distributions between these two quantities which ultimately leads to enhanced mixing
efficiency for ‘extreme’ mixing events, as discussed by Caulfield (2021) and identified in
observational data by Couchman et al. (2021).

Indeed, the mixing efficiency of a stratified turbulent flow – defined here as η =
χ/(χ + ε) and interpreted as the percentage of turbulent energy expended in increasing
the background potential energy of the flow – has received much of the focus in the fluid
dynamics and oceanographic literature since it may be used to determine the diapycnal
diffusivity κρ which parameterises the turbulent flux of density across surfaces of constant
density in the ocean, hence influencing the vertical redistribution of heat and other tracers
(Ivey et al. 2008). Two relations due to Osborn (1980) and Osborn & Cox (1972) are
commonly used to determine κρ

κOsborn
ρ = Γ ε

N2 , (6.1)

κCox
ρ = χ

N2 . (6.2)

Here, Γ = 1/(1 − η) is known as the flux coefficient which for practical purposes is
assumed to take the value of 0.2 but in reality is expected to vary with parameters of
the flow such as (at least) Reb, Frt and Pr, as reviewed by Gregg et al. (2018). Variations in
Γ are usually reported to be within the range 0 < Γ < 0.5 (although instantaneous values
can be much larger, e.g. Mashayek, Caulfield & Peltier 2013). Our results here demonstrate
that the relative magnitude of these variations compared with 0.2 are roughly the same as
the uncertainties in ε that result from using assumptions of isotropy at moderate to low
Reb, and the latter therefore should be equally considered when inferring mixing rates from
observations using Osborn’s method (6.1). Since many parameterisations for Γ themselves
depend on Reb and hence ε (e.g. Bouffard & Boegman 2013), there is a potential for
compound uncertainty in using (6.1). In particular, models for mixing efficiency exhibit
similar uncertainties to those for dissipation investigated here due to ambiguities in how
this parameter is defined, as discussed by Salehipour & Peltier (2015) and Arthur et al.
(2017). This is likely to extend to other relevant parameters describing buoyancy effects at
scales above the Ozmidov scale LO such as an appropriately defined gradient Richardson
number (Venayagamoorthy & Koseff 2016). As such, the Osborn–Cox method (6.2) is an
appealing alternative because it avoids issues with the parameterisation of Γ ; we point out
that non-trivial errors may still be incurred from assuming isotropy.

In observational practice, values of χ and ε are obtained by either integrating over
velocity and density gradient spectra over a suitable window or by fitting to an assumed
universal spectrum in order to handle contaminating noise and/or a poorly resolved viscous
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subrange when turbulence is energetic (see e.g. Bluteau, Jones & Ivey 2016; Bluteau
et al. 2017). We have chosen here to focus on the relevance of the underlying physical
assumptions about the turbulence revealed by our data-driven model, but it is obviously
important to note that any practical implementation would require a detailed consideration
of these observational limitations, in particular the response of the model to inputs that
have been filtered to remove high wavenumbers. Nonetheless, our results indicate that
measurements of ε and χ obtained assuming isotropy are likely to be overestimates when
the ‘true’ flow Reb � 10. From a practical perspective, the accuracy of the proposed
empirical models (2.12) and (2.13) over a wide range of Reb indicates that improvements
over isotropy can be obtained by a (in principle) relatively simple modification to the
relationship between ε and S2, and χ and (∂ρ/∂z)2, respectively, as a function of a suitably
defined, and importantly, measurable, surrogate buoyancy Reynolds number ReS

b. Note that
it may also be important to consider the applicability of a universal spectral fitting function
when turbulence is anisotropic at small scales, which may be the case even at moderate
Reb ∼ 10.

From a fluid dynamics perspective, an important broader question that underpins the
work here is: What is the optimal method for diagnosing representative turbulent statistics
of a stratified fluid flow given sparse vertical column measurements? We have targeted
a subset of this problem, showing that models for turbulent dissipation should depend at
least on some measure of the influence of the buoyancy Reynolds number Reb and some
suitably averaged background density gradient ∂ρt/∂z. There is evidence to suggest that
other parameters not investigated here are likely to be of importance for modifying these
dependencies. We argue that the turbulent Froude number Frt is not expected to be of
major importance for models of (local) small-scale dissipation since it may be interpreted
as a measure of larger-scale isotropy in the flow, as discussed by Lang & Waite (2019).
The presence of a mean shear is likely to be of importance as has been discussed by
Smyth & Moum (2000a) and Rehmann & Hwang (2005), although small-scale isotropy
is still expected to be reproduced in the limit of large Reb (Portwood et al. 2019). Indeed,
recent work by Ivey, Bluteau & Jones (2018) and Young & Koseff (2022) has demonstrated
the usefulness of a non-dimensional shear parameter for determining the value of the
mixing coefficient Γ . As the results here indicate, suitably designed data-driven models,
in combination with an intuition of the underlying dominant physical processes, may prove
invaluable for both revealing and understanding the best way to model both the variation
and uncertainties in the small-scale mixing properties of stratified turbulent flows.

Supplementary material. Supplementary material and Computational Notebook files are available at
https://doi.org/10.1017/jfm.2023.679. Computational Notebooks can also be found online at https://cambridge.
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