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Coherence resonance (CR) is a phenomenon in which the response of a stable
nonlinear system to external noise exhibits a peak in coherence at an intermediate
noise amplitude. We report the first experimental evidence of CR in a hydrodynamic
system, a low-density jet capable of undergoing both supercritical and subcritical Hopf
bifurcations. By applying noise to the jet in its unconditionally stable regime, we
find that, for both types of bifurcation, the coherence factor peaks at an intermediate
noise amplitude and increases as the stability boundary is approached. We also
find that the autocorrelation function decays differently between the two types of
bifurcation, indicating that CR can reveal information about the nonlinearity of a
system even before it bifurcates to a limit cycle. We then model the CR dynamics
with a stochastically forced van der Pol oscillator calibrated in two different ways:
(i) via the conventional method of measuring the amplitude evolution in transient
experiments and (ii) via the system-identification method of Lee et al. (J. Fluid
Mech., vol. 862, 2019, pp. 200–215) based on the Fokker–Planck equation. We find
better experimental agreement with the latter method, demonstrating the deficiency
of the former method in identifying the correct form of system nonlinearity. The
fact that CR occurs in the unconditionally stable regime, prior to both the Hopf
and saddle-node points, implies that it can be used to forecast the onset of global
instability. Although demonstrated here on a low-density jet, CR is expected to
arise in almost all nonlinear dynamical systems near a Hopf bifurcation, opening up
new possibilities for the development of global-instability precursors in a variety of
hydrodynamic systems.
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1. Introduction

Low-density jets are central to many technological processes, such as thermal
plasma spraying and fuel injection. At sufficiently high values of the Reynolds
number and transverse curvature, such jets can become globally unstable owing to the
presence of a sufficiently large region of local absolute instability (Chomaz, Huerre &
Redekopp 1988; Monkewitz & Sohn 1988; Lesshafft, Huerre & Sagaut 2007; Coenen
& Sevilla 2012; Coenen et al. 2017; Chakravarthy, Lesshafft & Huerre 2018). This
causes the flow to transition from a spatial amplifier of extrinsic perturbations (a fixed
point perturbed by noise) to a self-excited oscillator with an intrinsic natural frequency
(a periodic limit cycle), behaving as a prototypical hydrodynamic oscillator (Huerre &
Monkewitz 1990). The transition to global instability in low-density jets was originally
thought to occur solely via a supercritical Hopf bifurcation (Monkewitz et al. 1990;
Raghu & Monkewitz 1991; Kyle & Sreenivasan 1993). Recently, however, Zhu,
Gupta & Li (2017) have shown that this transition can also occur via a subcritical
Hopf bifurcation, with a hysteric bistable regime between the Hopf and saddle-node
(SN) points. Specifically, through transient hot-wire measurements, these researchers
were able to evaluate the coefficients of a truncated Landau equation, establishing
that cubic nonlinearity is stabilising in supercritical bifurcations but is destabilising
in subcritical bifurcations, which require quintic or higher-order terms for saturation.
This highlights the importance of nonlinearity in low-density jets.

In many situations in nature and engineering, it is of interest to know how
a nonlinear system responds to noise, as this can affect the interactions within
the system and provide insight into its stability and dynamics (Risken 1996). For
example, Lee et al. (2019) used a high-order Landau equation and its corresponding
Fokker–Planck equation to perform system identification (SI) of a low-density jet,
with input data coming from measurements of the noise-induced dynamics in the
unconditionally stable regime (USR, i.e. the regime in which the system is stable to
infinitesimal as well as finite-amplitude perturbations), prior to both the Hopf and SN
points. These researchers showed that this approach can enable accurate prediction
of (i) the order of nonlinearity, (ii) the types and locations of the bifurcation points,
and hence the stability boundaries, and (iii) the limit-cycle dynamics beyond such
boundaries. That study by Lee et al. (2019) follows another by Noiray & Schuermans
(2013), who showed on a gas-turbine combustor that SI can also be performed using
just the stochastic forcing from the underlying turbulent flow field, with no need for
external noise application. Moreover, Rigas et al. (2015) used a nonlinear Langevin
equation to show that the effect of input turbulence on the large-scale dynamics of
an axisymmetric wake can be modelled as white noise. The common link among
these studies, which has not been explored before in hydrodynamics, is coherence
resonance (CR). This is a universal feature of nonlinear dynamical systems near a
Hopf bifurcation, and provides a suitable framework within which to understand and
unify the stochastic dynamics of such systems (Ushakov et al. 2005).

1.1. Coherence resonance in nonlinear dynamical systems
In seminal work, Wiesenfeld (1985) applied external noise to an oscillatory system
near a Hopf bifurcation and found that, rather than inducing more randomness,
the applied noise induced more order as the Hopf point was approached. This
noise-induced order gave rise to precursors in the power spectra capable of forecasting
the onset of nonlinear instabilities. The counterintuitive but constructive role of
noise was further investigated by Pikovsky & Kurths (1997), who found that the
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coherence of a FitzHugh–Nagumo system peaks at an intermediate noise amplitude
– a phenomenon they called CR. Later Ushakov et al. (2005) showed that CR is
a generic feature of nonlinear dynamical systems near a supercritical or subcritical
Hopf bifurcation and that CR is caused by interactions between noise and system
nonlinearities. A defining feature of CR is that noise enhances the deterministic
dynamics via selective amplification, producing a peak in coherence at an intermediate
noise amplitude (Neiman, Saparin & Stone 1997). Since its discovery, CR has been
studied in a variety of nonlinear dynamical systems, ranging from electrochemical
cells (Kiss et al. 2003) to semiconductor lasers (Ushakov et al. 2005).

In fluid mechanics, however, CR has thus far been identified in only one class of
system. Kabiraj et al. (2015) experimentally investigated the noise-induced dynamics
of a prototypical thermoacoustic system undergoing a subcritical Hopf bifurcation.
By applying noise to the system in its USR, they found that its coherence reaches a
maximum at an intermediate noise amplitude and increases as the system approaches
the SN point, prior to entering the hysteric bistable regime. Later this experimental
evidence of CR was qualitatively reproduced by Gupta et al. (2017) using low-order
simulations, confirming that the increase in noise-induced coherence can be used as
an instability precursor. These researchers also extended their analysis to supercritical
Hopf bifurcations, demonstrating that the noise-induced dynamics can be used to
distinguish between subcritical and supercritical Hopf bifurcations, even before the
onset of instability. However, despite its potential applications, CR has yet to be
generalised to hydrodynamic systems, particularly those with high-order nonlinearities.

1.2. Contributions of the present study
As a purely nonlinear phenomenon, CR is active only in systems with sufficient
nonlinearity. In our previous study (Zhu et al. 2017), we established the role
of nonlinearity in low-density jets by demonstrating that they can undergo both
supercritical and subcritical Hopf bifurcations. Here we go further to show that CR
exists in such jets, producing noise-induced dynamics that can be used to detect and
distinguish between the two types of bifurcation, even before the stability boundaries
are reached. This has important implications for our understanding of how nonlinear
systems respond to noise – potentially unifying the work of Noiray & Schuermans
(2013), Rigas et al. (2015) and Lee et al. (2019) – and can be exploited for practical
uses such as precursor development and SI (Gupta et al. 2017). Below we will
describe our experimental set-up (§ 2), present evidence of CR in a prototypical
hydrodynamic system (§ 3), show that CR can be modelled with a universal oscillator
equation containing high-order nonlinear terms (§ 4), and conclude with the key
implications of this study (§ 5).

2. Experimental set-up

The prototypical hydrodynamic system under study is a low-density jet. The jet
is axisymmetric, incompressible and momentum-dominated, which implies that its
transition to global instability is governed by three main parameters (Hallberg &
Strykowski 2006): (i) the jet-to-ambient density ratio S ≡ ρj/ρ∞, (ii) the transverse
curvature D/θ0, where D= 6 mm is the nozzle exit diameter and θ0 is the momentum
thickness at the nozzle exit, and (iii) the jet Reynolds number Re≡ ρjUjD/µj, where
Uj is the jet centreline velocity and µj is the jet dynamic viscosity. The jet is produced
in the same facility as that used by Lee et al. (2019), so only a brief overview is given
here. A helium–air mixture is discharged from an axisymmetric convergent nozzle
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(area ratio of 100:1) into quiescent air at atmospheric pressure and temperature
(293 K). The nozzle is fed by an upstream settling chamber equipped with a
loudspeaker, which receives a white Gaussian noise signal (bandwidth: 0–20 MHz)
from a function generator. Although the noise signal driving the loudspeaker is
white, the velocity signal produced at the nozzle exit (x/D = 0) is not necessarily
white, owing to acoustic resonances in the settling chamber. Nevertheless, our
nozzle is designed to keep such resonances away from the noise-induced jet modes
(400–500 Hz), producing a reasonably flat velocity spectrum across this frequency
range of interest (see later in figure 3a). The jet response is measured with a
calibrated hot-wire anemometer positioned at (x/D, r/D)= (1.5, 0), where x and r are
the streamwise and radial coordinates, respectively. This sampling location is chosen
for two reasons: (i) it is approximately where the amplitude of the global mode peaks
for the conditions of this study, and (ii) it is within the jet potential core, ensuring
that the hot-wire probe is exposed to only velocity fluctuations, not concentration
fluctuations. The hot-wire voltage is sampled at 32 768 Hz for 8 s on a 16-bit data
acquisition system. The noise amplitude is defined as the root mean square of the
velocity fluctuations, normalised by the time-averaged velocity, both measured at the
nozzle exit, i.e. at (x/D, r/D) = (0, 0): α ≡ u′0,rms/u0. The lower limit of α is the
inherent background noise in the jet without any external forcing.

3. Experimental results

3.1. Unforced dynamics
Experiments are conducted on a low-density jet undergoing both supercritical
(S= 0.14) and subcritical (S= 0.18) Hopf bifurcations to a limit cycle. Figure 1(a,c)
shows the bifurcation diagrams for both cases in the absence of external forcing,
with the jet dynamics represented by the time-averaged amplitude of the normalised
velocity fluctuations, |A| ≡ |u′|/u. These diagrams are created by increasing and
decreasing Re (and thus D/θ0) at a fixed S. In figure 1(a), the forward and backward
paths overlap, with no sign of hysteresis. This is characteristic of a supercritical Hopf
bifurcation and can be modelled with a cubic Landau equation (Raghu & Monkewitz
1991). However, a large non-hysteretic jump in |A| occurs at the Hopf point. We
attribute this jump to this particular case being near the supercritical–subcritical border,
where the Hopf and SN points are so close together as to be indistinguishable within
experimental uncertainty (Lee et al. 2019). This interpretation of supercritical-like
behaviour can also explain similar jumps in |A| observed in the low-density jet
experiments of Hallberg & Strykowski (2006) and Zhu et al. (2017). In § 4, we
will explore the implications of this jump on the modelling of CR. Specifically, we
will show that, when determining the model coefficients, it is insufficient to simply
rely on the conventional method of transient experiments, as this can lead to poorer
predictions than those provided by SI methods based on the Fokker–Planck equation
(Lee et al. 2019). In figure 1(c), the forward and backward paths do not overlap,
owing to the presence of a hysteretic bistable regime between the Hopf and SN
points (grey region). These features are characteristic of a subcritical Hopf bifurcation
and require at least quintic nonlinearity to be accurately modelled (Zhu et al. 2017).

3.2. Noise-induced dynamics
External noise is now applied to the jet in its USR, denoted by points A–D in
figure 1. Figure 1(b,d) shows the jet response at five different noise amplitudes (α)
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FIGURE 1. Experimental bifurcation diagrams in the absence of external forcing for (a) a
supercritical Hopf bifurcation at S= 0.14 and (c) a subcritical Hopf bifurcation at S= 0.18.
Panels (b,d) show the jet response at increasing α for the supercritical and subcritical
cases, respectively. Here the red lines with triangular markers represent the unforced
dynamics, which is equivalent to the backward paths shown in panels (a,c).

and the unforced condition (red lines). The vertical dashed line marks the critical Re,
which corresponds to the Hopf point in the supercritical case (figure 1b) and to the
SN point in the subcritical case (figure 1d). If the jet were unreceptive to noise, its
response |A| would remain relatively constant as the stability boundary is approached
at a fixed α. However, as figure 1(b,d) shows, for all values of α and regardless of
the super/subcritical nature of the Hopf bifurcation, |A| increases as Re approaches
its critical value. Physically, this increase in |A| arises from spatial amplification of
the applied noise by convective modes, whose growth rates increase as the stability
boundary is approached from within the USR (Huerre & Monkewitz 1990). Although
indicative of noise receptivity, the increase in |A| is not, by itself, an indicator of
CR because it contains no information about the degree of coherence. Thus, it is
necessary to consider additional indicators.

One candidate is the decay rate of the autocorrelation function (ACF), which was
used by Pikovsky & Kurths (1997) in their original paper on CR. Figure 2(a,c) shows
the ACF of the jet velocity signal (blue line) and its amplitude envelope (red line)
at low, intermediate and high values of α for both supercritical and subcritical Hopf
bifurcations. An exponential function is fitted to the ACF amplitude envelope, and the
exponent is extracted as the ACF decay rate, which is plotted as a function of α in
figure 2(b,d). In all cases, the ACF oscillates with a decaying amplitude, indicating a
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finite, but decreasing, degree of coherence. In the supercritical case (figure 2a,b), the
ACF decays increasingly rapidly as α increases. In the subcritical case (figure 2c,d),
the ACF decays most slowly at an intermediate value of α, as evidenced by a peak in
the ACF decay rate (figure 2d). This peak, which is due to CR, shows that noise does
not always suppress the regularity of a system, but can also enhance it via selective
amplification (Neiman et al. 1997). However, the existence of CR in the supercritical
case (figure 2a,b) is not as conclusive as it is in the subcritical case (figure 2c,d)
because the degree of correlation in the former decreases more or less monotonically
with α, with no intermediate peak. According to Ushakov et al. (2005), the different
ACF decay trends observed between the supercritical and subcritical cases can be
attributed to the different degrees of nonlinearity present in the two systems, and to the
fact that different nonlinear terms respond differently to external noise. Nevertheless,
as we will see shortly, the supercritical case still exhibits definitive signs of CR when
analysed in the frequency domain using spectral measures.

As a further indicator of CR, the coherence factor (β) is computed as per
figure 3(a), based on the definition by Ushakov et al. (2005). First, the power spectral
density (PSD) is computed from the velocity signal in the jet core (x/D= 1.5). Then,
a Lorentzian function is least-squares fitted to the PSD peak arising from interactions
between the applied noise and the least stable eigenmode. In this way, the coherence
factor can be computed as β ≡ H/(1f /fp), where H is the height of the PSD peak
at frequency fp and 1f is the width at H/2. Also shown in figure 3(a) is the
corresponding PSD measured at the jet base (x/D = 0). This PSD is relatively flat,
in contrast to the sharp PSD observed downstream in the jet core (x/D= 1.5). This
difference, which is typical of all the cases studied here, confirms that the PSD peak
used to compute β is indeed due to selective noise amplification by the jet, rather
than due to a forcing signal with resonant spectral peaks of its own.

Figure 3(b,c) shows β as a function of α at four different Reynolds numbers (points
A–D in figure 1). In the supercritical case (figure 3b), at every value of Re, β first
increases, reaches a maximum, and then decreases as α increases. The maximum in
β, or βmax, occurs at the so-called optimal noise amplitude, αopt, which is where the
intrinsic coherent motion of the jet is most effectively induced by selective noise
amplification (Neiman et al. 1997). The presence of a peak in β at an intermediate
value of α confirms that, in the USR near the supercritical stability boundary (Hopf
point), the jet exhibits CR. Similar evidence of CR is observed in the subcritical case
(figure 3c), although here the stability boundary corresponds to a SN point rather than
a Hopf point.

As Re increases for both supercritical and subcritical Hopf bifurcations (figure 3b,c),
βmax increases but αopt decreases. This implies that as the jet approaches its stability
boundary, its noise-induced dynamics becomes more coherent and more receptive to
external noise. This dependence of βmax and αopt on the proximity to the stability
boundary concurs with the observations of Semenov et al. (2015). However, the
mechanisms generating the peaks in β differ between the supercritical and subcritical
cases. In the supercritical case, the peak in β arises from a competition between
monotonic increases in both H and 1f with increasing α. In the subcritical case, the
peak in β arises from the co-occurrence of a maximum in H and a minimum in 1f
at αopt. Although not shown here for brevity, both of these trends are consistent with
the Langevin simulations and laser experiments of Ushakov et al. (2005), broadening
their universality.
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FIGURE 2. Experimental correlation trends: (a,c) the ACF at low, intermediate and high
values of α and (b,d) the ACF decay rate as a function of α. Data are shown both
for (a,b) the supercritical case at point A in figure 1(a,b) and for (c,d) the subcritical
case at point A in figure 1(c,d). In panels (b,d), the ACF decay rate is estimated from
three different data ranges: 0–30 cycles (circular markers), 0–20 cycles (blue bars) and
0–10 cycles (green bars). The qualitative difference between (b) the supercritical case and
(d) the subcritical case remains apparent even when the cycle number drops to as low as
10, demonstrating the robustness of the fitting technique used to estimate the ACF decay
rate.

4. Modelling CR with a universal oscillator equation

To model the observed noise-induced dynamics, we use a weakly nonlinear
framework based on the van der Pol (VDP) oscillator, with its coefficients determined
in two different ways: (i) via the conventional method of measuring the amplitude
evolution in transient experiments and fitting the data to the corresponding Landau
equation, and (ii) via the SI method of Lee et al. (2019), based on the Fokker–Planck
equation. The details of these models, including their relationship with the Navier–
Stokes equations, have been discussed by Provansal, Mathis & Boyer (1987), Sipp &
Lebedev (2007) and Noiray & Schuermans (2013). For the conventional method, of
particular relevance is the study by Raghu & Monkewitz (1991), who measured the
coefficients of a cubic Landau equation for a low-density jet undergoing a supercritical
Hopf bifurcation. Here we extend those measurements to both supercritical and
subcritical Hopf bifurcations, while allowing for higher-order nonlinearity in the
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FIGURE 3. Experimental evidence of CR: (a) definition of β ≡H/(1f /fp), as illustrated
with a noise-induced spectral peak at S = 0.18 and Re = 751 (point B in figure 1c,d)
for α = 2.59 × 10−3, with the red line indicating a Lorentzian fit. Also shown is β as
a function of α at four different values of Re in the USR: (b) the supercritical case at
points A–D in figure 1(a,b) and (c) the subcritical case at points A–D in figure 1(c,d).

model. The Landau equation has the form

dA
dt
= (σ + iω)A− l(1+ ic)|A|2A+ · · · , (4.1)

where A(t) is the complex modal amplitude of a perturbation over the base flow, σ is
the linear temporal growth rate, ω is the linear angular frequency, and c is the Landau
constant, which controls the saturation frequency. We consider the real part of (4.1):

d log |A|
dt

= σ − l|A|2 + q|A|4 − s|A|6 +m|A|8 − · · · . (4.2)

The early experiments of Raghu & Monkewitz (1991) considered only linear (σ ) and
cubic (l) terms because it was assumed that low-density jets could become globally
unstable only via supercritical Hopf bifurcations. However, recent experiments by
Zhu et al. (2017) and the present study (§ 3.1) have shown that subcritical Hopf
bifurcations are also possible, implying that quintic (q) or higher-order terms are
needed for saturation and bistability. We therefore measure the coefficients of (4.2)
via transient experiments: we impulsively increase Re from the Hopf point on the
fixed-point branch to progressively higher points on the limit-cycle branch, while
recording A(t). We then determine the coefficients of (4.2) by least-squares fitting
polynomial curves to plots of dlog|A|/dt versus |A|2, as shown in figure 4(a,c) for
representative supercritical and subcritical cases.

In the supercritical case (figure 4a), a first-order fit (dashed green line) cannot
adequately describe the experimental data (solid blue line), particularly at high |A|2.
At least a third-order fit is required (dashed magenta line, with a coefficient of
determination of R2

= 0.9954), indicating that one needs to include up to septic
nonlinearity (σ , l, q, s) in the Landau equation to be able to model this supercritical
bifurcation. The resultant Landau coefficients are listed in table 1, where it can be
seen that the cubic (l) and septic (s) terms are stabilising, but that the linear (σ )
and quintic (q) terms are destabilising. The Landau constant (c) is measured directly,
without any curve fitting.

In the subcritical case (figure 4c), at least a fourth-order fit (dashed magenta line,
R2
= 0.9998) is required to describe the experimental data, indicating that up to nonic
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FIGURE 4. Measuring Landau coefficients via the conventional method of transient
experiments: derivative of the amplitude evolution for (a) a supercritical Hopf bifurcation
at S= 0.14 and Re= 590→ 606, and (c) a subcritical Hopf bifurcation at S= 0.18 and
Re = 785→ 806. In the insets of (a,c), the red line is a time trace of the normalised
velocity fluctuation, the blue line is its instantaneous amplitude, and the vertical dashed
line marks the start of the growth phase for plotting dlog|A|/dt versus |A|2. Also shown
are comparisons of the bifurcation diagrams between the Landau models and experiments
for the (b) supercritical and (d) subcritical cases.

nonlinearity (σ , l, q, s, m) is required in the Landau equation. From table 1, it can
be seen that the quintic (q) and nonic (m) terms are stabilising, but that the linear
(σ ), cubic (l) and septic (s) terms are destabilising. This is the first time that such
high-order nonlinear coefficients have been measured in transient experiments on a
low-density jet.

Figure 4(b,d) compares the bifurcation diagrams from the Landau equation
(markers) with those from the experiments (green lines). The Landau equation is
noise-free, but the jet has a small amount of inherent background noise even when
it is unforced. Therefore, the background noise amplitude of the jet is subtracted
from the experimental bifurcation data to give meaningful comparisons with the
Landau equation. In the supercritical case (figure 4b), the septic Landau equation
(table 1) follows the experimental data more closely than the cubic Landau equation,
in accordance with figure 4(a). In the subcritical case (figure 4d), the nonic Landau
equation (table 1) follows the experimental data more closely than the quintic Landau
equation, in accordance with figure 4(c). Taken together, these findings underscore

881 R1-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

78
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.782


Y. Zhu, V. Gupta and L. K. B. Li

Re σ l (×104) q (×106) s (×108) m (×1010) c (×104)

Supercritical

593 14.18 1.56 7.09 11.21 0 2.89
597 23.40 1.89 7.33 9.81 0 3.03
600 28.89 2.17 7.36 8.67 0 3.23
603 39.24 2.35 5.81 5.00 0 3.31
606 43.09 2.55 6.54 5.91 0 3.27

Subcritical

789 4.86 −1.73 −4.32 −4.14 −1.58 1.95
793 12.71 −1.54 −4.75 −5.03 −1.92 1.94
797 17.80 −1.52 −3.89 −3.49 −1.30 2.17
801 26.80 −1.38 −4.46 −4.81 −2.06 2.25
806 29.24 −1.07 −3.31 −3.19 −1.34 2.24

TABLE 1. The model coefficients of (4.1) and (4.2) measured via the conventional method.

the importance of including high-order nonlinearity in the modelling of low-density
jets.

Although the Landau equation can model the amplitude evolution of a system, it
cannot model CR or other nonlinear effects of noise. This is because the Landau
equation is derived by considering only single-mode oscillations in the weakly
nonlinear limit, where focus is placed on the (slow) time scales associated with the
evolution of the system amplitude and phase, rather than on the (fast) time scales
associated with the oscillations (x) themselves (Huerre & Monkewitz 1990). Therefore,
to model CR, we turn to the VDP oscillator, which has been successfully used to
study the forced synchronisation of a low-density jet in which two or more modes
coexist simultaneously (Li & Juniper 2013a,b). The VDP oscillator corresponding to
(4.2) is shown on the left-hand side:

d2x
dt2
+ω2x−

(
2σ − 8lx2

+ 16qx4
−

128
5

sx6
+

256
7

mx8

)
dx
dt
+

8
3
ωcx3
= γ ξ(t), (4.3)

where the right-hand side is the forcing term, with ξ(t) being white Gaussian noise
of zero mean and unit variance and γ being the standard deviation of the noise
amplitude. We insert the Landau coefficients found via our transient experiments
(table 1) into the corresponding forced VDP oscillator (4.3). We numerically solve
the septic (supercritical) and nonic (subcritical) VDP oscillators because these were
shown to be the simplest models capable of reproducing the experimental bifurcation
diagrams (figure 4b,d).

Figures 5 and 6 are analogous to figures 2 and 3 but for the VDP simulations
instead of the jet experiments. Good qualitative agreement is found between these
two approaches. The ACF decay rate of the VDP oscillator decreases monotonically
with γ in the supercritical case (figure 5a,b) but exhibits a peak at an intermediate
value of γ in the subcritical case (figure 5c,d). Both of these trends are also seen
in the experiments (figure 2). Furthermore, in both the supercritical and subcritical
cases (figure 6a,c), β exhibits a distinct peak at an intermediate value of γ (i.e. γopt),
confirming the existence of CR (Pikovsky & Kurths 1997; Ushakov et al. 2005). As
Re increases, βmax increases but γopt decreases, again in qualitative agreement with the
experiments (figure 3).

Although the VDP oscillator is calibrated quantitatively (figure 4), its noise-induced
dynamics (figures 5 and 6) does not quantitatively match that of the jet (figures 2
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FIGURE 5. The VDP simulations analogous to the jet experiments of figure 2: (a,b) the
supercritical case at Re = 590 and (c,d) the subcritical case at Re = 755. In panels
(b,d), the ACF decay rate is estimated from three different data ranges: 0–30 cycles
(circular markers), 0–20 cycles (blue bars) and 0–10 cycles (green bars).

and 3), particularly for the supercritical case, where βmax of the VDP model (calibrated
via the conventional method) is an order of magnitude smaller than that of the
jet (figure 6b). We speculate that this quantitative discrepancy arises because this
particular supercritical case is near the supercritical–subcritical border, where the
Hopf and SN points are so close together as to make the noise-induced dynamics
exceptionally sensitive to the precise value of Re. To resolve this issue, we recalibrate
the VDP oscillator using the model coefficients of Lee et al. (2019, see table 1),
which contain up to nonic nonlinearity and were determined via SI by fitting the
noise-induced response of an identical low-density jet to the Fokker–Planck equation
in the USR (Risken 1996). We find that this SI method of calibration is superior
to the conventional method, as evidenced by the improved quantitative match in
βmax between the VDP model and the jet, for both supercritical and subcritical Hopf
bifurcations (figure 6b,d).

5. Conclusions and implications

We have experimentally investigated the noise-induced dynamics of a prototypical
hydrodynamic system (a low-density jet) undergoing both supercritical and subcritical
Hopf bifurcations. By applying external noise to the system in its USR (prior to both
the Hopf and SN points) and measuring its ACF decay rate and β, we find that the
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FIGURE 6. The VDP simulations analogous to the jet experiments of figure 3: (a,c) β
as a function of γ at four values of Re in the USR of the VDP model calibrated via
the conventional method, and (b,d) comparisons of βmax between the experiments and the
VDP model calibrated via the conventional method and via the SI method of Lee et al.
(2019). Panels (a,b) are for the supercritical case at points A–D in figure 4(b), while
panels (c,d) are for the subcritical case at points A–D in figure 4(d).

noise-induced coherence peaks at an intermediate noise amplitude and increases as the
stability boundary is approached, providing the first evidence of CR in hydrodynamics.

We model the CR dynamics in a weakly nonlinear framework based on a
stochastically forced VDP oscillator, which is initially calibrated via the conventional
method of measuring the transient amplitude evolution and fitting the data to a
Landau equation. Although we find that this approach can qualitatively reproduce
the CR dynamics of the jet, its quantitative predictions are poor, particularly for the
supercritical case. We speculate that this is because this particular supercritical case is
near the supercritical–subcritical border, where the noise-induced dynamics is known
to be exceptionally sensitive to the precise value of Re. We then recalibrate the VDP
oscillator with the SI method of Lee et al. (2019), which uses the Fokker–Planck
equation, and find improved quantitative agreement with the experimental data. This
shows that, when determining the model coefficients in analyses of the noise-induced
dynamics of nonlinear systems, it is preferable to use SI methods based on a
stochastic framework, rather than conventional amplitude-evolution methods based
on a deterministic framework. Crucially, the fact that a simple oscillator model can
reproduce the CR dynamics of a real hydrodynamic system shows that the observed
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dynamics is not unique to our specific system, but is universal to nonlinear dynamical
systems near a Hopf bifurcation (Ushakov et al. 2005).

This study has two practical implications, both relating to early warning indicators.
First, the increase in β as the stability boundary is approached from within the USR
can be used to forecast the onset of global instability. Second, the dependence of
the ACF decay rate on the super/subcritical nature of a Hopf bifurcation can be
used to distinguish between these two types of bifurcation, even before the onset
of global instability. Although demonstrated here on a low-density jet, both of these
noise-induced precursors are expected to arise in other hydrodynamic systems as
well, so long as they are near a Hopf bifurcation (Ushakov et al. 2005; Scheffer
et al. 2009). This opens up new possibilities for the development of global-instability
precursors in a variety of hydrodynamic systems.
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