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Introduction. In his paper [1], M. Brodmann showed that if M is a finitely
generated module over the commutative Noetherian ring R (with identity) and a is an
ideal of R then the sequence of sets {Ass(M/a"M)},.n and {Ass(a"'M/a"M)},en
(where N denotes the set of positive integers) are eventually constant. Since then, the
theory of asymptotic prime divisors has been studied extensively: in [5, Chapters 1 and 2],
for example, various results concerning the eventual stable values of Ass(R/a") and
Ass(a""'/a"), denoted by A*(a) and B*(a) respectively, are discussed. It is worth
mentioning that the above mentioned results of Brodmann still hold if one assumes only
that A is a commutative ring (with identity) and M is a Noetherian A-module, and
Ass4(M), in this situation, is regarded as the set of prime ideals belonging to the zero
submodule of M for primary decomposition.

Recently, in [7], Sharp proved a result which is, in a sense, dual to the above
mentioned theorem of Brodmann. He showed [7, Theorem (3.1)] that if M is an Artinian
module over the commutative ring A (with identity) then Att,(0:),a") and
Att4[(0:p a")/(0:p, a"1)] are, for all sufficiently large n, independent of n, that is, the
sequences of sets {Att,(0:p a")},en and {Att,[(0:p a”)/(0:p a*~")]},en are ultimately
constant; we denote these eventual stable values by At*(a, M) and Bt*(a, M) respectively
(following McAdam [5]).

Now it is natural to ask whether there are, for Artinian modules over a commutative
ring, results dual to those discussed in [5, Chapters 1 and 2]. However, although some of
the techniques which can be used in the Noetherian case are not obviously available here,

we have been able to obtain partial results.
Again let R be a Noetherian ring and a an ideal of R and let 7 be an indeterminate.

In [S, Proposition 1.15] a characterization of B*(a) in terms of the Rees ring of R with
respect to a, that is, the ring R’ =R[aT, T™'], is given. Also in the same book
(Proposition 2.3), it turns out that p € A*(a)\ B*(a) if and only if there is k € N such that
p®), the kth symbolic power of p, is a component of a primary decomposition of a” for all
sufficiently large n.

Now let M be an Artinian module over the commutative ring A. The purpose of this
paper is to provide, using the Artinian property of the A-module M, results dual to those
mentioned in the previous paragraph.

This note is divided into three sections. In Section 1, some notation and preliminary
results about the theory of secondary representation are given.

In Section 2, a characterization of Bt*(a, M) (where a is finitely generated) in terms
of certain prime ideals of the (small) Rees ring of A with respect to a, that is, the ring
R := A[aT] (T an indeterminate), is given.
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Finally, in Section 3 we prove the following result: let M be an Artinian module over
the commutative ring A and a and p ideals of A such that p is prime. Suppose, further,
that S = A\p, a multiplicatively closed subset of A, and denote the submodule () xM of

xeS
M by S(M) (see Lemma (1.3) for the connection between this submodule and secondary
submodules of M). Then p € At*(a, M)\Bt*(a, M) if and only if there is k € N such that,
for all sufficiently large n, S(0:, p") is a term of a reduced secondary representation for
(0:¢ a™) (for definition of reduced secondary representation see Section 1(ii) below).

1. Notation and preliminary results about the theory of secondary
representation. Throughout the paper, A will denote a commutative ring (with non-zero
identity), M will denote an A-module and a will denote an ideal of A. We use Z to denote
the set of integers and N to denote the set of positive integers. If M is Artinian over A
then we denote the eventual stable values of Att(0:,, a”) and Att,4[(0:p a”)/(0:p a*~ 1] by
At*(a, M) and Bt*(a, M) respectively.

The theory of secondary representation is discussed in [4, 3, 6]; however, we shall
use the terminology of [4] about this theory and recall the following from [4].

(i) The A-module M is said to be secondary if M #0 and, for each element a of A,
the endomorphism of M given by multiplication by a is either surjective or nilpotent. If M
is secondary then V(0:M) is a prime ideal, say p, and then M is said to be p-secondary.

(ii) A secondary representation of an A-module M is an expression for M as a sum of
secondary submodules, say,

M=N,+...+N, (*)

The representation (*) is said to be reduced (or minimal) if
(a) the prime ideals V/(0:N;) (1=i=r) are distinct, and

(b) for 1=i=r, N¢ X N,
o
Any secondary representation of M can be refined to a reduced one. If M has a secondary
representation, we shall say M is representable.
A few facts from [4] will be essential in the argument below, and we state them,
without proof, for convenience.
Throughout Theorem 1.1-Proposition 1.5, M will be a representable A-module and

M=N,+...+N. (1)
will be a reduced secondary representation with V(0:N;)=p, (1=i=r).

First UNiQUENEss THEOREM 1.1 [4, (2.2)]. The set of prime ideals {p,,...,Dp,}
depends only on M and not on the minimal secondary representation. More precisely, the
following are equivalent:

(1) pisoneof p, 1=Zi=r);

(2) M has a p-secondary quotient module;

(3) M has a quotient Q such that \V(0:Q) = p;
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(4) M has a quotient Q such that p is minimal in the set of prime ideals containing
Ann(Q).

DEerFiniTION 1.2. The prime ideals py, ..., p, are called the attached primes of the
representable A-module M, and the set which they form is denoted by Att,(M) or
Att(M).

Lemma 1.3 [4, (3.1)]. Let S be a multiplicatively closed subset of A. Suppose that the

attached primes p; are numbered so that SNp, = for i=1,...,r" and SOp,# for
i=r'+1,...,r Then the following submodules of M are equal:
(1) MaxM,
xeS§
@ L,

(3) the sum of all p-secondary submodules N of M such that pN S = .

DEerINITION 1.4 (see [4, (3.1)]). Let S be a multiplicatively closed subset of A. The
submodule defined in Lemma 1.3 is denoted by S(M), and so

S(M)=xM.

x€S

ProrosiTioN 1.5 [4, (3.4)]. Let S be a multiplicatively closed subset of A. Then
S(M) = aM for some a € S.

ProposiTION 1.6 [4, (4.1)]. If N is a representable submodule of M then
Att(M/N) c Att(M) c Att(N) U Att(M/N).

Tueorem 1.7 (see [4, (5.2)]). Every Artinian A-module has a secondary repre-
sentation and hence a reduced secondary representation.

2. A characterization of Bt*(a, M). Before proceeding to the desired characteriza-
tion of Bt*(a, M), we need two lemmas which will be given next.

LemMmA 2.1. Let A= A, be a graded ring and p,, ..., p, homogeneous prime
neZ

ideals of A such that AA, ¢ U p;. Then there exists an integer hq such that, for all h Z hy,
n i=1
A ¢ L=J1 b;.
Proof. We may assume that for each pair i #j, 1=1, j =n, there exists an integer h;
such that p, VA, ¢ p;NA,. For each pair i#j, 1 =1i,j=n, choose a homogeneous

element a; so that a; € p; N A, \p; N A, Seta;:= [l a; (1=j=n). Then g; € (ﬁ p,-)\pj
i=1 i=1
i#j i#j

(1=j=n). Let the degree of a; be 6; (1=j=n) and § :=max{,, ..., 8,}.
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Next since AA; ¢ p; (1=j=n), A1 ¢p; (1=j=n). So, for each j (1=j=n) and for
any n' (1), there exists a homogeneous element b/, of degree n' such that b/, ¢ p;. Put

n

ho=0 + 1. Then, for all A = h,, the homogeneous element ¢:= }, ajb’),_aj is of degree h
and c ¢ p;. =t

REeMARK. I owe this lemma to Mr R. Enshaei, who pointed it out to me.
In the remainder of the paper, M will denote an Artinian A-module.

For the next lemma, suppose that a=(a,,...,q;) and T is an indeterminate.
Further, suppose that R := A[a;T, ..., a,T] is the subring of A[T] generated by A and
a,T, ..., a,T and called the (small) Rees ring of A with respect to a and graded in the
usual way by Z. Set G = E% G,, where, forneZ,

G = {O if n>0,
(0 @Y /(00 a7 iR =0.
Then we have the following lemma.

LeMMA 2.2, With the same notation and assumptions as above, G is an Artinian

R-module.
Proof. Let x4, ..., x, be indeterminates over A and let R' = ) R,, denote the ring
nef
Alxy, ..., x,] graded in the usual way, so that R, =0 for n <0. Now make G into a

graded R’-module as in [2, p. 54]: if n is an integer with n <0, m € (0:p, a™"*") and
1=i=s, put

x(m+@O:pa"))=am+0:pa" YeG,,.

By [2, Theorem 1(ii)], G is an Artinian R'-module.

Next there exists a surjective ring homomorphism, say, ¢:R’'— R such that x;
(1Zi=s) is mapped into a;T and ker ¢ c Anng(G). Thus G has a structure as an
R-module and hence G is Artinian as an R-module by the above argument.

DEFINITIONS AND REMARK 2.3 (see [7, Section 2]). Let A= P A, and M=P M, a
graded A-module. net net

(i) The graded A-module M is said to be graded Artinian if M satisfies the minimal
conditions for homogeneous submodules.

(i) The graded A-module M is said to be graded-secondary if M #0 and, for each
homogeneous element a of A, the endomorphism of M given by multiplication by a is
either surjective or nilpotent.

In [7, Section 2], Sharp developed some ideas concerning a theory of ‘graded
secondary representation’ of graded Artinian modules, which we shall make much use of
in the next theorem.

https://doi.org/10.1017/50017089500007382 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500007382

ATTACHED PRIME IDEALS 297

THEOREM 2.4. Let the notation and assumptions be as in Lemma 2.2 and, further,

suppose that b denotes the ideal .Zjl R(a;T) of R. Then p € Bt*(a, M) if and only if there
exists q € Attg(G) such that b ¢ ql—and gNA=p.

Proof. We use the ideas involved in the proof of [7, Theorem (3.1)]. By Lemma 2.2,
G is Artinian over R and so graded Artinian, and thus, by [7, Proposition (2.4)], has a
reduced graded-secondary representation

G=N1+...+N,+Nr+1+...+Nr,

where each N, is a graded-secondary homogeneous submodule of M and V(O:N,) is a
homogeneous prime ideal g;, say, of R (1=i=t). Further, suppose that the N; are
numbered so that

bga;, fori=1,...,r,

bcaq, fori=r+1,...,¢

ForheZ,i=1,...,¢ put N;;,,=N;NG,. Then, since b is a finitely generated ideal
of R, there exists v € N such that
b*N;=0 fori=r+1,..., ¢ )

Next, from the definition of the action of R on G and (2), we deduce that
Ni—(+y=0 foralljeNandi=r+1,...,t 3)
Thus, by [7, Proposition (2.5)],
G_y=N,_x+...+N,_, foralk>v,

and each term on the right hand side is either 0 or an A N g;-secondary A-module.
Therefore, by [7, Theorem (3.1)(i) and Proposition (2.5)],

Bt*(a, M)c{ANgq;:i=1,...,r}

We claim that Bt*(a, M)={ANgq;:i=1,...,r}. Suppose the claim is false and
p;i=q;NA ¢ Bt*(a, M) for some i, 1 =i =r, and look for a contradiction.
Let /> v be such that, for n >, Att,(G_,)=Bt*(a, M). By Lemma 2.1, there is

ho € Z such that, for all h=hy, R, & LrJ ;- Choose h Zh, so that h + k> for all k eN.
Then the representation =1
Gokn=Ny,—knt...+ N,

can be reduced to a minimal secondary representation because p; ¢ Att,(G_._,).
Therefore we must have, for all k e N, Ny _4yny= X N, _usn). Let fy € R,,\L’J q;. Then
j=1 i=1

J#Fi

.
JalNi,~k+my € 2 JulNj, e+ n)-
j=1

J*Ei
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By applying [7, 2.5] to this, we obtain N, _, < ¥ N; _; and hence
j=1

i

N,c X2 N,
j=1

L. .. i
and this is a contradiction.

3. At*(a, M)\Bt*(a, M). For the main result of this section, we need a few
preliminary lemmas which will be given below.

LemMA 3.1. Let M #0 and [ € N be such that, for all n 21,
Att(0:py a™) = At*(a, M),
and
Att[(0: 4 a"*1)/(0:, a™)] = Bt*(a, M).
Suppose, further, that p € At*(a, M)\Bt*(a, M) and, for nZ1,
O:pa”)=8,+Su+...+S,

is a reduced secondary representation with \/(0:S,)=p and V(0:S,;)=p; (1 =i=t). Put
T,:=S.,+...+S,. Then we may arrange the S,; (1=i=t) so that, for all n=|,
Sni © S,.+1; and after this arrangement we have, for all n 2 |,

T,+12 T, and At(T,) = Att(0:, a™)\{p}.
Moreover, for all n Z |,
(0:p @) = (0:p a') + T, 4)

Proof. The first part is easy. So we prove the second part. We prove this by
induction on n 2 1. For n =/ there is nothing to prove.

Induction step. Assume (4) when n=r=/ and consider the case where n=r+1.
Obviously T, + (0:) a’) = (0:p a’*!). We show that the reverse inclusion also holds.
Suppose, on the contrary, that (0:, ") # T,,, + (0:p, a'). So

(04 )T + (024 ') #0
and
0% [(0:g @ /(T + (0:ag &)= (1 + Trr) + 01y aN/(T1y + (024 ')
=[Sr1+ (Tosr + (0:pg V[ Tri1 + (04 0]
=S8, 1 /[(Trs1 + (0: al)) NS,.1]

which is a homomorphic image of §,,; and hence p-secondary.
Next, by the induction hypothesis,

T+ (04 a) 2 T+ (0:p 0) = (0:p "),
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and hence the p-secondary A-module (0:4 a"')/(T,., + (0:p a’)) is isomorphic to a
quotient module of (0:p a™*")/(0: a”). Therefore p € Bt*(a, M) by Theorem 1.1 (2) and
this is a contradiction. The proof is now complete.

LemMMA 3.2. Let M #0 and p be a prime ideal of A and S = A\p. Further, suppose
that for some k € N, S(0:p, p*) # 0, where S(0:4, p*) is defined as in Definition 1.4, that is,
S(0:0 p*) = (M x(0:p, ¥). Then S(0:4, p*) is a p-secondary submodule.

xeS

Proof. Let N be a g-secondary submodule of (0:, p¥) which is such that gN S =@.
Then p*N =0 and p < q; so p = q. Thus it is immediate from Lemma 1.3 that $(0:,, p*) is
p-secondary.

Lemma 3.3. Let M #0. Suppose that for nZ1, p e Att(0:p, ") and S = A\p. Then
there exists k € N such that S(0:4 p*) is p-secondary; furthermore, S(0:4, p*) contains the
p-secondary component of (0:pa') in any reduced secondary representation of it.
(S(0:p b¥) is the same as in Lemma 3.2.)

Proof. Suppose that (0:4a')=S+S,+...+S, is a reduced secondary repre-
sentation with §; p-secondary. By [2, Lemma 3], there exists a finitely generated ideal b
such that b p and (0:p 6") = (0:4 p") for all neN. Thus, since V(0:5)=p and b is
finitely generated, there is k € N such that

Sy < (0:41 1%). (5)

Also by Proposition 1.5, there is a € § so that S(0:,, p*) = a(0:, b*) and so, in view
of (5), we have

aS; =8, < S(0:p p*). (6)
So §(0: p*) # 0 and hence, by Lemma 3.2, S(0:,, p*) is p-secondary. The last assertion is
(6).
Now we prove the result which was promised earlier.

THEOREM 3.4. Let M #0 and p be a prime ideal of A and S = A\p. (M is an Artinian
A-module and a is a proper ideal of A.) Then p € At*(a, M)\Bt*(a, M) if and only if there
exists k € N such that for all sufficiently large n, S(0:4 *) is a term of a reduced secondary
representation for (0:p, a”), where S(0:, b*) is the same as in Lemma 3.2.

Proof. (=) Suppose that p € At*(a, M)\Bt*(a, M) and suppose that [ is as in Lemma
3.1. Let At*(a, M) ={p, by, ..., b,} and, for n =/, suppose that

O:ppa)=S8,+ S +...+8S,

is a reduced secondary representation with V(0:5,)=p and V(0:5,;))=p;, (1=i=r). By
Lemma 3.1, for n 21, (0:, a") =(0:4, a') + T, where T, is a submodule of (0:, a”) such
that 7,,, 2 T, and Att(T,) = Att(0:», a")\{p} (n = /). By Lemma 3.3, there is k € N such
that S, < S(0:, b*) and S(0:,, p*) is p-secondary.
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Now let n 2 max{k, /}. Then, by Lemma 3.1,
0 a")=(0:p )+ T, =(S+ L)+ T, =5+ (L +T,)
=5+T,
e SO: P+ T,
and S(0:, p*) + T, < (0:,, a”) obviously. Thus
(0:p @™) = 8(0: 4, p*) + T, for all n = max{k, {}.

(&) Suppose that there is k € N such that $(0:,, p¥) is a term of a reduced secondary
representation of (0:,, a”) for sufficiently large n. Then S(0:,, p*) # 0 and thus, by Lemma
3.2, p-secondary. Let

(0:p a")=85(0: 0 *) + S, +. .. + S, (n is sufficiently large)

be a reduced secondary representation. Then obviously p € At*(a, M).
Next, we have

(0: @)/ (0:p ™) = (S(0:4g D) + Spsir + - - + 8,1/ (024 a7)
= [(S(0:pr P*) + (0:p a™))/(0: a™)] + g [(Sns1j + (0:pr a™))/(0:p a™)],

and the first term is 0. Thus p ¢ Bt*(a, M) and hence p € At*(a, M)\Bt*(a, M). The
proof is now complete.

REFERENCES

1. M. Brodmann, Asymptotic stability of Ass(M/I"M), Proc. Amer. Math. Soc. 74 (1979),
16-18.

2. D. Kirby, Artinian modules and Hilbert polynomials, Quart. J. Math. Oxford Ser. (2) 24
(1973), 47-57.

3. D. Kirby, Coprimary decomposition of Artinian modules, J. London Math. Soc. (2) 6
(1973), 571-576.

4. 1. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia
Mathematica 11 (1973), 23-43.

5. S. McAdam, Asymptotic prime divisors, Lecture Notes in Mathematics 1023 (Springer,
1983).

6. D. G. Northcott, Generalized Koszul complexes and Artinian modules, Quart. J. Math.
Oxford Ser. (2) 23 (1972), 289-297.

7. R. Y. Sharp, Asymptotic behaviour of certain sets of attached prime ideals, J. London
Math. Soc. (2) 34 (1986), 212-218.

DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY OF SHEFFIELD

Hicks BUILDING

SHEFFIELD S3 7RH

https://doi.org/10.1017/50017089500007382 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500007382

