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Hanging droplets from liquid interfaces
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The impact of a heavier droplet falling into a deep pool of lighter liquid is
investigated using three-dimensional numerical simulations. We demonstrate that the
heavier droplets can hang from the surface of a lighter liquid using surface tension.
The impact phenomenon and the evolution of the heavier droplet as a function of
its size and release height are explored. A theoretical model is also formulated to
understand the role of different forms of energy associated with the hanging droplet.
We further solve the force balance equations for the hanging droplets analytically, and
demonstrate that the results obtained from our simulations match very well the analytical
solution. This research offers opportunities in many areas, including drug and gene
delivery, encapsulation of biomolecules, microfluidics, soft robots, and remediation of
oil spills.
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1. Introduction

Small living creatures such as water striders, beetles and mosquito larvae use surface
tension to stand, walk, leap or hang on the surface of water (Hu & Bush 2005; Bush
& Hu 2006; Feng et al. 2007; Vella 2015; Lee, Kim & Lee 2017). Inspired by these
natural occurrences, researchers have developed millimetre-scale robots (Koh et al. 2015;
Hu et al. 2018) for transport across the surface of a liquid that might be useful in
targeted drug delivery, minimal invasive surgery, and other bio-engineering applications.
These robots feature a hydrophobic surface with strong interfacial tension that prevents
the body from breaking the liquid surface and sinking. Once the body rests at the
surface, additional locomotion can be provided utilizing the techniques described by
Hu et al. (2018), Jiang et al. (2019) and Grosjean, Hubert & Vandewalle (2018). Many
other biomedical applications require encapsulation of one liquid in another. Examples
include separation (Albertsson 1986; Zhang et al. 2016; Li et al. 2018) or encapsulation
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(Orive et al. 2003; Delcea, Möhwald & Skirtach 2011) of biomolecules and cells. In
this context, aqueous two-phase systems (Hann et al. 2016; Hann, Stebe & Lee 2017;
Chao et al. 2018; Xie et al. 2019), formed using a mixture of dextran and poly(ethylene
glycol) (PEG) which phase separates to form two immiscible aqueous phases, are widely
used.

We perform three-dimensional numerical simulations on two immiscible aqueous fluids
to demonstrate that a droplet of higher density can either hang from the surface like
mosquito larvae, bounce on the surface like water striders, or form a shroud that completely
wraps the denser fluid as it sinks in the pool of a lighter liquid. As the drop makes
contact with the pool, the evolution of the three-phase contact line (TPCL) plays a major
role in the dynamics of a drop hanging or sinking from the surface. It will be shown
using force balance equations that during the hanging process, the surface tension force
balances the heavier droplet at the surface of the pool. The size of the droplet and its initial
kinetic energy are two of the key parameters that dictate the outcome in this situation.
Xie et al. (2020) presented experimentally a similar phenomenon of hanging (Phan
et al. 2012; Phan 2014) and wrapping (Kumar et al. 2018) using an aqueous two-phase
system of a dextran solution containing polycations, and a PEG solution containing
polyanions. In the presence of oppositely charged polyelectrolytes, after coming into
contact, the solutions create structured coacervate sacs of negligible mass and thickness
at their interface. These coacervate sacs effectively increase the interfacial tension
between the two solutions, resulting in hanging of the heavier droplets from the pool
surface.

2. Methods

The volume of fluid (VOF) approach of Hirt & Nichols (1981) serves as a foundation
for calculations involving two fluids separated by a sharp interface. The VOF approach
achieves excellent compliance with mass conservation, but it can be difficult to capture
the geometric features of a complex interface. Osher & Sethian (1988) introduced the level
set (LS) method, which is an efficient interface capture technique. This approach captures
the interface properly, although it may violate mass conservation in some circumstances.
A combination of the LS approach with the VOF method, known as the coupled level set
and volume of fluid (CLSVOF) method, can accomplish mass conservation and capture
the interface properly. The LS function is utilized exclusively to compute the geometric
characteristics at the interface in the CLSVOF technique (Sussman & Puckett 2000),
while the volume fraction is determined using the VOF method. Continuum surface
tension force by Brackbill, Kothe & Zemach (1992) has been used widely to evaluate
the source term due to surface tension. However, a free-energy-based surface tension force
model is proposed by Yuan et al. (2017) for simulation of multi-phase flows by the LS
method, which outperforms the previous continuum surface tension force model in terms
of accuracy, stability, convergence speed and mass conservation. Howard & Tartakovsky
(2021) also extended the conservative LS method for N fluid phases by introducing a
new compression–diffusion equation that handles large deformation and triple junctions
more accurately. In order to solve the N-phase flow problems, algorithms with N
(Ruuth 1998), N − 1 (Smith, Solis & Chopp 2002; Zlotnik & Díez 2009), N(N − 1)/2
(Starinshak, Karni & Roe 2014a,b) and log2 N (Chan & Vese 2001) LS functions have been
used.
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2.1. Governing equations
Considering incompressible Newtonian fluids, the mass and momentum conservation
equations for fluids 1, 2 and 3 are given by

∇ · U = 0, (2.1)

ρ

(
∂U
∂t

+ U · ∇U
)

= −∇P + ∇ · (2μD) + F + Fst, (2.2)

where U is the velocity vector field with components (U1, U2, U3), P represents the
dynamic pressure, ρ and μ are scalar fields representing density and dynamic viscosity, D
is the deformation tensor, and F and Fst are body force and surface tension force per unit
volume. Here,

D = 1
2

(∇U + ∇UT)
. (2.3)

Gravitational force is the only body force acting on all the fluids in our case. Surface
tension force, as given by Howard & Tartakovsky (2021), is used in the momentum
equation as

ρ

(
∂U
∂t

+ U · ∇U
)

= −∇P + ∇ · (2μD) + ρg +
3∑

i,j=1

∇ ·
(

3
2

σijε ∇ϕi × ∇ϕj

)
.

(2.4)

Here, g is the acceleration due to gravity, and σij represents the surface tension at the
interface between the fluids i and j. The interfacial numerical thickness ε is defined based
on grid size �x as ε = kε �x; for all the simulations reported here, kε = 1.5 is used. The
surface tension force is obtained using the free energy surface tension force model. The
free energy density for N immiscible fluids is given by Dong (2014).

In the present work, CLSVOF is used, which combines the advantages of both the LS
method and the VOF method. The LS function is defined as a signed distance function
from the phase interface such that

φi(x)

⎧⎨
⎩

> 0 if x ∈ Ωi,
= 0 if x ∈ Γi,
< 0 if x /∈ Ωi,

(2.5)

where Ωi denotes the subdomain containing the fluid of the ith phase, and Γi is the sharp
interface of the ith phase. The VOF function fi is the fraction of the cell volume occupied
by the fluid of phase i and satisfies the condition

3∑
i=1

fi = 1. (2.6)

The scalar field ϕi used in (2.4) is defined using the LS function as

ϕi = H(φi). (2.7)

Here, the Heaviside function is defined as

H(φ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if φ < −ε,

1
2

[
1 + φ

ε
+ 1

π
sin

(
πφ

ε

)]
if |φ| = ε,

1 if φ > +ε.

(2.8)
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The varying density and viscosity fields are also defined using the Heaviside function as

ρ = ρ1 H(φ1) + ρ2 H(φ2) + ρ3 [1 − H(φ1) − H(φ2)], (2.9)

μ = μ1 H(φ1) + μ2 H(φ2) + μ3 [1 − H(φ1) − H(φ2)]. (2.10)

The motion of interfaces is tracked by solving explicitly the advection equation for both
LS and VOF functions:

∂φi

∂t
+ ∇ · (Uφi) = 0, (2.11)

∂fi
∂t

+ ∇ · (U fi) = 0. (2.12)

2.2. Boundary conditions
The governing equations are solved in a three-dimensional Cartesian space. A closed
system is considered for the simulations such that no fluid enters or leaves the
computational domain:

U · n = 0. (2.13)

The no-slip boundary condition is assumed at all the boundaries of the computational
domain. The boundaries of the computational domain are kept sufficiently away from the
droplet to ensure that it does not affect the dynamics of the flow:

n × U = 0. (2.14)

Therefore, a Dirichlet boundary condition is used for the velocity field on all the
boundaries. On the other hand, a Neumann boundary condition is used for pressure at
the boundaries:

n · ∇P = 0. (2.15)

2.3. Numerical methods
The governing partial differential equations are advanced in time using an explicit
third-order Runge–Kutta method (Williamson 1980). A staggered grid is used for the
discretization in space where the vector field quantities (such as U) are defined at the
cell face centre and the scalar field quantities (P, ρ, μ, φ, f ) are defined at the cell
centre. The advection terms are discretized using a second-order ENO scheme as used
by Chang et al. (1996) and Son & Dhir (2007). The viscous terms are discretized using a
second-order central difference scheme. We note here that the viscosity μ is not constant
throughout the domain, so special care has to be taken to include μ in the discretization
scheme. The pressure Poisson equation, which is employed to project a velocity field into
a divergence-free space, is solved using a parallel multigrid iterative solver (Pal 2020; Pal
& Chalamalla 2020) to obtain the dynamic pressure. To advance in time for the advection
equations of the LS and VOF functions, we use an operator splitting algorithm (Son 2003),
in which we solve (2.11) and (2.12) in one direction at a time. The operator splitting is of
second-order accuracy in time, and the order of sweep direction at each time step is also
alternated. The solution of the advection equation for the LS function does not satisfy the
signed distance property from the interface. For this, the LS function is re-initialized at
each time step after the operator splitting algorithm (Son 2003).
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To perform a three-phase flow simulation (N = 3), only two (N − 1) phase equations
are solved using the CLSVOF algorithm. The numerical solution to these N − 1 phase
equations generates some voids and overlaps between the phases. By using the N − 1
phase equation, it is assumed that the Nth phase occupies the void region, and this avoids
the singularity problems in the computational domain:

f3 = 1 − f1 − f2, (2.16)

H(φ3) = 1 − H(φ1) − H(φ2). (2.17)

A VOF correction is performed to overcome the overlap issues, such that

f2 = 1 − f1 if f1 + f2 > 1. (2.18)

This VOF correction is biased towards phase 1 as we assume that phase 1 represents
the primary fluid of interest. The coupled nature of the CLSVOF algorithm appropriately
adjusts the LS function for this VOF correction.

A constant time step size is used such that it satisfies the following time step restrictions.
First, the standard Courant–Friedrichs–Lewy (CFL) condition is satisfied:

�tu � CFL
|u|max

�x
+ |v|max

�y
+ |w|max

�z

. (2.19)

According to Brackbill et al. (1992), when treating the surface tension term explicitly, the
time step must be sufficiently small to resolve the capillary waves phenomena. This gives
another time step restriction as

�tσ � CFLσ

√
min(ρi + ρj) × min(�x, �y, �z)3

max(4πσij)
, i /= j. (2.20)

We have used CFL = 0.5 and CFLσ = 0.5 for all cases. Other time step restriction
criteria based on viscosity and gravity give more relaxed values. A constant time step
is used such that it satisfies the above-mentioned restrictions sufficiently throughout the
simulation.

3. Validation of numerical approach

3.1. Advection test
In this study, a parallel three-phase incompressible flow solver is used that is an extension
of an existing two-phase flow solver. Hence an advection test on a two-phase flow solver
using parallel computations was performed first. The flow domain Ω is a cube of length 1,
and a sphere of radius 0.15 is placed at x = (0.35, 0.35, 0.35). A three-dimensional shear
deformation field is defined as

U1 = 2 sin2(πx) sin(2πy) sin(2πz) cos
(πt

T

)
, (3.1)

U2 = − sin2(πy) sin(2πx) sin(2πz) cos
(πt

T

)
, (3.2)

U3 = − sin2(πz) sin(2πx) sin(2πy) cos
(πt

T

)
, (3.3)

with time t and time period T = 3.0. The cos(πt/T) term makes the velocity field periodic
with respect to time, and ensures that the time integral over a time period at any point in
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t = 0 t = 0.3 t = 0.6 t = 0.9 t = 1.2

t = 3.0 t = 2.7 t = 2.4 t = 2.1 t = 1.8

t = 1.5

Figure 1. Evolution of the three-dimensional sphere computed with the CLSVOF method on
mesh size 1/256.

Mass error (%) Grid resolution Numerical method

Present work 0.0015 256 × 256 × 256 CLSVOF
Klitz (2015) 0.3 256 × 256 × 256 CLSVOF
Wang et al. (2009) 0.27 150 × 150 × 150 CLSVOF
Ménard et al. (2007) <0.03 150 × 150 × 150 CLSVOF
Enright et al. (2002) 2.6 100 × 100 × 100 Hybrid particle LS method

Table 1. Mass error of a deformed sphere at t = 3.0.

the domain results in zero. This means that any particle moving in the domain will return
to its initial position after one time period. Hence it is expected that the sphere will deform
under the shear velocity field, get stretched, and then eventually return to its initial shape
and position.

Results were obtained using the CLSVOF algorithm on a 1/256 mesh size grid.
Figure 1 shows the deformation experienced by the sphere over one time period. The
deformed shape at t = 1.5 corresponds to maximum stretching, while at t = 3.0, the
sphere has returned to its original position. The CLSVOF algorithm is able to resolve
the thin-stretched region at t = 1.5, similar to Ménard, Tanguy & Berlemont (2007). It
can be observed from table 1 that the mass error obtained from our simulations at t = 3.0
when the sphere returns to its original position is comparable with the results reported by
Enright et al. (2002), Ménard et al. (2007), Wang et al. (2009) and Klitz (2015).

3.2. Rising bubble in a stratified liquid column
A three-phase flow problem involving a bubble in a stratified liquid column with two
liquids having different densities is also used to validate the numerical solver further.
An air bubble is placed inside the denser liquid and is allowed to rise gradually and
interact with the interface. For an air bubble rising in a stratified liquid column with two
liquids, it can either get trapped at the interface of the liquids or penetrate the interface.
There is also a possibility that the bubble entrains the heavy-phase liquid if it does
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Surface tension (N m−1) Density (kg m−3) Viscosity (Pa s)

σgas–liquid 0.07 Bubble 1 Bubble 10−4

σliquid–liquid 0.05 Heavy liquid 1200 Heavy liquid 0.15
Light liquid 1000 Light liquid 0.1

Table 2. Physical properties of fluids for the rising bubble case.

Time (s)

Ve

0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.5

1.0

1.5

2.0

2.5

3.0
(b)

Present results

Boyer et al. (2010)

(×10–6)

ρ = 1 kg m–3

Boyer et al. (2010)

ρ = 1000 kg m–3

ρ = 1200 kg m–3

(a)

Figure 2. Simulation of a rising air bubble in a stratified liquid column with radius r = 8 mm. Comparison
between present simulations and results obtained by Boyer et al. (2010) for (a) shape of a rising bubble at
time = 0.39 s, and (b) temporal evolution of entrained volume Ve of the heavy liquid in the light liquid.

penetrate the interface. The condition for a bubble penetrating the interface and the heavier
liquid getting entrained, in terms of the radius of the bubble, is given by Greene, Chen &
Conlin (1988, 1991) and Boyer et al. (2010). Theoretically, the bubble would get trapped
at the interface if the radius is r < 2.76 mm, and penetrates the interface if r > 2.76 mm.
Simulations of a rising bubble in a stratified column with the physical properties of the
fluids the same as those used by Boyer et al. (2010), as mentioned in table 2, are performed
for different radii. We have observed that a bubble of radius r = 2.00 mm gets trapped at
the interface, and a bubble of radius r = 4.00 mm penetrates the interface with very little
entrainment of the heavier liquid. For the case with radius r = 8 mm (see figure 2a),
the bubble penetrates the interface while also entraining a large volume of the heavier
liquid. This levitated column of heavy liquid elongates and necks down to release a glob
of the heavier liquid that is successfully entrained into the lighter liquid, as observed by
Greene et al. (1991) in their experimental studies. Figure 2(b) depicts the time evolution
of the entrained volume Ve of the heavier liquid into a lighter liquid, which is calculated
as the amount of the heavy liquid above the initial liquid–liquid interface position. The
results obtained match the results of Boyer et al. (2010), which were obtained using the
Cahn–Hilliard model.

4. Case set-up

Figure 3(a) shows the computational domain used in the present simulations. A spherical
droplet of diameter D is placed slightly above the centre of the cubical computational
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4.5D
(a) (b)

(c)4.5D

0.25D Pool

liquid Drop liquid

Pool

liquid Drop liquid

γCDγCP

γC

γPool γDrop

γPool
γDrop

β

α ϕ

ββ

ϕα

3D

D
ρ3, μ3

ρ2, μ2

ρ1, μ1

Figure 3. (a) Computational domain for the study of hanging droplets. Coacervate model and contact angles
at the triple-phase contact line. (b) Interfacial tension at the coacervate with two surfaces and finite coacervate
thickness. (c) Representation of the coacervate with a single surface.

domain of side length 4.5D. The depth of the pool is taken as 3D in order to ensure that
the droplet is sufficiently far away from the computational boundaries. In the experiments
(Xie et al. 2020), the droplets were released from varying heights, but in order to minimize
the computational domain size, the droplets are released from a fixed height of 0.25D but
with a different initial velocity. The impact of the droplets is considered for very low
Reynolds numbers (Re) and Weber numbers (We). The Reynolds number represents the
ratio of inertial forces to viscous forces within a fluid, and the Weber number is the ratio of
dynamic pressure (i.e. inertia force) to the surface tension force. The Re and We values for
this investigation are in the ranges 2–43 and 1.8–101, respectively, signifying that splashing
and jets are not expected during this impact. All the simulations are performed on grid size
1/128 in all three directions.

The drop liquid is taken as phase 1, the pool liquid is taken as phase 2, and the air is
taken as phase 3, for the three-phase flow solver. Figure 3(b) shows the coacervate layer
between the drop and pool (immiscible) liquids, where γDrop and γPool are the surface
tension values for the drop liquid and the pool liquid. The interfacial tensions at the
coacervate–drop and coacervate–pool interfaces are given by γCD and γCP. Generally, the
coacervate thickness is assumed to be very small, and for the simplicity of modelling, it
is taken as a single surface. The two interfacial tensions at the coacervate are combined
to give a single interfacial tension at the drop–pool interface (γC = γCD + γCP), as shown
in figure 3(c). The physical properties of the fluids used in the present investigation are
similar to those used by Xie et al. (2020) and are given in table 3.

5. Results

5.1. Hanging, intermediate and wrapping droplets
We perform three-dimensional numerical simulations for the above-mentioned
configuration and find that the heavier droplet hangs from the lighter liquid interface for
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Surface tension (N m−1) Density (kg m−3) Viscosity (Pa s)

σ12 = γC = 0.02 ρ1 = ρDrop = 1055 μ1 = μDrop = 6.0 × 10−2

σ13 = γDrop = 0.0356 ρ2 = ρPool = 1014 μ2 = μPool = 7.05 × 10−3

σ23 = γPool = 0.0256 ρ3 = ρAir = 1.3 μ3 = μAir = 1.6 × 10−5

Table 3. Physical properties of fluids for the hanging droplet case.

certain diameters and impact velocity of the droplet. Figure 4(a) shows the evolution of a
hanging droplet (see supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.
137) on the impact of a drop of diameter D = 2 mm, released from height h = 4.98 mm
(impact velocity

√
2gh = 0.313 m s−1). Here, t∗ = t/τc, where capillary time τc is defined

as τc =
√

ρ1D3/σ12. As the droplet makes a transition from hanging to sinking, an
intermediate case (see supplementary movie 4) is also observed, as shown in figure 4(b)
for a droplet of diameter 0.6 mm released from height of h = 61.67 mm (impact velocity√

2gh = 1.1 m s−1). Figure 4(c) shows the case for a 2 mm diameter droplet released from
height h = 50.97 mm (impact velocity

√
2gh = 1 m s−1), in which the droplet sinks into

the pool upon impact (see supplementary movie 7). It is observed that the droplet begins
to slow down even before it makes contact with the pool. As the drop moves closer to the
pool, a thin film of air separates the droplet (Duchemin & Josserand 2020) from the pool.
This acts as a cushion and is responsible for the decrease in the impact velocity of the
droplet. As the droplet makes contact with the pool, the TPCL diameter expands rapidly.
After the impact, the droplet loses its kinetic energy drastically by displacing a portion of
the pool towards the pool surface. This creates a crater in the pool, shrinking the TPCL
diameter. The droplet sits in this crater and hangs from the surface. After the droplet loses
all its kinetic energy, it starts moving upwards and keeps oscillating with a very small
amplitude until it reaches an equilibrium height. The TPCL diameter again increases
during this process. The evolution of the non-dimensional TPCL diameter with respect
to the non-dimensional time for different hanging droplet cases is shown in figure 5(a).
A capillary wave (Che & Matar 2018) is formed upon the impact of the droplet. It is also
observed that the equilibrium height and the shape of the hanging droplet are independent
of the release height of the droplet as long as it hangs from the surface. This independence
of the final shape of the droplet on the impact velocity or release height differs from the
results presented by Xie et al. (2020) owing to the representation of the coacervate with a
single surface.

Figure 5(b) shows the variation of the height of the centre of mass of the droplet from
the pool surface for various cases. It can be observed that there exists a critical depth upon
crossing which the droplet gets wrapped. Droplets that do not cross this critical depth tend
to hang from the pool surface. The critical depth is found to be 0.74 times the diameter of
the droplet. We note that the critical depth is greater than half the diameter of the droplet,
i.e. for a brief moment, the droplet goes completely below the pool surface, displacing
the pool fluid. Since the computational domain is taken as a closed container such that no
fluid exits the domain, the displaced fluid increases the pool height. Increased pool height
results in additional pressure head which pushes the droplet upwards. However, if the pool
height increases significantly, then it covers the top surface of the droplet and wraps it
completely. The droplet sinks when it gets wrapped by the pool fluid.

Simulations for different droplet diameters and release heights are performed (see
supplementary movies 1–9). It is observed that the tendency of a droplet to hang from
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t∗ = 0.097 t∗ = 0.292 t∗ = 0.487 t∗ = 0.974 t∗ = 3.894

t∗ = 0.053 t∗ = 0.213 t∗ = 0.569 t∗ = 1.244 t∗ = 1.500

t∗ = 0.049 t∗ = 0.146 t∗ = 0.292 t∗ = 0.584 t∗ = 0.682

(a)

(b)

(c)

Figure 4. Evolution of (a) hanging droplet of 2 mm diameter released from 4.98 mm height, (b) intermediate
droplet of 0.6 mm diameter released from 61.67 mm height, and (c) wrapping droplet of 2 mm diameter released
from 50.97 mm height.

the pool surface increases as the droplet radius or the release height is reduced. A droplet
of diameter 2 mm released from height 10 mm gets wrapped and sinks into the pool.
In contrast, a droplet of diameter 0.4 mm released from height 60 mm hangs from the
pool surface. Figure 5(c) shows both the hanging and wrapping states as functions of the
droplet diameter and the release height. A nonlinear curve divides both states. There are
also a few cases that lie very close to the curve dividing the two states. These are the
cases where a droplet, upon impact with the pool, briefly gets stuck at the pool surface and
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Figure 5. (a) Variation of non-dimensional TPCL diameter with respect to the non-dimensional time for
different hanging droplet cases. Here, d∗ is defined as d∗ = d/D, where d is the TPCL diameter. (b) Variation of
the non-dimensional height of the droplet for different cases of hanging and wrapping droplets. State diagrams
for hanging and wrapping droplets as functions of (c) height and diameter, (d) excess energy and diameter.

slowly moves downwards, eventually sinking into the pool. The cases close to the curve
dividing the two states are the intermediate cases.

5.2. Energy balance for hanging droplets
Empirical energy calculations are performed to justify hanging and wrapping states for
different cases. It is assumed that the droplet is released from height h, and the entire
potential energy is converted into kinetic energy at the time of impact:

EKE = π

6
D3ρ1gh. (5.1)

This is the entire energy available with the droplet that is used to overcome different
forms of energy requirements. Three different forms of energy loss are considered here for
energy balance. First, a part of the available energy is spent to displace the pool fluid to
the pool surface to create a crater for the droplet. It is observed from figure 5(b) that if a
droplet is getting wrapped, then it needs to attain a critical depth. From this, the displaced
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volume �V is approximated as

�V ≈ π

4
D2 × 0.74D + π

12
D3. (5.2)

Here, it is assumed that the crater is cylindrically shaped with a hemisphere at one of its
ends. The centre of mass of the crater is given as

zc =
π

4
D2 × 0.74D × 0.74

2
D + π

12
D3 ×

(
0.74 + 3

16

)
D

π

4
D2 × 0.74D + π

12
D3

. (5.3)

This zc = 0.5431D is the height by which the crater needs to be lifted, and the energy
required for this is calculated as potential energy loss. Taking a correction factor kPE, the
potential energy loss is evaluated as

EPE ≈ kPE × ρ2 �V gzc = kPE × 4.4916ρ2D4. (5.4)

The correction factor for the potential energy loss is taken as unity. By taking the shape of
the crater as defined above, change in surface area can be evaluated for different surfaces.
Taking the product of these surface changes with their respective surface tension values
gives an estimate of the energy required for the destruction and creation of new surfaces:

ES ≈
(

0.74πD2σ23 + π

2
D2σ12

)
−

(π

2
D2σ13 + π

4
D2σ23

)
. (5.5)

Using the values of σ12, σ23 and σ13, this energy is further approximated as

ES ≈ kS × 0.005πD2. (5.6)

The actual crater is not exactly cylindrical, but rather has curved edges and capillary waves.
Therefore, the actual surface generated should be bigger than estimated. As a result, the
adjustment factor kS should be greater than 1. The liquid in the pool is highly viscous,
hence large viscous losses are also expected due to the motion of the droplet into the
pool. Since the force experienced by a droplet when moving through another fluid is
not known exactly, the following assumptions are made to approximate this energy loss:
(a) the droplet is assumed to be a rigid sphere moving through the pool; (b) flow speed
past the droplet is taken as constant. Under these assumptions, the drag force experienced
by the droplet is given by

Fd = 1
2 Cdρ2V2 × A, (5.7)

where A = πD2/4 is the frontal area. The distance travelled by the droplet zd is the sum
of the height of the centre of mass of the drop at the time of impact above the interface
(0.5D) and the critical depth (0.74D). We also have to include a correction factor kV to
accommodate the aforementioned assumptions. This gives the viscous losses as

EV ≈ kV × 1
2 Cdρ2V2Azd = 0.155kVCdρ2V2πD3. (5.8)

When the droplet descends from the interface, its velocity decreases, and its shape changes,
resulting in a decrease in the drag coefficient. Therefore, the overall viscous losses will be
lower than the estimated value and should also be accounted for by the correction factor.
Here, Cd is the drag coefficient for flow past a sphere and is dependent on the droplet
diameter D, impact velocity V , density ρ2, and viscosity μ2 of the pool. The Reynolds
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number Re = ρ2VD/μ2 satisfies 1 < Re < 1000. Hence the drag coefficient is defined
using the relation given by Schiller and Naumann (Flemmer & Banks 1986). Considering
the above-mentioned four energies, it is determined whether a droplet, if it crosses the
critical depth, still has additional energy to move further downwards. Excess energy is
calculated as

Eexcess = EKE − EPE − ES − EV . (5.9)

The values of the correction factors kS and kV are tuned such that the available data set for
the final state of droplet impact gives a distinct distribution in terms of the excess energy.
Figure 5(d) shows the state diagram for hanging and wrapping droplets as functions of
excess energy and the diameter of the droplet. It can be seen that the droplets with sufficient
energy to spend on different losses tend to get wrapped and sink into the pool, whereas the
droplets that have less energy to begin with, such that they have negative excess energy,
tend to hang from the pool surface. There are also intermediate cases where the available
energy is nearly equal to the energy required and thus has close to zero excess energy.
These droplets initially lose their entire kinetic energy upon impact and then gradually
sink into the pool. It is observed that the majority portion of the available energy is spent
to overcome the viscous loss, and the remaining energy is spent for surface energy. A very
small part of the available energy is spent on potential energy loss. Thus a larger droplet
with higher initial energy can still hang from the surface if either the viscosity of the pool
fluid is increased or the interfacial tension value used for the coacervate is increased. We
note here that the excess energy is just a function of D and h, and it converts the nonlinear
distribution of hanging and wrapping droplets in figure 5(c) into a linear distribution in
figure 5(d).

5.3. Force balance for hanging droplets
The viscous force has a significant impact on the droplet’s rate of descent; nevertheless,
after it has reached equilibrium, it is the surface tension force and the buoyant forces that
are responsible for maintaining the droplet’s attachment to the surface by balancing its
weight. We present the calculations for the force balance based on an analytical approach
and the outcomes of the numerical simulations. The weight of the droplet is calculated as

Fw = V1 × ρ1 × g. (5.10)

Here, V1 is the total volume of the droplet. The buoyant force is defined as

Fb = V2 × ρ2 × g. (5.11)

Here, V2 is the volume of pool fluid displaced by the droplet below the TPCL. It is
worth noting that the droplet at equilibrium is not completely immersed beneath the pool’s
surface. A little portion of the droplet remains above the TPCL line. There are also pockets
of air bubbles trapped between the droplet and pool interfaces. The volume of these air
bubbles is also included in V2 to calculate the buoyant forces. Now consider a system with
a droplet including the droplet–air interface and the droplet–pool interface. The forces
acting on the system in the vertical direction are only the gravitational force, the buoyant
force, and the surface tension due to the air–drop interface and drop–pool interface. Since
the hanging droplet system consists of two different surfaces wrapped around a common
ring, i.e. the TPCL, the surface tension forces due to each of the two interfaces can be
evaluated by taking the product of the pressure jump across the interface and the projected
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Droplet diameter, D (m) 2.00 × 10−3 1.60 × 10−3 1.20 × 10−3 0.80 × 10−3

Droplet release height, h (m) 5.00 × 10−3 10.50 × 10−3 10.40 × 10−3 32.60 × 10−3

Total volume of the droplet, V1 (m3) 4.19 × 10−9 2.14 × 10−9 9.05 × 10−10 2.68 × 10−10

Displaced volume from pool, V2 (m3) 3.59 × 10−9 1.84 × 10−9 7.64 × 10−10 2.30 × 10−10

Weight of droplet, Fw (N) 4.30 × 10−5 2.26 × 10−5 9.49 × 10−6 2.81 × 10−6

Buoyant force, Fb (N) 3.58 × 10−5 1.83 × 10−5 7.60 × 10−6 2.28 × 10−6

Surface tension force, Fσ0 (N) 7.60 × 10−6 3.85 × 10−6 1.77 × 10−6 4.91 × 10−7

TPCL diameter, d (m) 2.08 × 10−3 1.65 × 10−3 1.24 × 10−3 0.84 × 10−3

Radius of curvature (mm)
R12 1.076 0.868 0.651 0.444
R13 2.140 1.658 1.210 0.806

Pressure jump (Pa)
�p12 37.186 46.075 61.467 90.020
�p13 34.932 44.244 59.970 89.128

Surface tension force, Fσ (N) 7.66 × 10−6 3.91 × 10−6 1.81 × 10−6 4.95 × 10−7

Table 4. Calculation for surface tension force balance for the hanging droplet.

area at their boundary. The pressure jump at the interface can be calculated using Young’s
Laplace equation:

�pij = 2σij

Rij
, (5.12)

where Rij is the radius of curvature of the interface between the phases i and j. Therefore,
the vertical force on the hanging droplet owing to the surface tension computed from the
values of R12 and R13 obtained from the simulations is given by

Fσ =
(

2σ12

R12
− 2σ13

R13

)
× πd2

4
. (5.13)

Based on the values of V1 and V2 obtained from our simulations, in order to satisfy the
force balance on the hanging droplet in the vertical direction, the ideal value of the vertical
component of surface tension force should be

Fσ0 = Fw − Fb. (5.14)

The Fσ values computed from the simulations are in fact very close to Fσ0, as
demonstrated in table 4 for four cases of hanging droplets signifying the dynamical
balance.

Our simulations show that the shape of a hanging droplet at equilibrium resembles
a combination of two spherical caps with varying radii. Hence we model the droplet
with two spherical sections of radii R12 and R13, respectively, as shown in figure 6(a).
Considering the two interfaces as part of purely spherical sections, the radius of curvature
and the TPCL diameter can be related as

d = 2R12 sin β = 2R13 sin φ. (5.15)

Using (5.15), the volumes of the upper and lower spherical sections, V13 and V12, can be
evaluated as

V13 = π

24 sin3 φ
d3(2 + cos φ)(1 − cos φ)2, (5.16)
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Figure 6. (a) Shape of droplet at equilibrium. (b) Contact angles β and φ versus diameter of the droplet at
equilibrium. (c) Radius of curvature for the interface versus diameter of the droplet at equilibrium. (d) Surface
tension force on the droplet versus diameter of the droplet at equilibrium.

V12 = π

24 sin3 β
d3(2 − cos β)(1 + cos β)2. (5.17)

The droplet and the pool fluids are taken as immiscible because there is no chemical
reaction taking place at the interface. Therefore, the volume of the droplet must be
conserved:

V12 + V13 = π

6
D3. (5.18)

Again using (5.15) in (5.13), the vertical surface tension force on the droplet is calculated
analytically as

Fσ,model = πd(σ12 sin β − σ13 sin φ). (5.19)

However, considering the vertical force balance on the droplet, i.e. using (5.14), (5.17) and
(5.16), we get

Fσ,model = ((ρ1 − ρ2)V12 + (ρ1 − ρ3)V13) g. (5.20)

Apart from the force balance on the droplet, the interfaces between the three phases, air,
droplet and pool, are also considered to be massless. Therefore, at the junction of the three
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phases, i.e. at the TPCL, the vertical and the horizontal surface tension forces due to the
three interfaces must balance each other (Phan et al. 2012; Xie et al. 2020). Therefore,

σ23 sin α − σ12 sin β + σ13 sin φ = 0, (5.21)

σ23 cos α + σ12 cos β − σ13 cos φ = 0. (5.22)

Eliminating α (see figure 3b) from (5.21) and (5.22), we get

(σ13 sin φ − σ12 sin β)2 + (σ13 cos φ − σ12 cos β)2 = σ 2
23. (5.23)

Equations (5.18), (5.19), (5.20) and (5.23) can be solved simultaneously to obtain the
values for β, φ, d and Fσ,model. Figures 6(b), 6(c) and 6(d) show an excellent match of
the contact angles (β and φ), radii of curvature for the two interfaces, and the surface
tension forces respectively between our simulations and the analytical solution obtained
by solving the force balance equations for the hanging drops.

6. Conclusions

In this work, the impact of a droplet into a pool of immiscible liquid is investigated
using three-dimensional three-phase flow simulations. The results from the numerical
simulations suggest that the droplet upon impact can either hang from the liquid surface
or get wrapped into the pool and sink eventually. In some rare cases, the droplet even gets
stuck at the interface and gradually sinks into the pool. All three cases obtained from the
numerical results are shown to happen in experiments of Xie et al. (2020) as well. Further,
a parametric study of the droplet impact is done to understand the effect of droplet diameter
and release height on the final state of the droplet. It is observed that a nonlinear curve in
terms of droplet diameter and release height separates the hanging and wrapping states. As
the droplet diameter or the release height is increased, the droplets move from the hanging
state to the wrapping state. It is observed that the shape of the droplet at equilibrium does
not vary with release height for hanging droplets. A hanging droplet of a given diameter
tends to have a unique final state. This behaviour of the hanging droplets is different from
the observation of Xie et al. (2020). The simplicity of the model used for the coacervate
is the probable reason for this divergence from the experimental results. This suggests that
the coacervate needs more sophisticated modelling for its physical properties even if it is
considered to have no mass.

Further, an approximate energy balance is presented for the droplet impact. It is shown
that the major portion of the kinetic energy available with the droplet is dissipated as
viscous losses. The remaining energy is converted to the surface and potential energy
owing to the formation of the crater. The energy balance is then used to determine whether
a given heavier droplet will float or sink in the pool of the lighter liquid. Additionally,
we solve the force balance equations of a hanging drop analytically at the equilibrium
position. The values of the contact angle, the radii of curvature, and the force due to surface
tension at the TPCL obtained from this dynamical balance show an excellent match with
the simulations.

A natural extension of this work will be to perform a parametric study to understand
the effect of other fluid parameters such as the viscosity and the surface tension values.
Furthermore, larger-sized droplets with much higher energy can be simulated to potentially
get some new states like droplets breaking off the surface leaving a secondary droplet at
the surface.

Supplementary movies. Supplementary movies of hanging, intermediate and wrapping droplets are
available at https://doi.org/10.1017/jfm.2023.137.
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