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The low-frequency modal and non-modal linear dynamics of an incompressible,
pressure-gradient-induced turbulent separation bubble (TSB) are investigated, with the
objective of studying the mechanism responsible for the low-frequency contraction and
expansion (breathing) commonly observed in experimental studies. The configuration of
interest is a TSB generated on a flat test surface by a succession of adverse and favourable
pressure gradients. The base flow selected for the analysis is the average TSB from the
direct numerical simulation of Coleman et al. (J. Fluid Mech., vol. 847, 2018, pp. 28–70).
Global mode analysis reveals that the eigenmodes of the linear operator are damped for
all frequencies and wavenumbers. Furthermore, the least damped eigenmode appears to
occur at zero frequency and low, non-zero spanwise wavenumber when scaled with the
separation length. Resolvent analysis is then employed to examine the forced dynamics
of the flow. At low frequency, a region of low, non-zero spanwise wavenumber is also
discernible, where the receptivity appears to be driven by the identified weakly damped
global mode. The corresponding optimal energy gain is shown to have the shape of a
first-order, low-pass filter with a cut-off frequency consistent with the low-frequency
unsteadiness in TSBs. The results from resolvent analysis are compared to the unsteady
experimental database of Le Floc’h et al. (J. Fluid Mech., vol. 902, 2020, A13) in a
similar TSB flow. The alignment between the optimal response and the first spectral
proper orthogonal decomposition mode computed from the experiments is shown to be
close to 95 %, while the spanwise wavenumber of the optimal response is consistent with
that of the low-frequency breathing motion captured experimentally. This indicates that
the fluctuations observed experimentally at low frequency closely match the response
computed from resolvent analysis. Based on these results, we propose that the forced
dynamics of the flow, driven by the weakly damped global mode, serve as a plausible
mechanism for the origin of the low-frequency breathing motion commonly observed in
experimental studies of TSBs.
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1. Introduction

Flow separation is a common phenomenon within fluid dynamics, which arises when a
fluid flow is no longer able to follow the trajectory imposed by a solid wall. Separated
flows exhibit a variety of detrimental effects, including reduced lift, increased drag, noise
emission and vibrations, all of which may negatively impact the performance of the
system under consideration. A distinct subset within separated flows is the category of
reattaching flows, where the flow reattaches to the wall, e.g. due to surface curvature or
a favourable pressure gradient. This category gives rise to so-called separation bubbles,
which are known to feature unsteadiness in a variety of spatial and temporal scales. In
the present contribution, we specifically consider turbulent separation bubbles (TSBs),
which occur when a turbulent boundary layer separates from the wall and reattaches
further downstream. We further focus our study on pressure-gradient-induced TSBs, where
detachment from a smooth surface occurs because of an adverse pressure gradient (Na &
Moin 1998). This is in contrast to flows where the separation line is fixed by the surface
geometry (Eaton & Johnston 1981).

Unsteadiness in pressure-induced TSBs typically occurs in three broad ranges of
frequencies that may be categorized by their Strouhal number St = fLb/Uref based on
the separation length Lb and a reference velocity Uref (Mabey 1972). For relatively high
values St > 1, fluctuations are caused mainly by turbulent motions that have their highest
amplitude in the attached flow upstream and downstream of the backflow region (Abe
2017; Le Floc’h et al. 2020; Wu, Meneveau & Mittal 2020). Within the recirculation zone,
medium frequencies centred at St ≈ 0.1–1.0 appear in the wall-pressure and velocity fields
due to the roll-up and shedding of vortices originating in the shear layer (Kiya & Sasaki
1983; Cherry, Hillier & Latour 1984). Finally, a low-frequency unsteadiness, typically
characterized by a large-scale contraction and expansion (‘breathing’) of the TSB, is often
observed at St ≈ 0.01–0.1 (Mohammed-Taifour & Weiss 2016). This is the main focus of
the present work.

To date, low-frequency unsteadiness in pressure-induced TSBs has been observed
mostly in high-speed flows, where it often occurs within shockwave/boundary layer
interactions (SBLIs) (Dolling 2001). There, the breathing of the TSB is associated with
a low-frequency, aperiodic oscillation of a separation shock that can generate strong
detrimental pressure and thermal loads on the structure, as described in the review articles
by Dussauge, Dupont & Debiève (2006), Clemens & Narayanaswamy (2014) and Gaitonde
(2015). Recently, evidence of similar low-frequency unsteadiness has also been observed
in subsonic flows. Weiss, Mohammed-Taifour & Schwaab (2015) and Mohammed-Taifour
& Weiss (2016) experimentally set up a TSB on a flat test surface through the combination
of adverse and favourable pressure gradients. They observed its low-frequency breathing
at a Strouhal number similar to that of SBLIs (St ≈ 0.01). Consistent findings were also
reported by Richardson et al. (2023) in a configuration that featured only an adverse
pressure gradient (APG) but no favourable pressure gradient (FPG), by Weiss et al.
(2022) in a turbulent half-diffuser flow, and by Wang & Ghaemi (2022) in the separation
bubble on a two-dimensional airfoil. On the numerical side, Wu et al. (2020) computed
a configuration similar to Richardson et al. (2023) via direct numerical simulation (DNS)
but did not capture the low frequencies observed in the experiment. On the other hand,
Larchevêque (2020) showed good agreement between the characteristic frequency of
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Low-frequency linear analysis of a TSB

the breathing motion (St ≈ 0.01) of flat-plate TSBs at low-subsonic, high-subsonic, and
supersonic flows based on large eddy simulations. This suggests that similar low-frequency
behaviour occurs in a wide range of Mach numbers, as argued by Weiss et al. (2015, 2021).

Proposed mechanisms for the occurrence of low-frequency unsteadiness in turbulent
SBLIs (and, by association, subsonic TSBs) typically consist of two main categories
(Clemens & Narayanaswamy 2014): an upstream mechanism, whereby velocity
fluctuations in the incoming boundary layer directly influence the position of the
separation line and modulate the size of the TSB (Beresh, Clemens & Dolling 2002)
– in this case, the low-frequency character of the unsteadiness is explained by the
presence of very-large-scale turbulent structures that have been observed in both subsonic
and supersonic boundary layers (Ganapathisubramani, Longmire & Marusic 2003;
Ganapathisubramani, Clemens & Dolling 2007) – and a downstream mechanism, where
the low-frequency unsteadiness is caused by inherent amplification in the TSB. In
the latter hypothesis, both shear layer (Piponniau et al. 2009) and centrifugal (Priebe
et al. 2016; Wu et al. 2020) mechanisms have been considered. Mohammed-Taifour
& Weiss (2016) discussed the relevance of these hypotheses for the case of subsonic
pressure-induced TSBs but could not find any conclusive evidence to select a suitable
mechanism. More recently, a third, intermediate model of low-frequency unsteadiness
was put forward by Porter & Poggie (2019), who suggested that certain large-scale,
near-wall perturbations in the incoming boundary layer may drive a weakly damped global
mode of the separation bubble. This model inherently implies that a combination of both
upstream and downstream elements is responsible for the low-frequency unsteadiness (the
presence of perturbations upstream and the global mode downstream), and ‘reconciles
the debate between upstream and downstream mechanisms of separation unsteadiness’
(Porter & Poggie 2019). Such an intermediate model is also consistent with the subsonic
results of Mohammed-Taifour & Weiss (2021), who demonstrated experimentally that the
low-frequency behaviour in their TSB is well illustrated by a first-order low-pass filter
model that converts the broadband fluctuations of the incoming turbulent boundary layer
into a low-frequency, large-scale oscillation of the separation and reattachment fronts.

Relevant frameworks for the study of low-frequency unsteadiness in separated flows
are global mode analysis (GMA) and resolvent analysis (RA). Both approaches rely on
a linearization of the equation of motion around a suitable base flow. In the case of
GMA, the asymptotic behaviour of the homogeneous linear system is studied to reveal
the presence of global modes of oscillations and their respective growth rates (Theofilis
2003, 2011). Positive growth rates suggest that inherent instabilities are present in the
flow, which may then be qualified as an oscillator capable of sustaining self-excited
oscillations without the presence of forcing. There are broad applications of GMA to study
the stability of laminar solutions (Theofilis 2011). When used with linearizations around
the mean turbulent solution, it may also provide information on dominant oscillation
frequencies (Barkley 2006; Schmidt et al. 2017), although this cannot be ensured a priori
(Sipp & Lebedev 2007). On the other hand, for flows with solely damped modes, RA
investigates the forced dynamics of the linearized flow by lumping all nonlinear terms that
occur in the linearization process into a forcing term (Hwang & Cossu 2010; McKeon &
Sharma 2010; Cavalieri, Jordan & Lesshafft 2019). The approach relies on the singular
value decomposition (SVD) of the resolvent operator to identify the optimal forcing
and its associated linear response. As such, RA may help to identify specific zones of
amplification in the flow, even in the absence of any amplified global mode. When this
occurs, such flows are typically characterized as amplifiers instead of oscillators (Huerre
& Monkewitz 1990).
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To date, most global linear analyses of separation bubbles have been conducted at
relatively low Reynolds numbers, in an attempt to describe the onset of unsteadiness and
three-dimensionality in laminar separated flows. Following the seminal work of Theofilis,
Hein & Dallmann (2000), several authors have demonstrated the existence of both
oscillator- and amplifier-type dynamics in low-speed, two-dimensional laminar separation
bubbles (e.g. Ehrenstein & Gallaire 2008; Marquet et al. 2008; Rodríguez & Gennaro
2017). At higher Mach numbers, the topic of low-frequency unsteadiness was specifically
addressed by Robinet (2007), who investigated the stability of a laminar SBLI through
GMA, and demonstrated the appearance of a three-dimensional global instability when
the angle of the incident shock was increased. The presence of low-frequency unsteadiness
in laminar SBLIs was later confirmed by Sansica, Sandham & Hu (2016), who linked
its appearance to the laminar/turbulent transition occurring in the separated shear layer,
and suggested that ‘the separation bubble acts as a low-pass spatial amplification filter’.
Consistent results were recently presented by Bugeat et al. (2022), who related the
low-frequency behaviour in a laminar SBLI to the excitation of a stable global mode. The
optimal gain computed by RA resembled a first-order low-pass filter, thereby recovering
the signature of low-frequency unsteadiness typically observed in turbulent SBLIs (Poggie
et al. 2015).

In turbulent flows, linear analyses may also be conducted by selecting the turbulent
mean as base flow (Crow & Champagne 1971; Michalke 1984; Del Alamo & Jimenez
2006; Hwang & Cossu 2010; McKeon & Sharma 2010), although in this case the modal
analysis of the linearized operator may not qualify as stability analysis since the mean
flow does not satisfy the Navier–Stokes equations. Touber & Sandham (2009) performed
such a study on the mean flow obtained from the large eddy simulations of a turbulent
SBLI, and found an amplified global mode that they suggested could be linked to the
observed low-frequency unsteadiness. Consistent results were later obtained by Nichols
et al. (2017) and Adler & Gaitonde (2018), who also discovered a global amplified mode
related to low-frequency unsteadiness in similar flow configurations. Through the use of
linear analysis, Sasaki et al. (2021) suggested that upstream travelling acoustic waves are
responsible for the low-frequency unsteadiness in a turbulent SBLI, thereby confirming a
previous hypothesis by Pirozzoli & Grasso (2006). While all these studies proposed that
turbulent SBLIs behave as oscillators, the works of Sartor et al. (2015) and Hao (2023)
on a transonic and supersonic SBLI, respectively, indicated an amplifier behaviour for
low-frequency perturbations. The latter conclusion was obtained by performing GMA
and RA on the average flow computed by Reynolds-averaged Navier–Stokes (RANS)
simulations. Similar to the results of Bugeat et al. (2022) in a laminar SBLI, Hao (2023)
related the low-frequency unsteadiness to the excitation of an intrinsic mode by external
disturbances.

In this framework, the objective of the present study is to investigate the low-frequency
unsteadiness of an incompressible, pressure-gradient-induced TSB by means of GMA
and RA. Specifically, we address the upstream/downstream dichotomy by examining
the characteristics of global modes and their responses to external perturbations, with
the aim to better understand the mechanism causing the low-frequency breathing. From
a practical perspective, our motivation is threefold: first, subsonic TSBs may serve as
a reference for more complex turbulent SBLIs, where low-frequency unsteadiness is
often detrimental to flight performance; second, smooth-body flow separation remains a
challenge for industrial RANS turbulence models, which may require specific treatment
for low-frequency unsteadiness; and finally, to our knowledge, such an analysis has not yet
been performed in the fluid dynamics community.
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The configuration that we consider is a TSB generated on a flat test surface by a
combination of APGs and FPGs. Such a flow has already been investigated experimentally
by Le Floc’h et al. (2020) and numerically via DNS by Coleman, Rumsey & Spalart
(2018). Our chosen methodology is to perform the linear analysis on a base flow consisting
of the average DNS flow field, and to validate the GMA and RA results with the unsteady
experimental database. As will be seen in the following sections, this cross-validation
between two separate databases strongly supports the relevance of our findings.

The paper is organized as follows. In § 2, we introduce the experimental database and
demonstrate the existence of low-frequency unsteadiness from both fluctuating velocity
and wall-pressure data. Then in § 3, we describe our chosen base flow and discuss its
relevance to the present investigation. The methodology for GMA and RA is introduced
in § 4, and the corresponding results are presented in § 5. These results are then compared
to the experimental database and other studies in § 6, before a conclusion is offered in § 7.
Specific details about the linear analysis are provided in appendices.

2. Experimental database

In this section, we introduce the unsteady experimental database of Le Floc’h et al. (2018,
2020) that will be used in the present study. We briefly discuss the wind tunnel set-up,
after which we proceed to outline the unsteady characteristics of the flat-plate TSB, with
a specific emphasis on low-frequency unsteadiness.

2.1. Experimental set-up
The experiments of Le Floc’h et al. (2018, 2020) were conducted in the TFT
boundary-layer wind tunnel, a low-speed, blow-down facility designed specifically for the
study of TSBs (Mohammed-Taifour et al. 2015). The wind tunnel features a test section
measuring 3 m in length and 0.6 m in width. A combination of APG and FPG is generated
through the widening and subsequent converging test-section floor. Whereas the APG
causes the incoming zero pressure gradient (ZPG) flat-plate turbulent boundary layer on
the upper surface to separate, a boundary-layer bleed is located on the test-section floor
to ensure that the flow on the lower surface remains attached. The FPG then forces the
shear layer to reattach on the upper test surface, leading to the formation of a closed
TSB. All experiments were performed at reference velocity Uref = 25 m s−1, and the
Reynolds number of the incoming ZPG boundary layer (based on momentum thickness
Θin = 3 mm) was approximately 5000.

Le Floc’h et al. (2020) investigated TSBs of different sizes by varying the streamwise
distance between the APG and FPG. Here, we focus primarily on their medium
TSB, which, as will be shown in the next section, is the closest to the flow studied
numerically by Coleman et al. (2018). The length of the medium TSB, defined as
the streamwise distance between the average separation and reattachment points on
the test-section centreline, is Lb = 0.11 m. The experimental database of Le Floc’h
et al. (2020) includes planar (two-dimensional) time-resolved particle image velocimetry
(TR-PIV) in the streamwise/wall-normal plane as well as unsteady wall-pressure
measurements on the centreline of the test section. To illustrate the spanwise character
of the low-frequency unsteadiness, these results will be complemented with unsteady
wall-pressure measurements in the spanwise direction by Le Floc’h et al. (2018) and
near-wall TR-PIV measurements in the streamwise/spanwise plane of the large TSB. The
latter are unpublished data from Mohammed-Taifour & Weiss (2016).
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Boundary-layer bleed
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Figure 1. Schematic of wind tunnel test section with mean streamwise velocity field on the centreline. The
time-averaged TSB is indicated by the dividing streamline Ψ̄ = 0 (solid white line). Here, H0 and H1 indicate
the approximate position and width of the near-wall TR-PIV measurements in the (x–z) plane. Note that the
thickness of the indicated PIV planes is representative only and thus not true to scale.

A schematic representation of the wind-tunnel test section, with the mean streamwise
velocity field measured on the centreline, is depicted in figure 1. Here, H0 and H1 indicate
the approximate positions of the near-wall TR-PIV planes, whereas x1 and x2 are the
streamwise positions of wall-pressure measurements (see § 2.2). While the y-axis was
oriented towards the ground during the experiments, in the remainder of the paper we
will switch the y-direction towards the top of the page. Required descriptions of the
measurement techniques will be provided in the following sections as needed. More details
on the experiments may be obtained in the original publications by Mohammed-Taifour &
Weiss (2016) and Le Floc’h et al. (2018, 2020).

2.2. Evidence of low-frequency unsteadiness
We start by employing spectral proper orthogonal decomposition (SPOD), first introduced
by Lumley (1970), to characterize the low-frequency breathing of the TSB. As opposed
to the ‘classical’ and ‘snapshot’ POD commonly found in the recent literature, SPOD
produces modes that oscillate at a single frequency (Towne, Schmidt & Colonius 2018).
It is therefore a robust and powerful tool for analysing low-frequency unsteadiness, as
demonstrated for instance by the recent results of Weiss et al. (2022) and Richardson et al.
(2023). In practice, we use the algorithm proposed by Towne et al. (2018) that is based on
Welch-type averaging for stationary random processes.

In figure 2, we display the streamwise and wall-normal components û and v̂ of velocity
fluctuations of the leading SPOD mode, computed from the TR-PIV measurements
of Le Floc’h et al. (2020). The PIV field of view is 225 mm × 75 mm (x–y) with
sampling frequency fs = 900 Hz. The database consists of six successive time series of
Nt = 3580 snapshots each. Hence the decomposition is performed on a total of Nt =
21 480 PIV snapshots that are split in 72 blocks of NFFT = 512 snapshots with 50 %
overlap. Overlapping blocks between two consecutive (uncorrelated) runs are removed.
This procedure results in a frequency resolution of 1.76 Hz.

The real part of the leading mode is depicted for different Strouhal numbers
St = fLb/Uref . A Strouhal number St = 0.01, typically representing the low-frequency
regime, is depicted in figures 2(a,b), whereas the remaining Strouhal numbers increase
from top to bottom according to St = 0.08 (figures 2c,d), St = 0.11 (figures 2e, f ) and
St = 0.27 (figures 2g,h). As will be discussed later (see figure 19), the first SPOD mode
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Figure 2. Leading SPOD mode, computed based on planar PIV measurements with fs = 900 Hz. The (a,c,e,g)
streamwise û and (b,d, f,h) wall-normal component v̂ are shown. The depicted frequencies, from top to bottom,
correspond to (a,b) St = 0.01, (c,d) St = 0.08, (e, f ) St = 0.11, (g,h) St = 0.27. The time-averaged location of
the TSB is indicated by the dividing streamline Ψ̄ = 0 (black dashed line).

is particularly dominant at low frequency, with approximately 72 % of the energy density
at St = 0.01. Note that the time-averaged location of the TSB is indicated by the dividing
streamline (black dashed line) in the different plots.

In the low-frequency regime (St = 0.01), the streamwise component of the mode û
features a large coherent structure that bounds the TSB and follows its shape. This
behaviour can be observed for any low Strouhal number with St ≈ 0.01. A similar,
large-scale mode was first observed in the snapshot POD of the streamwise velocity
component in Mohammed-Taifour & Weiss (2016). In their study, a low-order model
was employed to show that this mode can be interpreted as a low-frequency contraction
and expansion (breathing) of the TSB. More recently, SPOD has been applied to several
pressure-induced TSB flows, and large-scale coherent structures similar to that depicted
in figures 2(a,b) have been identified as the leading low-frequency SPOD mode for TSBs
occurring in a one-sided diffuser (Steinfurth, Cura & Weiss 2022), behind a wall-mounted
hump (Dau et al. 2023), and on a flat-plate with APG (Richardson et al. 2023). In all of
these works, the aforementioned mode was associated with the low-frequency breathing
of the TSB. In contrast, higher-frequency modes are qualitatively distinct: There, we
observe an alternating pattern of coherent structures of opposite phase, which, in the
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Figure 3. Frequency–wavenumber spectrum of fluctuating velocity u′ in the x–z plane at y ≈ 4 mm from the
test surface. Two streamwise positions x are depicted: (a) a position in the ZPG region upstream of the TSB,
x = 1.33 m, and (b) a position immediately upstream of the time-averaged location of the separation line,
x = 1.68 m. The spanwise wavenumber β = 2π/λz is non-dimensionalized by the average bubble length Lb.
The PSD in the ZPG region (a) is multiplied by a factor of 10.

literature, is often associated with the shedding of vortices from the shear layer bounding
the recirculation region (e.g. Rajaee, Karlsson & Sirovich 1994). When computing the
phase speed uph = ω/k of the streamwise component of the complex SPOD modes, we
obtain uph ≈ 0.3Uref for St ≥ 0.08. Here, ω = 2πf and k = ∂ϑ/∂x is the streamwise
wavenumber based on the phase ϑ extracted at y ≈ 0.04 m. This value is consistent with
the convection velocity uc = 0.33Uref of vortices observed in the DNS of Na & Moin
(1998) and in the experiments of Mohammed-Taifour & Weiss (2016). The corresponding
wall-normal component of the modes conveys similar trends. While in the low-frequency
regime, we observe structures that encompass a significant portion of the PIV domain, an
increase in the Strouhal number results in a greater number of structures as well as smaller
individual structure size.

Figure 2(a) indicates that at low frequency, the TSB contracts and expands in the
streamwise direction (see also the discussion in the original article by Le Floc’h et al.
2020). In order to estimate the spanwise scale of this motion, we now consider TR-PIV
measurements performed in the streamwise/spanwise plane at elevation y ≈ 4 mm away
from the wall (for reference, the boundary-layer thickness at position H0 is approximately
30 mm). These measurements were performed in the large TSB of Mohammed-Taifour &
Weiss (2016) (unpublished data; see also Mohammed-Taifour 2017). The PIV field of view
is 75 mm × 215 mm (x–z) with sampling frequency fs = 900 Hz.

The frequency–wavenumber spectra of the streamwise velocity fluctuations are depicted
in figure 3. Two exemplary streamwise positions are chosen, representing the spanwise
(x–z) planes H0 (figure 3a) and H1 (figure 3b). Here, H0 is a plane in the ZPG
region upstream of the TSB, and H1 corresponds to a plane immediately upstream
of the time-averaged location of the separation line; see figure 1. To extract the
frequency–wavenumber spectra, we first perform a fast Fourier transform in the spanwise
(z) direction on Nt = 3580 snapshots of the fluctuating velocity u′ (e.g. Towne et al. 2017).
We further compute the power spectral density (PSD) of the Fourier-transformed signal û,
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Low-frequency linear analysis of a TSB

adopting Welch’s estimate using 50 % overlap. We obtain a spectrum for each streamwise
position x. Here, the frequency is represented as the Strouhal number St = fLb/Uref ,
and the non-dimensional spanwise wavenumber is β = (2πLb)/λz. The chosen position
corresponds to the centre of each PIV measurement plane, respectively. Similar results
were obtained for all investigated positions within the planes H0 and H1. For visualization
purposes, the PSD of û is scaled by a factor of 10 for the H0 plane in the upstream boundary
layer (figure 3a).

In the upstream ZPG boundary layer (H0 plane), the maximum of the PSD of û is
obtained for the non-dimensional spanwise wavenumber β = ±65 and Strouhal number
range St ≤ 0.8 (figure 3a). All frequencies St in the vicinity of β = ±65 exhibit fairly
high energy levels. However, no substantial energy content can be detected in the region of
two-dimensional perturbations β = 0. Moreover, since the spectrum is symmetrical with
respect to β = 0, no preferential z-direction can be detected for the present configuration.
This indicates that perturbations are equally likely to propagate in the +z and −z
directions. When expressed in terms of the boundary-layer thickness δ = 28 mm of the
incoming turbulent flow (measured at x = 1.1 m), the spanwise wavelength λz, related to
the non-dimensional spanwise wavenumber β = ±65, is approximately λz = 0.4δ. This
value is in agreement with the values of O(δ) reported for the superstructures in the
upstream boundary layer of several turbulent boundary layer flows (e.g. Tomkins & Adrian
2003; Hutchins & Marusic 2007; Le Floch et al. 2016). Interestingly, a similar organization
of elongated structures over the span of the H0 measurement plane can also be observed
on the first SPOD modes at low frequency (not shown here).

In figure 3(b), we display the representative frequency–wavenumber spectrum of the
measurement plane H1. The majority of the energetic content is now gathered in the
range −2 ≤ β ≤ 2. Once again, the distribution is symmetrical with respect to β = 0,
indicating no preferential z-direction. On the other hand, the wavelengths λz associated
with the structures of this low-β range are now large compared to the bubble length Lb.
They take values between λz = 3Lb for β = ±2, to λz � 10Lb for very small β. Hence the
low-frequency unsteadiness of the TSB appears to be coherent over a large spanwise scale.
Furthermore, the high-β signature observed in the incoming ZPG boundary layer is absent
from the frequency–wavenumber spectrum close to the separation line, thereby suggesting
that the TSB is not responding directly to the long superstructures present in the incoming
boundary layer.

To confirm these results, we now consider fluctuating wall-pressure data gathered
in the spanwise direction by Le Floc’h et al. (2018) in the medium TSB again. All
pressure signals were obtained by using piezoresistive pressure transducers with range
1 psi (6.89 kPa) and estimated error ±5 %. To eliminate low-frequency wind-tunnel noise
in the signals, the correction method from Weiss et al. (2015) was applied. The PSD was
calculated by adopting Welch’s method using 50 % overlap and a Hamming window.

In figures 4(a,b), the classical log-log PSD and the pre-multiplied PSD of the fluctuating
wall pressure p′ on the test-section centreline at two streamwise positions are shown,
respectively: a position immediately upstream of the time-averaged location of the
separation bubble (x1 = 1.60 m), and a position in the region downstream of the TSB
(x2 = 2.05 m). These streamwise positions are depicted schematically in figure 1. The
low-frequency unsteadiness becomes apparent as a distinct ‘hump’ in the pre-multiplied
distribution for x1 = 1.60 m, where a significant amount of energy is gathered in the region
St ≈ 0.01. This hump has also been observed by Mohammed-Taifour & Weiss (2016) and
Richardson et al. (2023), and has been associated with the low-frequency breathing of their
TSB. On the other hand, a different behaviour can be observed for x2 = 2.05 m. Here, a
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Figure 4. (a) The PSD and (b) the pre-multiplied PSD of fluctuation pressure p′ for x1 = 1.60 m (black) and
x2 = 2.05 m (blue). The Strouhal number St is calculated based on the bubble length Lb and the reference
velocity Uref = 25 m s−1.

distinct peak is visible in the pre-multiplied PSD for St ≈ 0.1. In Cura, Hanifi & Weiss
(2023), this medium-frequency unsteadiness was linked to convective amplification in the
shear layer bounding the recirculation region.

Returning to the spanwise characteristics of low-frequency unsteadiness, we show
in figure 5(a) the two-point cross-correlation coefficient at zero time lag measured by
Le Floc’h et al. (2018). Here, Rp′p′ = p′(z) ∗ p′

ref (zref )/( p′
rms ∗ p′

ref ,rms) was obtained
by simultaneously measuring the wall-pressure fluctuations at the centreline of the
test section (zref = 0 mm) and with a moving sensor positioned successively at
z = [0, ±0.05, ±0.10, ±0.15, ±0.20] m along the span of the wind-tunnel test section.
Furthermore, all pressure signals were low-pass filtered to frequencies below
St = 0.03 before computing the cross-correlations, so that only values that correspond
to the low-frequency hump in figure 4 are considered. Again, two streamwise positions,
x1 = 1.60 m and x2 = 2.05 m, are depicted. In both cases, a wave-like distribution of Rp′p′
over the span, with a relatively large wavelength λz, becomes apparent. This confirms that
the low-frequency unsteadiness is coherent over a large portion of the test-section span.

To obtain a quantitative metric of spanwise coherence, we now perform a curve fit of
the correlation at x1 = 1.60 m, using a cosine function of the form

f (z) = c1 cos(c2z). (2.1)

We obtain the distribution shown in figure 5(b), where the cosine function has a
non-dimensional spanwise wavenumber β = 0.97. This value is in the energy-containing
range observed in the frequency–wavenumber spectrum of near-wall velocity data in
figure 3(b). Notably, this result closely matches the spanwise wavenumber corresponding
to the width of the wind tunnel b = 0.6 m, which is β = 1.17. This will be discussed
further in § 6.

In summary, the experimental results obtained by Le Floc’h et al. (2018, 2020),
using both fluctuating velocity and wall-pressure measurements, indicate that the TSB is
contracting and expanding at low frequency, with a characteristic Strouhal number of the
order of St = fLb/Uref = 0.01. This breathing motion appears to be reasonably coherent
across the span, with a spanwise wavenumber of the order of β = (2πLb)/λz = 1. In the
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Figure 5. (a) Spanwise correlation Rp′p′ of low-pass filtered fluctuating pressure for two streamwise
positions, x1 = 1.60 m (squares) and x2 = 2.05 m (circles) modified from Le Floc’h et al. (2018).
(b) Cosine fit f (z) = c1 cos(c2z) of Rp′p′ (solid line) at x1 = 1.60 m. The resulting non-dimensional spanwise
wavenumber β = (2πLb)/λz is equal to 0.97. The fluctuating pressure at the test-section centreline (z = 0 m)
is used as reference for all correlations.

remainder of the paper, our main objective will be to use linear analysis to try to explain
the origin of this motion.

3. Numerical database

In this work, we perform modal and non-modal analysis of the time- and
spanwise-averaged velocity field from the DNS by Coleman et al. (2018). Our motivation
in doing so is mainly that employing an experimental flow field as base flow for linear
analysis would typically require some degree of curve-fitting and/or extrapolation (e.g.
Nishioka, Asai & Yoshida 1990; Yarusevych, Sullivan & Kawall 2006). This is due mostly
to the inherent characteristics of experimental velocity fields, which typically exhibit
considerable data scatter. Both the application of curve-fitting techniques and the presence
of data scatter are well-documented phenomena known to significantly influence the
outcomes of local linear analysis (e.g. Dovgal, Kozlov & Michalke 1994; Bottaro, Corbett
& Luchini 2003; Boutilier & Yarusevych 2013). Furthermore, velocity fields measured
by TR-PIV typically suffer from poor spatial resolution because of the relatively large
pixel size of CMOS cameras (Le Floc’h et al. 2020). On the contrary, a DNS base flow
usually provides a higher spatial resolution and a larger domain size than its experimental
counterpart, hence facilitating the computation of the required derivatives in the linear
analysis.

A typical GMA/RA study on a DNS base flow would usually be compared to
unsteady DNS data. Here, we do not follow this path, but we compare our results
to the experimental database of Le Floc’h et al. (2018, 2020) summarized in the
previous section. Our motivation for doing so is twofold. First, Coleman et al. (2018)
could not observe any low-frequency breathing motion in their DNS data because of
limited computing resources. Indeed, capturing low-frequency unsteadiness requires very
long integration times that are still difficult to reach for well-resolved simulations. For
instance, the sampling time in the DNS of Coleman et al. (2018) was 66Lb/Uref ,
whereas the low-frequency breathing motion at St ≈ 0.01 would require a sampling
period of several multiples of 200Lb/Uref . Similarly, Wu et al. (2020) were not able to
capture St ≈ 0.01-phenomena in their own DNS. Hence, to the authors’ knowledge, the
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low-frequency unsteadiness has not yet been observed in any simulation of low-speed
TSB. Our second motivation is that if the linear analysis on the DNS base flow compares
favourably to the experimental results, then it would strongly support the generality and
portability of our results, and also rule out that the breathing is caused by an experimental
artefact. Therefore, although the DNS of Coleman et al. (2018) was not originally designed
to match our experimental TSB flow, we contend that the merits of our strategy outweigh
its drawbacks.

The flow field of Coleman et al. (2018) was selected because of its similarity to
the experimental set-up and its free accessibility (Coleman 2018). The DNS features
a fully turbulent, two-dimensional flat-plate boundary layer, which is subjected to an
APG subsequently followed by an FPG. The APG–FPG characteristics are enforced by
a transpiration velocity profile Vtop(x), introduced on a virtual parallel plane at a fixed
distance opposite to the no-slip wall:

Vtop(x) = −
√

2 Vmax

(
x
ξ

)
exp

(
1
2

−
(

x
ξ

)2
)

+ φtop. (3.1)

Here, Vmax is the maximum velocity of the transpiration velocity profile, and ξ is the length
scale. To enforce the ZPG along the wall, a constant boundary-layer bleed velocity φtop is
introduced. A pseudo-spectral code was used to compute the solution to the incompressible
Navier–Stokes equations. Further details regarding the DNS can be found in Coleman
et al. (2018). In the following, only the mean flow field from case C (main case) will be
considered.

The similarities between the DNS (case C) and the experimental (medium) TSB were
already outlined in Le Floc’h et al. (2020). Here, we demonstrate that the two TSB flows
exhibit an even higher degree of similarity when an appropriate set of scaling parameters
is selected. For this purpose, we introduce the parameter Lp, which is equal to the distance
between the maximum APG and FPG. We further introduce the momentum thickness Θ0,
which was computed by means of the von Kármán integral: dΘ/dx = cf /2. It corresponds
to the momentum thickness that would be reached at the streamwise position x(Vtop = 0)

for a ZPG boundary layer (Coleman et al. 2018).
We plot the streamwise velocity u/u∞ of the experimental flow from Le Floc’h

et al. (2020) in figure 6(a), and the DNS calculations from Coleman et al. (2018) in
figure 6(b). The streamwise and wall-normal coordinates are non-dimensionalized by the
distance Lp and the momentum thickness Θ0, respectively. For each flow, we indicate the
time-averaged location of the TSB by means of the dividing streamline (solid white line).
In this scaling, the flow databases become very similar, with a comparable position of
mean flow separation and reattachment. In figure 6(c), the pressure distribution along the
flat plate, as indicated by the pressure coefficient cp, is displayed. The solid line represents
the DNS, whereas symbols pertain to the wall-pressure measurements. In contrast to
the contour plots of streamwise velocity u/u∞, some discrepancies between the DNS
base flow and the experimental data become evident. The plateau in the distribution of
cp is reached for a higher value in the case of the DNS. However, up to x/Lp ≈ 0.9,
the distributions remain in good qualitative agreement. While acknowledging the
non-identical nature of both flows, we operate under the assumption that insights derived
from the linear analysis of the DNS base flow can be transferred to the experimental
counterpart. This assumption will be re-evaluated in § 6. The key characteristics of each
flow database are summarized in table 1.
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Figure 6. (a) Streamwise velocity component u/u∞ of experimental flow field. (b) DNS base flow. (c) The
pressure distribution along the flat plate is represented by the pressure coefficient cp for the DNS base
flow (solid black line) and the experimental data (circles). The streamwise and wall-normal coordinates are
non-dimensionalized by Lp and Θ0, respectively. We indicate the time-averaged position of the TSB by means
of the dividing streamline (solid white line).

Database ReΘ0 ReLb Lb/Θ0 Lp/Θ0

Medium TSB (Le Floc’h et al. 2020) 6905 183 673 26.6 154.5
Case C (Coleman et al. 2018) 3121 104 000 33.3 207.5

Table 1. Flow characteristics of experimental and numerical database.

4. Methodology

In this section, the governing equations describing the dynamics of the TSB, as well as the
employed linear and data analysis methods, are described.
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4.1. Governing equations
The viscous incompressible Navier–Stokes equations for the conservative variables
q = (u, v, w, p), i.e.

∇ · u = 0,
∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u, (4.1)

are considered, where u = (u, v, w) are the streamwise, wall-normal and spanwise
velocity, respectively, p is the pressure, and Re is the Reynolds number. Here, we
decompose the flow field into time-averaged and fluctuating quantities according to

q(x, y, z, t) = q̄(x, y, z) + q̃(x, y, z, t). (4.2)

Introducing the above Reynolds decomposition (4.2) into the incompressible
Navier–Stokes equations (4.1) and time-averaging yields the linearized Navier–Stokes
equations (LNSE)

∂ũ
∂t

+ ũ · ∇ū + ū · ∇ũ = −∇p̃ + 1
Re

∇2ũ + f̃ 0, (4.3)

∇ · ũ = 0. (4.4)

Here, we group the nonlinear terms in the Navier–Stokes equations into an unknown
forcing term f̃ 0, as proposed by McKeon & Sharma (2010). In the work of Towne et al.
(2018), it was demonstrated that when the forcing term is modelled as spatial white
noise, a direct relationship between SPOD and resolvent modes can be expected. However,
turbulent flows have nonlinear terms that differ from such white-noise approximation, and
thus have colour (Zare, Jovanović & Georgiou 2017; Morra et al. 2021; Nogueira et al.
2021). When linearizing around a turbulent mean flow, the colour of the forcing is often
partly incorporated through an eddy-viscosity model (Morra et al. 2019, 2021). Here, we
follow the methodology outlined in Reynolds & Hussain (1972) and represent part of the
Reynolds stresses by the eddy-viscosity model

∂ũ
∂t

+ ũ · ∇ū + ū · ∇ũ = −∇p̃ + 1
Re

(1 + νt/ν)∇2ũ + f̃ , (4.5)

such that the remaining forcing term is f̃ . The eddy viscosity is calculated from the DNS
data provided in Coleman et al. (2018) as νt = cμk2/ε (see figure 7). Here, cμ = 0.09, k
is the turbulent kinetic energy, and ε is the dissipation rate. Throughout this work, unless
explicitly mentioned otherwise, we will present results where the Reynolds stresses are
considered by means of an eddy-viscosity model. The effects of incorporating this νt
formulation will be discussed in more detail in § 5.3.

4.2. Global mode analysis

When the forcing term is set to f̃ = 0, the system (4.3)–(4.4) can be recast in matrix form
as

M
∂ q̃
∂t

= A3Dq̃, (4.6)

where A3D is the three-dimensional LNSE operator. Choosing a modal ansatz of the form

q̃(x, y, z, t) = q̂(x, y, z) exp(−i ωt) + c.c., (4.7)
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Figure 7. Eddy viscosity calculated from DNS data.

and introducing it into the LNSE (4.3)–(4.4), leads to a generalized eigenvalue problem
(EVP)

− i ωM q̂(x, y, z) = A3D(q̄(x, y, z), Re) q̂(x, y, z), (4.8)

where c.c. is the complex conjugate, ω ∈ C are the eigenvalues, and q̂ are the
eigenfunctions. We now assume homogeneity in the spanwise direction z, and perform
a Fourier transform in space, such that (4.7) reduces to

q̃(x, y, z, t) = q̂(x, y) exp[i(βz − ωt)] + c.c., (4.9)

and the EVP can be reformulated as

− i ωM q̂(x, y) = A2D,z(q̄(x, y), β, Re) q̂(x, y). (4.10)

Here, β ∈ R is the spanwise wavenumber. The two-dimensional LNSE operator A2D,z can
be extracted from A3D by introducing ū = (ū, v̄, 0) and employing (4.9). The operator
can then be divided as A2D,z = A + N , where N represents the (additional) turbulence
terms modelled in (4.5). The EVP in (4.10) needs to be supplemented with appropriate
homogeneous boundary conditions to fulfil the physical constraints on the domain (see
Appendix B). For laminar base flows, the EVP can then be analysed to yield unstable
global modes whenever the growth rate satisfies ωi > 0, whereas disturbances decay in
the asymptotic time limit for ωi < 0. When the turbulent mean is selected as base flow, the
concept of stability does not apply strictly, and the global modes merely reflect properties
of the LNSE operator. In that case, modes are classified as either amplified (ωi > 0) or
damped (ωi < 0).

The LNSE operator A2D,z and operator M are included in Appendix A. The solution
of the two-dimensional EVP is performed using the code presented in Abreu et al. (2021)
and Blanco et al. (2022), adapted for GMA. A grid and fringe convergence study was
performed and is summarized in Appendix C. All quantities appearing in the linear
analysis are non-dimensionalized by means of the length scale l∗ = Lb and the time scale
t∗ = Lb/u∞. The resulting Reynolds number based on u∞ and Lb is Re = 104 000. On the
other hand, in order to plot the results in a manner consistent with the experiments, the
streamwise and wall-normal coordinates of the TSB are represented as x/Lp and y/Θ0,
respectively.
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4.3. Resolvent analysis
In order to study the linear forced dynamics of the system, we now consider (4.10) and
re-introduce the forcing term on the right-hand side,

− i ωMq̂ = A2D,zq̂ + Bf̂ , (4.11)

where the harmonic forcing is f̂ = ( fx, fy, fz, 0). This system can be rewritten in the
resolvent form

(−i ωM − A2D,z)q̂ = Bf̂ . (4.12)

The optimal response q̂ to any harmonic forcing f̂ can be obtained by performing an SVD
of the resolvent operator R

q̂ = C(−i ωM − A2D,z)
−1Bf̂ = Rf̂ , (4.13)

where the operators B and C act as filters that impose restrictions on the forcing (input)
and the response (output), respectively. The first singular value of the SVD of the resolvent
operator is then the optimal gain σ1, whereas the left and right singular vectors represent
the optimal forcing and response, respectively. The remaining singular values of the SVD
are called the sub-optimal gains, and are arranged in decreasing order: σ1 > σ2 > σ3 >

· · · > σn. The solution to the SVD in (4.13) is computed using the code presented in Abreu
et al. (2021) and Blanco et al. (2022). The operators B and C are discussed in more detail
in Appendix A.

The study conducted by Towne et al. (2018) demonstrated a direct relationship between
the optimal response obtained from RA and the modes extracted from SPOD, under the
assumption that the forcing is modelled as spatial white noise. Even though nonlinearities
in the Navier–Stokes equations are expected to have ‘colour’ (Zare et al. 2017), a strong
link between RA and SPOD can be expected if the cross-spectral density (CSD) is
dominated by the optimal response (Cavalieri et al. 2019). This is the case when the
resolvent operator is of low rank, such that σ1 � σ2.

In order to quantify the alignment between SPOD and RA (Lesshafft et al. 2019; Abreu
et al. 2020) for several spanwise wavenumbers β, we introduce the metric

ϕ =
〈
q̂1SPOD

, q̂1RA

〉
‖q̂1SPOD

‖ × ‖q̂1RA
‖ , (4.14)

which consists of the projection of the first SPOD mode q̂1SPOD
= [û1SPOD, v̂1SPOD] on the

first resolvent mode q̂1RA
= [û1RA, v̂1RA]. Here, û1, v̂1 are the streamwise and wall-normal

components of the first SPOD and first resolvent mode, respectively. Furthermore, 〈·, ·〉
is the L2 inner product, and ‖·‖ is the Euclidean norm. The value ϕ = 1 corresponds to
perfect alignment of the modes, whereas ϕ = 0 indicates that the modes are orthogonal.
Note that only the streamwise and wall-normal component are considered here, as the
high-speed PIV data were taken in a planar arrangement for which no information on the
spanwise velocity component is available (Le Floc’h et al. 2020).

5. Results

5.1. Global mode analysis
We initiate the analysis by investigating the spectral characteristics of the base flow, as well
as the influence of the non-dimensional spanwise wavenumber on the GMA spectrum.
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Figure 8. Global mode spectra for non-dimensional spanwise wavenumber (a) β = 0 and (b) β = 1. The
eigenvalue is ω = ωi + ωr, where ωi is the growth rate, and the Strouhal number is calculated based on ωr. The
least damped stationary (solid red circle) and travelling (dashed blue circle) modes are highlighted for β = 1.

In accordance with § 2.2, we select the spanwise wavenumber β = 1 to represent
the experimentally observed spanwise coherence (three-dimensional perturbations). To
further assess the two-dimensional characteristics of the present flow configuration, we
also study the spanwise wavenumber β = 0 (two-dimensional perturbations). Figure 8
illustrates the growth rate of the eigenvalues for the two-dimensional (β = 0) and
three-dimensional (β = 1) cases. Growth rates ωi and Strouhal numbers St = fLb/u∞ are
depicted. The damping threshold (ωi = 0) is shown as a grey shaded region. As can be
seen, all growth rates ωi are negative, indicating that all modes are damped. Moreover,
the GMA spectra display similar shapes, where the least damped mode of each spectrum
(two- or three-dimensional) is a ‘stationary’ mode (St = 0), and the subsequent modes
(2–4) are ‘travelling’ modes (St /= 0). The stationary nature of the least damped mode
of the GMA is in good agreement with the modal analyses of Theofilis et al. (2000),
Robinet (2007) and Touber & Sandham (2009) in different types of separation bubbles. In
particular, such a stationary global mode was related to a centrifugal instability mechanism
potentially leading to transition in laminar separation bubbles by Rodríguez, Gennaro &
Juniper (2013). The present analysis therefore suggests that a similar mechanism might be
at play in TSBs. While the latter works revealed the presence of a global instability, the
damped nature of the present modes matches well the results of Bugeat et al. (2022) in a
laminar SBLI and the analyses of Sartor et al. (2015) and Hao (2023) in turbulent SBLIs.

As we progress from two-dimensional (β = 0) towards three-dimensional (β = 1)
perturbations, the least damped mode (mode 1) moves closer to the ωi = 0 threshold
(figure 9). The growth rate ωi of the least damped mode reaches its maximum at β = 0.75,
after which it decreases monotonically for all β > 0.75. In relation to the bubble length Lb,
this particular β corresponds to a wavelength λz approximately eight times the extent of the
TSB (λz ≈ 8Lb). This is in good agreement with the region observed in the experiments
summarized in § 2.2, where the low-frequency unsteadiness was shown to be characterized
by a wavenumber of the order of β ≈ 1. Interestingly, the leading mode (mode 1) remains
stationary (St = 0) up to a spanwise wavenumber β ≈ 3. For β > 3, it is replaced by a
pair of complex conjugate ‘travelling modes’ that emerge due to the formation of a saddle
point between mode 1 and another mode that is stationary at low β (not shown here).
On the other hand, the frequency of the least damped travelling mode (mode 2) takes
quasi-constant values St ≈ 0.02 (β ≤ 3). This is also consistent with the low-frequency
unsteadiness observed experimentally in the TSB.
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Figure 9. Growth rate ωi from GMA over non-dimensional spanwise wavenumber β. The least damped mode
of the spectrum is depicted.
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Figure 10. Streamwise component of GMA (a) mode 1 and (b) mode 2 for non-dimensional spanwise
wavenumber β = 1. The time-averaged location of the TSB is indicated by the dividing streamline Ψ̄ = 0
(solid black line).

Based on these results, it appears that both the first and second modes in the
β ≈ 1 region, although damped, would be reasonable candidates for the low-frequency
unsteadiness if properly excited by external perturbations. To further differentiate between
modes 1 and 2, we plot their streamwise components in figure 10 for β = 1. We observe
a least damped stationary mode (mode 1) that is located mainly in the region surrounding
and above the TSB (figure 10a). This is consistent with the large-scale, ‘global’ nature of
the breathing motion, as depicted for example in the SPOD results of figure 2. While the
corresponding travelling mode (mode 2) shares qualitative similarities with mode 1, we
note that the observed structure is shifted towards the downstream part of the bubble, and
is smaller in the wall-normal and streamwise directions (figure 10b). Hence, based on its
shape, relatively small decay rate at low spanwise wavenumber, and stationary character,
mode 1 appears to be a better candidate for the low-frequency unsteadiness. This will be
discussed further in § 6.

5.2. Resolvent analysis
We now proceed to outline results from the RA, directing particular focus towards
the experimentally observed range of dominant wavenumbers (β ≈ 1) as well as the
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Figure 11. Optimal energy gain σ 2
n from RA for different non-dimensional spanwise wavenumbers β. The

frequency is fixed at St = 0.01.

low-frequency range (St ≈ 0.01). In figure 11, the optimal energy gain σ 2
1 as well as

the sub-optimal energy gain σ 2
2 of the RA are shown for different non-dimensional

spanwise wavenumbers β. The Strouhal number is fixed at St = 0.01, corresponding to
the characteristic low-frequency breathing motion. The optimal energy gain increases up
to a maximum β = 2.75, after which it decreases monotonically for β > 2.75. On the
other hand, the sub-optimal energy gain σ 2

2 reaches its maximum for β = 4.5, taking
values approximately one order of magnitude smaller than the optimal energy gain
(when β ≈ 1). This indicates that the resolvent operator is low rank (σ 2

1 � σ 2
2 ) in the

low-frequency region. Interestingly, RA predicts the largest gains for β ≈ 2.75, whereas
the modal analysis shows the smallest decay rates at β ≈ 1. In the following, to allow for
a consistent comparison between GMA and RA, we will proceed to further analyse the
non-dimensional spanwise wavenumbers β = 0 and β = 1. This choice will be discussed
further in § 6.

We now investigate the behaviour of the optimal energy gain σ 2
1 for different Strouhal

numbers St, where we distinguish between the two-dimensional case (β = 0) and the
three-dimensional case (β = 1). For β = 0, we obtain a distribution that increases
monotonically up to a Strouhal number St ≈ 0.1, after which the optimal energy gain
decreases again (figure 12a). The associated (streamwise) optimal forcing and response
are displayed in figure 13. At medium frequency (St ≈ 0.1) and for two-dimensional
perturbations (β = 0), the optimal forcing is located mostly upstream of the bubble. The
resulting optimal response exhibits the typical alternating pattern of the Kelvin–Helmholtz
(K–H) rollers, which are tilted towards the direction of the base flow shear. For the present
DNS base flow, it was shown in Cura et al. (2023), by means of local linear analysis, that
the medium-frequency regime, characterized by the Strouhal number St ≈ 0.1, is related
to the roll-up and shedding of vortices through shear layer amplification. The present
results confirm the latter analysis. Furthermore, the revealed structures strongly resemble
the medium-frequency modes for the turbulent SBLI from Sartor et al. (2015) and the
laminar SBLI from Bugeat et al. (2022).

In the case of three-dimensional perturbations (β = 1), a substantial difference can be
observed (figure 12b). The highest energy gains are now obtained in the low-frequency
range, after which a distribution similar to that of a low-pass filter becomes apparent. Here,
a distinct drop in optimal gain σ 2

1 occurs in the range St = 10−3–10−2, which is in good
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Figure 12. Optimal energy gain σ 2
1 from RA versus different Strouhal numbers St for (a) the

two-dimensional case β = 0, and (b) a sample three-dimensional case β = 1.
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Figure 13. Streamwise component of (a) optimal forcing f̂x and (b) response û for non-dimensional spanwise
wavenumber β = 0 and St = 0.12. The time-averaged location of the TSB is indicated by the dividing
streamline Ψ̄ = 0 (solid black line).

agreement with the Strouhal number St ≈ 0.01 reported in pre-multiplied PSDs describing
the low-frequency unsteadiness (e.g. figure 4). We can further observe a small ‘hump’ in
the region St ≈ 0.1, which, yet again, can be associated with K–H rollers. Interestingly,
this medium-frequency hump is observed only in the narrow range of non-dimensional
spanwise wavenumbers 0 < β < 1.25. It is most pronounced for β = 0.25, and disappears
for β > 1. The low-pass filter behaviour, on the other hand, can be observed for any low
non-zero spanwise wavenumber with 0.25 ≤ β ≤ 3.

We now define a decibel scale for the optimal gain σ1,

σ1,dB(St) = 20 log(σ1(St)), (5.1)

and apply the −3 dB rule to estimate the cut-off frequency of the filter function.
This is shown in figure 14(a), where the low-pass filter representation of σ1 is
shown for the non-dimensional spanwise wavenumber β = 1. We obtain a cut-off
frequency corresponding to Stc = 0.016. Performing the same analysis for a range of
spanwise wavenumbers indicates that the cut-off frequency increases monotonically from
β = 0.25 to β = 2.75, and takes values between 0.006 and 0.02. Hence all
non-dimensional spanwise wavenumbers associated with β ≈ 1 reveal cut-off frequencies
that are in good agreement with values reported for the low-frequency breathing
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Figure 14. (a) First-order low-pass filter representation of optimal gain from RA 20 log(σ1). (b) Pre-multiplied
energy gain f σ 2

1 versus different Strouhal numbers St. The non-dimensional spanwise wavenumber is β = 1.
The Strouhal number Stc corresponding to the cut-off frequency based on the −3 dB rule is indicated in (a).
We further depict the characteristic slope of a first-order low-pass filter −20 dB dec−1 (dashed red line).

phenomenon St ≈ 0.01 (e.g. Mohammed-Taifour & Weiss 2016; Le Floc’h et al. 2020;
Steinfurth et al. 2022; Richardson et al. 2023). Furthermore, from figure 14(a), it becomes
apparent that the low-pass filter representation of σ1 indicates a first-order behaviour.
After the cut-off frequency Stc, the amplitude of 20 log(σ1) decreases approximately at
the rate −20 dB dec−1, as indicated by the dashed red line in figure 14(a). This behaviour
can be observed for a range of low non-zero β ≈ 1. Interestingly, this first-order-filter
character of low-frequency unsteadiness has already been observed in the incompressible
TSB of Mohammed-Taifour & Weiss (2021). It is also a recurrent observation in turbulent
SBLIs (Plotkin 1975; Touber & Sandham 2011; Poggie et al. 2015). Furthermore, a similar
low-pass filter model has also been found in the RA of a laminar SBLI by Bugeat et al.
(2022). Combined with these existing results, our new findings suggest that the low-pass
filter model of separation bubble unsteadiness may be valid in a broad range of Reynolds
and Mach numbers. In pre-multiplied form, the frequency response of first-order filters
typically shows a maximum at a frequency close to the −3 dB cut-off (Poggie et al. 2015).
As can be seen in figure 14(b), such a hump can also be observed for the energy gain
f σ 2

1 . The resulting curve is also similar to the pre-multiplied PSD of the wall pressure
fluctuations shown in figure 4(b).

In figure 15, the (streamwise) optimal forcing and response associated with the
low-frequency regime are displayed. This is shown by way of example for β = 1 and St =
0.01. The optimal forcing is located mostly upstream of the bubble, encompassing a large
portion of the domain. A large elongated structure can be observed, where the maximum
amplitude is reached near the time-averaged separation point (figure 15a). The resulting
optimal response bounds the recirculation region and follows its shape (figure 15b). Similar
to the low-pass filter behaviour of the optimal energy gain (figure 12), any non-dimensional
spanwise wavenumber β ≈ 1 exhibits similar low-frequency characteristics. That is,
similar contours of optimal forcing and response could be observed for any (St, β)

within the region 0.25 ≤ β ≤ 3 and 0.001 ≤ St ≤ 0.016. This behaviour suggests that
the receptivity at low frequency is driven not by a unique frequency and spanwise
wavenumber, but rather by a range of low Strouhal numbers (St ≈ 0.01) and low non-zero
spanwise wavenumbers β ≈ 1. In particular, RA predicts broadly similar (low-frequency)
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Figure 15. Streamwise component of (a) optimal forcing f̂x and (b) response û for non-dimensional spanwise
wavenumber β = 1 and St = 0.01. The time-averaged location of the TSB is indicated by the dividing
streamline Ψ̄ = 0 (solid black line).

behaviour as long as β ≤ 3, while for spanwise wavenumbers β > 3, the contours of
optimal forcing and response start to differ from their β ≈ 1 counterpart.

Crucially, the shape and position of the optimal response closely resemble the least
damped mode (mode 1) of the LNSE operator. Therefore, our results suggest that the
low-frequency unsteadiness in our TSB is driven by a modal mechanism, where the least
damped global mode is amplified selectively for a range of (St, β). In turn, since this global
mode may be associated with a weakly damped centrifugal mechanism, the results imply
that the TSB low-frequency unsteadiness is related to the excitation of such centrifugal
dynamics by turbulence. This hypothesis will be discussed further in § 6.

We provide more details on the sub-optimal energy gains, forcings and responses in
Appendix D. Also, the transition from the observed two-dimensional behaviour (β = 0)

to our findings for low non-zero spanwise wavenumber β ≈ 1 is described in Appendix E.

5.2.1. Three-dimensional structures
Here, we investigate the three-dimensional structure of the resolvent modes in the
low-frequency regime. For this purpose, we plot iso-surfaces of the streamwise
(figures 16a,b) and spanwise (figures 16c,d) components of the optimal forcing and
response. Iso-surfaces of ±45 % of the forcings |f̂x|, |f̂z| and the responses |û|, |ŵ| are
displayed, respectively. The time-averaged location of the separation bubble is indicated
by the grey-shaded region, which corresponds to the dividing streamline (Ψ̄ = 0). The
frequency is fixed at St = 0.01, and the non-dimensional spanwise wavenumber is β = 1.
In this representation, the distinction between optimal forcing and response is even more
prominent. While the optimal forcing is located mostly upstream and in the first half of the
TSB (figures 16a,c), the optimal responses û, ŵ are located in the region surrounding the
separation bubble. This particular spatial configuration of forcing and response suggests
that upstream disturbances are a required contribution to the low-frequency unsteadiness.
Notably, the elongated structures in the upstream region closely resemble boundary layer
streaks, albeit with much larger spanwise wavelength compared to usual superstructures
in turbulent boundary layers, as discussed in § 2. Whereas the streamwise component
of forcing is concentrated in areas parallel to the bottom wall (figure 16a), the structure
of the spanwise component is slightly tilted upwards in the TSB region in figure 16(c).
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Figure 16. Streamwise component of (a) optimal forcing f̂x and (b) response û, and spanwise component of
(c) optimal forcing f̂z and (d) response ŵ from RA, for non-dimensional spanwise wavenumber β = 1. The real
parts of the modes are depicted. Iso-surfaces of ±45 % of max |f̂x|, max |û| and max |f̂z|, max |ŵ| are shown,
respectively.

This behaviour was also observed for the spanwise forcing at low β in Bugeat et al. (2022),
even though the investigated flow was a laminar SBLI.

In Wu et al. (2020), the low-frequency motion of a pressure-induced TSB was related
to the presence of a Görtler-type mechanism, which manifests as streamwise-elongated
structures in the boundary layer developing over concave walls, or related flows with
concave streamlines. Wu et al. (2022) subsequently investigated the response of the TSB
to upstream perturbations via zero-net-mass-flux actuation, and performed a harmonic RA
following the method of Padovan, Otto & Rowley (2020). Their analysis demonstrated that
the flow was strongly receptive to streamwise-elongated vortices, which is consistent with
our present findings. It is therefore worthwhile investigating if the structures depicted in
figure 16 are consistent with a Görtler-type mechanism.

Typically, the characteristic wavelength of Görtler vortices (Görtler 1954) can be
expressed as λT ≈ δ–2δ (Smits & Dussauge 2006), where δ is the local boundary
layer thickness. However, this value was originally introduced for laminar flows, and its
applicability to turbulent flows remains ambiguous. Here, we follow the methodology
outlined in Wu et al. (2020) and compute the characteristic wavelength λT considering the
effective viscosity νeff = ν + νt. In the region of mean flow concavity (x/Lp between −0.1
and 0.3), we obtain values λT ≈ (3–7)δ. On the other hand, if we convert the characteristic
spanwise wavenumber β ≈ 1 that we observe experimentally to a wavelength λLF, then we
obtain λLF ≈ (11–25)δ. The observation that λLF > 3λT , in conjunction with the absence
of any amplified global mode (§ 5.1), indicates that the three-dimensional structures
observed in the present flow are probably not related to Görtler vortices.
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Figure 17. Optimal energy gain σ 2
1 from RA when the terms related to the eddy-viscosity are neglected

(νt = 0) for different non-dimensional spanwise wavenumbers β (squares). The frequency is fixed at St = 0.01.
The optimal energy gain, including the eddy-viscosity model in the LNSE operator, is indicated as a
grey-shaded region.

5.3. Effect of eddy viscosity
Up to this point, all presented results have been computed using the LNSE operator
modelling part of the Reynolds stresses by means of an eddy-viscosity model. Here,
we briefly discuss the effects of neglecting the eddy viscosity (νt = 0) on the modal
characteristics of the flow as well as the forced dynamics of the bubble. In § 5.1, we
identified a stationary weakly damped global mode (St = 0) that closely resembles the
experimentally observed large-scale ‘global’ motion of the TSB when β ≈ 1. Neglecting
the νt terms in the LNSE operator of the GMA decreases damping. Whereas the growth
rates ωi move towards the damping threshold, the frequencies ωr are strongly reduced
(not shown here). However, no eigenvalue travels into the amplified domain. Further,
the so-obtained global modes do not agree well with the experimental findings. As a
consequence, the prediction of the modal characteristics of the experimentally observed
low-frequency breathing motion appears to be strongly dependent on the incorporation of
an eddy-viscosity model.

A similarly strong effect can be observed for the forced dynamics of the bubble. In
figure 17, the optimal energy gain σ 2

1 is displayed for the fixed frequency St = 0.01,
over different non-dimensional spanwise wavenumbers β. A strongly modified curve can
be observed as compared to figure 11, where νt /= 0 (grey-shaded region). The distinct
peak observed for β = 2.75 is now barely visible. Only a very slight ‘plateau’ in the
expected region of spanwise wavenumbers remains. On the other hand, a maximum for
high non-dimensional spanwise wavenumbers becomes apparent at β = 40 (λz ≈ 0.15Lb).
This curve looks very similar to the distribution recovered in Bugeat et al. (2022) in a
laminar SBLI; nevertheless, the local maximum at low non-zero β is less distinct in the
present work. From a physical point of view, the damping of high-wavenumber structures
through the inclusion of an eddy-viscosity model, and consequently of small-wavelength
structures, is expected. Remarkably, the resolvent modes at β ≈ 1 and low frequency
St ≈ 0.01 (not shown here) look very similar, regardless of whether or not a νt model
is employed. The low-frequency selection of structures with β ≈ 1, however, can be
uncovered only through the inclusion of the νt model.
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Low-frequency linear analysis of a TSB

6. Discussion

The results presented in § 5 using RA indicate that the TSB base flow amplifies
low-frequency (St ≈ 0.01) and low-wavenumber (β ≈ 1) upstream perturbations. In effect,
the flow behaves as a selective amplifier, and the optimal energy gain computed from
RA has the form of a first-order low-pass filter with a cut-off frequency of the order of
St ≈ 0.01. In the present section, we review these results and discuss them in light of the
experimental database presented in § 2.

We commence by comparing the least damped global mode from the LNSE
operator (mode 1) to the optimal response from RA at the fixed frequency St = 0.01
and the non-dimensional spanwise wavenumber β = 1. Once again, it is crucial to
mention that RA exhibits broadly similar low-frequency behaviour when β ≤ 3. The
streamwise, wall-normal and spanwise components of the respective modes are shown
in figures 18(a,b), 18(c,d) and 18(e, f ), respectively. The first global mode is shown in
figures 18(a,c,e), and the optimal response from RA is shown in figures 18(b,d, f ). The
optimal response is normalized by the optimal gain σ1 to ensure comparability. It is
apparent that all components û, v̂, ŵ share strong similarities, with comparable streamwise
and wall-normal extents of the structures, a similar streamwise position x/Lp, and a
matching phase. In the case of the streamwise modes û, this equates to a large-scale
structure bounding the recirculation region and following its shape, as described in the
previous sections. Moreover, the amplitudes of the modes are in good agreement, and
the maximum is reached in a similar region of x/Lp. Similar trends can be observed for
the wall-normal and spanwise modes. Here, the structures are almost a perfect match
in terms of position, phase and size. The obvious similarities between the least damped
global eigenmode and the resolvent mode strongly suggest that the receptivity at low
frequency is occurring from the excitation of the least damped global mode of the
TSB (mode 1).

We now proceed to investigate the low-frequency unsteadiness observed in the
experimental data in more detail. Specifically, our objective is to establish a connection
between the low-frequency unsteadiness (breathing) and the described low-frequency
receptivity. For this purpose, we first demonstrate that the observed low-frequency
dynamics in the experimental data captures a large portion of the total turbulent kinetic
energy (TKE) of the flow, that is, that the SPOD spectrum is of ‘low rank’ in the
low-frequency regime. Then, we proceed to show analogies between RA and SPOD
results.

In figure 19(a), the SPOD eigenvalues λ are depicted for all modes and all Strouhal
numbers St. The eigenvalues are represented as percentages of the total TKE density,
ensuring that the summation of all eigenvalues equals 100 %. From figure 19, it becomes
apparent that λ1 � λ2 in the low-frequency region, particularly for St ≈ 0.01. Therefore,
if we investigate the first SPOD mode λ1 at the fixed frequency St = 0.01 (figure 19b),
we expect to capture a dominant feature of the flow. Here, the percentage of the TKE of
the first mode is approximately 72 %. Further evidence of the low-rank behaviour of both
the RA and SPOD operators is provided in figure 20. Here, we plot the ratios between
the energy gains σ 2

1 /σ 2
2 and between the SPOD eigenvalues λ1/λ2. In both cases, in the

low-frequency range, the low-rank behaviour is of the order of 10.
Comparisons between the highest ranking SPOD mode and the optimal response of RA

are shown in figures 21(a,c) and 21(b,d), respectively, for St = 0.01 and β = 1. Here, only
the x/Lp region of the PIV measurement plane is depicted. Furthermore, we display the
streamwise û (figures 21a,b) and wall-normal v̂ (figures 21c,d) components, as only those
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Figure 18. (a,c,e) Global mode 1 and (b,d, f ) optimal response from RA for non-dimensional spanwise
wavenumber β = 1. The (a,b) streamwise, (c,d) wall-normal and (e, f ) spanwise modes are depicted.
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Figure 19. (a) The SPOD eigenvalues λ represented as the percentage of all modes. (b) The SPOD eigenvalues
λi at Strouhal number St = 0.01 represented as percentage of modes at low frequency). The modes 1–10 are
depicted, respectively.
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Figure 21. (a,c) Leading SPOD mode of the fluctuating velocity field from experiments and (b,d) optimal
response of RA in the region of the PIV measurements. Results at low frequency St = 0.01 and with β = 1
are depicted. The (a,b) streamwise and (c,d) wall-normal components are displayed. All modes are scaled
such that the wall-normal component is |v̂| = 1 and the phase is zero at a fixed position in space (x/Lp = 0.2,
y/Θ0 = 16).

are available from the experiment. In order to address the inherent arbitrariness of the
phase in both SPOD and RA, the modes are subjected to a normalization. For this purpose,
the phase of v̂ is set to zero, while |v̂| = 1 at the fixed position x/Lp = 0.2 and y/Θ0 = 16.
From figure 21, it becomes apparent that the first SPOD mode and the optimal gain of RA
are in close agreement when St = 0.01 and β = 1. The streamwise component û displays
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Figure 22. Alignment ϕ for different non-dimensional spanwise wavenumbers β. Results with (squares) and
without (circles) an eddy-viscosity model are shown.

a portion of the large structure surrounding the separation bubble as e.g. shown previously
in figure 15. The structures are tilted away from the solid bottom wall, and follow the shape
of the separated region. Furthermore, an excellent agreement between SPOD and RA can
be observed in terms of amplitude and phase. The wall-normal component is also in good
agreement with respect to the phase of the structures. A phase shift oriented approximately
perpendicular to the shear layer can be observed. The amplitude, however, is slightly larger
in the case of the first SPOD mode. The alignment ϕ, as introduced in § 4, is ϕ = 0.94.
This large value of ϕ strongly suggests that the low-frequency breathing observed in the
experiment is associated with the calculated RA response.

Interestingly, although the alignment between RA and SPOD is large for β = 1, the
most amplified low-frequency RA mode has spanwise wavenumber β = 2.75, which is
considerably higher than β = 1. Hence, according to RA, structures with β = 2.75 should
be amplified preferably and observed in the experiments instead of the larger β = 1
structures. A likely explanation for this discrepancy is the finite span of the wind tunnel
(0.6 m; see § 2), which corresponds approximately to β = 1, and which might influence
the receptivity of the flow by generating strong forcing at this wavenumber. According to
this scenario, the experimentally observed β = 1 structures are preferred over β = 2.75,
although the corresponding gain is approximately 50 % smaller (figure 11). In other words,
with a hypothetical wind tunnel of infinite span, it is possible that low-frequency TSB
breathing with spanwise wavenumber β ≈ 2.75 would have been observed. While we are
not able to substantiate this claim with either experimental or numerical data, we consider
this a plausible hypothesis and encourage that further experiments be performed in wider
wind tunnels.

We have previously established that any RA mode with β ≈ 1 exhibits the same
low-frequency characteristics when St ≈ 0.01. In figure 22, we display the alignment ϕ

between SPOD and RA over the non-dimensional spanwise wavenumber β at the fixed
frequency St = 0.01. Both the analysis including an eddy-viscosity model, and the analysis
where νt = 0, are depicted. We obtain two distributions of comparable qualitative nature
that feature a maximum for β ≈ 1. However, a strong offset between the alignment for
the analysis including an eddy-viscosity model (ϕmax = 0.95) and the analysis where
νt = 0 (ϕmax = 0.82) is evident. Clearly, including a νt model into the LNSE operator
strongly increases the alignment with the experiment, as represented by the SPOD modes.
This is particularly relevant since the overall shape of the resolvent modes is the same
whether or not a νt model is included. Interestingly, the significance of implementing
an eddy-viscosity model to enhance the alignment between SPOD and RA has been
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demonstrated in prior studies. For example, Morra et al. (2019) presented evidence of
its relevance in turbulent wall-bounded flows, while Pickering et al. (2020) extended this
insight to a turbulent jet configuration.

In summary, the results presented so far demonstrate a strong alignment between the
SPOD of the streamwise/wall-normal velocity fluctuations obtained experimentally at low
frequency and the optimal RA response computed in the region where β ≈ 1. We further
note that both the near-wall velocity and wall-pressure fluctuations in the experiments
indicate a characteristic wavenumber of the order of β ≈ 1 for the low-frequency breathing
motion (e.g. figure 5). This cements the argument that the unsteadiness observed in the
experiment is well described by the RA results. Furthermore, we previously established
strong similarities between the least damped LNSE eigenmode and the resolvent response.
Hence our conclusion is that the low-frequency breathing motion likely emanates from the
excitation of the most weakly damped global mode in the TSB. This phenomenon is not
dictated by a singular frequency but rather encompasses a range of low frequencies and
low, non-zero spanwise wavenumbers. In effect, the TSB acts like a first-order low-pass
filter for upstream disturbances in the incoming turbulent boundary layer.

Interestingly, a low-pass filter model of low-frequency unsteadiness for separation
bubbles has already been suggested in different flow configurations. Mohammed-Taifour
& Weiss (2021), in a configuration similar to the present one, used pulsed-jet forcing
to investigate the response of their TSB to upstream perturbations. They noted that the
transient response of the separation line was compatible with a first-order low-pass filter
model, and observed consistent low-frequency dynamics in the unforced flow. For the case
of turbulent SBLIs, Poggie et al. (2015) investigated the frequency spectra of wall-pressure
fluctuations in a variety of test cases, and showed that despite differences in Reynolds and
Mach numbers, the first-order model originally proposed by Plotkin (1975) and refined by
Touber & Sandham (2011) for shock-induced separation reasonably collapsed the results.
Recently, Bugeat et al. (2022) proposed a low-pass-filter model for a laminar SBLI, and
demonstrated that this behaviour proceeds ‘from the excitation of a single, stable, steady
global mode whose damping rate sets the time scale of the filter’. A similar forced modal
mechanism was reported in Hao (2023) for a turbulent SBLI. Hence in the case of our
TSB, the low-pass filter model is a direct consequence of our proposed mechanism of
low-frequency unsteadiness since it is also based on the excitation of a damped global
mode. Given the prevalence of low-pass filter behaviour in the literature on separation
bubble unsteadiness, these results, combined with those of Bugeat et al. (2022), suggest
that such a mechanism of low-frequency unsteadiness might occur in many types of
separation bubbles.

Finally, we briefly come back to our original strategy of performing linear analysis on
a DNS base flow that is similar to, but not exactly the same as, the experimental flow
field that we consider. In our case, the cross-validation between experimental unsteady
data and the DNS base flow was necessary since the DNS did not include any unsteady
data at the proper frequency, and the experimental data were not sufficiently resolved
spatially to enable a proper linear analysis. Nevertheless, the concordance between the
GMA/RA results and the experimental data turned out to be close. This suggests that
the phenomenology discovered in this work is not very sensitive to the exact geometry
of the flow. Furthermore, the fact that the DNS base flow is devoid of any experimental
artefacts, such as inflow unsteadiness, roughness effects, or the presence of wind-tunnel
side walls, confirms that the low-frequency breathing motion observed in several
low-speed and many high-speed experiments is a relevant fluid dynamical phenomenon
that is unlikely to be caused by wind-tunnel effects.
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7. Conclusion

The objective of the present work was to perform linear modal and non-modal analysis
on an incompressible, pressure-gradient-induced TSB to investigate the origin of the
low-frequency breathing motion commonly observed in experimental studies. Specifically,
we performed global mode analysis (GMA) and resolvent analysis (RA) on a base flow
consisting of the average flow field computed via DNS by Coleman et al. (2018), and we
compared the results with the unsteady experimental measurements obtained by Le Floc’h
et al. (2018, 2020) in a similar flow field.

The GMA revealed that the eigenmodes of the linearized base flow are damped
in the asymptotic time limit for all frequencies and wavenumbers, indicating that the
low-frequency unsteadiness is unlikely to be driven by any self-sustained (intrinsic)
oscillation. Interestingly, the growth rate ωi was closest to the damping threshold in a
region of spanwise wavenumbers close to β = 1. This region was found to agree very well
with the range of spanwise wavenumbers extracted from the experimental database at low
frequency.

At low frequency and for spanwise wavenumbers lower than β = 3, RA further revealed
an optimal response strongly resembling the unsteady velocity signature of the breathing
motion, which typically manifests as a large-scale coherent structure that follows the shape
of the bubble. Specifically, a comparison between the first SPOD mode of the streamwise
and wall-normal velocity fluctuations measured experimentally showed strong alignment
with the optimal RA response, particularly for β ≈ 1. This, combined with the damped
eigenmodes of the LNSE operator, indicates that the TSB behaves as an amplifier flow
in the low-frequency regime. Furthermore, the optimal gain computed by RA at low
non-zero wavenumber was shown to have the characteristic shape of a first-order, low-pass
filter with a cut-off frequency consistent with the low-frequency unsteadiness observed
experimentally.

Finally, comparison between the least damped global mode and the optimal RA
response showed strong similarities in the low-frequency and low-wavenumber regime,
and this for all velocity components. This behaviour is considered a strong indication
that the low-frequency oscillation is driven primarily by the least damped global mode,
thereby characterizing the phenomenon as a forced modal mechanism, associated here
with a centrifugal mechanism typical of other separation bubbles (Theofilis et al. 2000;
Rodríguez et al. 2013), with the caveat that here we are linearizing the system around the
mean flow, and thus the idea of a ‘modal’ mechanism should be taken in a different sense,
referring to the properties of the LNSE operator. Hence the main conclusion of this study
is that the low-frequency breathing of the TSB is most likely driven by the excitation of a
weakly damped global mode by the turbulent fluctuations in the incoming boundary layer.
This is consistent with the mechanism proposed recently by Porter & Poggie (2019) for the
case of turbulent SBLI flows. Our results also bear strong resemblance to the analyses of
Bugeat et al. (2022) and Hao (2023) in a laminar and turbulent SBLI, respectively, thereby
suggesting that forced dynamics might be a common feature of separation bubbles in a
wide range of flow conditions.
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Low-frequency linear analysis of a TSB

Appendix A. Matrix operators

In this appendix, the matrix operators employed in the GMA and RA are described. We
commence by revisiting the equation

− i ωMq̂ = (A + N)q̂ + Bf̂ . (A1)

The LNSE can be recast into an operator of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ + ∂ ū
∂x

− 1
Re

∇2 ∂ ū
∂y

0
∂

∂x
∂v̄

∂x
ξ + ∂v̄

∂y
− 1

Re
∇2 0

∂

∂y

0 0 ξ − 1
Re

∇2 i β

∂

∂x
∂

∂y
i β 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A2)

where only the molecular viscosity in the flow is considered. Here, ξ = (ū(∂/∂x) +
v̄(∂/∂y)), and ∇2 = (∂2/∂x + ∂2/∂y − β2) is the Laplacian.

When the turbulence of the flow is considered by means of an eddy-viscosity model, the
additional terms read

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−η − ∂νt

∂x
∂

∂x
− νt ∇2 −∂νt

∂y
∂

∂x
0 0

−∂νt

∂x
∂

∂y
−η − ∂νt

∂y
∂

∂y
− νt ∇2 0 0

−i β
∂νt

∂x
−i β

∂νt

∂y
−η − νt ∇2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A3)

where

η =
(

∂νt

∂x
∂

∂x
+ ∂νt

∂y
∂

∂y

)
. (A4)

The operator M acts as a mass-like matrix in order to recover the continuity equation

M =

⎡
⎢⎣
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

⎤
⎥⎦ , (A5)

where I is the identity matrix of respective size. In the resolvent form

q̂ = C(−i ωM − A2D,z)
−1Bf̂ , (A6)

we define the additional matrix operators

B =

⎡
⎢⎣

b(x) 0 0
0 b(x) 0
0 0 b(x)
0 0 0

⎤
⎥⎦ , C =

⎡
⎣c(x) 0 0 0

0 c(x) 0 0
0 0 c(x) 0

⎤
⎦ . (A7a,b)

The sparse diagonal matrices act as filters that enforce constraints on the forcing
and response, respectively. Here, b(x) = 1 in the region x ∈ [0.05Lx, 0.85Lx], whereas
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Figure 23. Non-dimensional DNS base flow using the length scale l∗ = Lb and the time scale t∗ = Lb/u∞.
The (a) streamwise u/u∞ and (b) wall-normal v/u∞ components of the time-averaged velocity field are
displayed.

b(x) = 0 in the remainder of the domain. Similarly, we set c(x) = 1 when
x ∈ [0.33Lx, 0.74Lx], and c(x) = 0 elsewhere. Parameter Lx is the length of the domain.
The region x ∈ [0.33Lx, 0.74Lx] is chosen to agree with the PIV measurement region,
which covers only a portion of the domain of the numerical data.

Appendix B. Boundary conditions and fringe zone

The non-dimensional DNS base flow from Coleman et al. (2018), using the length scale
l∗ = Lb and the time scale t∗ = Lb/u∞, is depicted in figure 23. In the GMA and RA, we
subject the DNS base flow to periodic boundary conditions along the streamwise direction

u(x + Lπ) = u(x), (B1)

v(x + Lπ) = v(x), (B2)

where the periodicity length Lπ is chosen according to Lπ = 0.9Nx, and Nx is the
streamwise dimension of the velocity fields. We further enforce that the disturbances decay
at the solid top (∞) and bottom (0) walls according to

û(0) = v̂(0) = ŵ(0) = 0, (B3)

û(∞) = v̂(∞) = ŵ(∞) = 0. (B4)

In order to suppress all disturbances û, v̂, ŵ as well as forcings f̂x, f̂y, f̂z in the region
where the periodic boundary conditions are enforced, a fringe

S =

⎡
⎢⎣

σf 0 0 0
0 σf 0 0
0 0 σf 0
0 0 0 0

⎤
⎥⎦ (B5)

is added to the two-dimensional LNSE operator A2D,z = A + N + S. Here, σf is a sparse
diagonal matrix with σf = smax × exp(−(x − xc)

2/L2
f ), smax is the maximum amplitude of
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Figure 24. Grid convergence study for (a) St = 0.01 and (b) St = 0.1 based on RA at β = 0. Grid
independence of the singular values of the RA can be observed for Nx ≥ 1200 and Ny ≥ 160.

the fringe, xc is the centre of the fringe, and Lf is the length. The position and length of the
fringe are chosen as xc ≈ 6Lb and Lf ≈ 3.5 % Lx, where Lx is the length of the domain.

Appendix C. Grid and fringe convergence

The grid convergence study is presented in figure 24. We portray the first ten singular
values of the RA at β = 0. Two Strouhal numbers are displayed: a Strouhal number
St = 0.01, representative of the characteristic low-frequency breathing motion (figure 24a),
and a Strouhal number in the medium-frequency regime St = 0.1 (figure 24b). Four
different streamwise (Nx) and wall-normal (Ny) resolutions are depicted. For a resolution
of Nx × Ny equal to 1200 × 160 or higher, a convergence of the results can be observed.
Further increasing the grid resolution yields no discernible influence on the singular values
of the RA.

We illustrate the fringe convergence study in figure 25. Once again, we display St = 0.01
(figure 25a) and St = 0.1 (figure 25b). We maintain a fixed resolution Nx = 1200 and
Ny = 160 for the analysis, and test four different magnitudes smax. Fringe convergence can
then be observed for magnitudes smax ≥ 2.

In this work, we perform the GMA and RA analyses with fringe magnitude smax = 5.
All resolvent analyses are performed with resolution Nx = 1200 and Ny = 160. A slightly
higher resolution, Nx = 1200 and Ny = 320, is employed in the case of GMA.

Appendix D. Sub-optimal energy gains

In this appendix, the behaviour of the sub-optimal resolvent modes associated with
σ2, σ3, . . . , σn and their corresponding forcing fields is studied. Figure 26 shows
the sub-optimal energy gains σ 2

n at the fixed frequency St = 0.01, for different
non-dimensional spanwise wavenumbers β. Trends similar to those for the optimal
energy gain σ 2

1 can be observed. The sub-optimal energy gains increase monotonically
up to a maximum at low/moderate β, after which they start to decay. The maximum
of the curves, however, is slightly shifted towards higher β as compared to figure 11.
For instance, σ 2

2 attains its maximum value for β = 4.5. Furthermore, the low-pass
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Figure 25. Fringe convergence study for (a) St = 0.01 and (b) St = 0.1 based on RA at β = 0. Fringe
independence of the singular values of the RA can be observed for smax ≥ 2.
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Figure 26. Sub-optimal energy gain σ 2
n from RA for different non-dimensional spanwise wavenumbers β.

The frequency is fixed at St = 0.01. The displayed sub-optimal gains are σ2 (circles), σ3 (squares) and σ4
(diamonds).

filter behaviour observed in the optimal energy gain σ 2
1 is not as pronounced for the

sub-optimal energy gains. Their behaviour over different Strouhal numbers is shown in
figure 27 for the two-dimensional case (β = 0) and the three-dimensional case (β = 1).
For three-dimensional perturbations (β = 1), the sub-optimal energy gain σ 2

2 exhibits
a very strong hump at St = 0.06 and a secondary hump at St = 0.1 (figure 27b). The
low-pass filter behaviour is visible only for St < 0.02. Similar observations can be made
for σ 2

3 . Here, the low-pass filter function is superimposed by a broadband hump centred
around St = 0.03. Only the sub-optimal energy gain σ 2

4 displays the expected low-pass
filter behaviour with a reasonable cut-off frequency.

Generally speaking, the sub-optimal forcings and responses retain features similar to
those of the optimal forcings and responses (figures 13 and 15). However, additional
structures away from the bubble and oriented along the base flow shear become apparent;
see, for example, figure 28. Combined with the fact that the resolvent operator is low

991 A11-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

53
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.532


Low-frequency linear analysis of a TSB

60 120

100

80

60

40

50

40

30
10–3 10–2 10–1 10–3 10–2

St

σ2
n

St
10–1

(b)(a)

Figure 27. Sub-optimal energy gains σ 2
n from RA versus different Strouhal numbers St for (a) the

two-dimensional case β = 0, and (b) a sample three-dimensional case β = 1. The displayed sub-optimal energy
gains are σ 2

2 (circles), σ 2
3 (squares) and σ 2

4 (diamonds).
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Figure 28. Streamwise component of (a) sub-optimal forcing f̂x and (b) response û related to the sub-optimal
energy gain σ 2

2 . The non-dimensional spanwise wavenumber and frequency are β = 1 and St = 0.01,
respectively. The time-averaged location of the TSB is indicated by the dividing streamline Ψ̄ = 0 (solid black
line).

rank at low frequency, as indicated by σ 2
1 /σ 2

2 ≈ 12, this leads to the inference that the
sub-optimal gains are less likely to be responsible for the receptivity at low frequency.

Appendix E. Low non-zero β region

In this appendix, we take a closer look at the region β ≤ 0.25. In figure 29, we plot the
optimal energy gain σ 2

1 over different Strouhal numbers St for six spanwise wavenumbers
β ∈ [0, 0.25]. For β = 0, we obtain the same distribution as shown in figure 12(a). The
distinct peak at St ≈ 0.1, which we previously associated with the presence of K–H rollers,
remains visible for all β shown in figure 29. However, as β increases, the optimal energy
gain σ 2

1 in the low-frequency region increases as well. Finally, for β = 0.25, we first
observe the expected low-pass filter behaviour, with dominant optimal energy gains in the
low-frequency region. The associated contours of optimal forcing and response now appear
similar to figure 15 (not shown here). This behaviour can be observed up to approximately
β = 3, after which the qualitative shapes of optimal forcing and response start to differ.
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Figure 29. Optimal energy gain σ 2
1 from RA versus different Strouhal numbers St for small spanwise

wavenumbers β ≤ 0.25. The represented optimal energy gains correspond to β = 0 (dashed line), β = 0.05
(squares), β = 0.1 (circles), β = 0.15 (left-triangles), β = 0.2 (diamonds) and β = 0.25 (triangles).

Taking this into account, we may adopt the (loose) definition of β ∈ [0.25, 3] whenever
we refer to the low non-zero β region.
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