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Selenium and sulfur, both as chalcogen elements, show similar volumetric capacity as cathode material 
for both lithium and sodium ion batteries.[1] Additionally selenium has notable higher electrical 
conductivity than sulfur.[2] In this work, we have investigated the kinetics of sodiation reaction in 
selenium nanotube as the cathode material for sodium ion battery. We have monitored the 
microstructure evolution and interface dynamics using in situ TEM during sodiation process. A three 
steps reaction mechanism appears to explain the sodiation process (Figure 1). In the first step, single 
crystalline selenium nanotube rapidly transforms to an amorphous NaxSe alloy phase. In the second step 
with continued charging, the amorphous phase recrystallizes to a polycrystal Na2Se2 phase. In the final 
step near full sodiation, polycrystalline Na2Se2 appears to completely transform into Na2Se phase with 
high content of Na. Intriguingly, the reaction front region movement is found to be quite different in the 
different sodiation stages. The solid-state amorphization process quickly finishes due to the high 
diffusion of sodium ions inside Se nanotube, with the highest nominal speed of ~2.8 nm/s, and the 
recrystallization processes has a speed of ~1.0 nm/s (Figure 2). Moreover the speed of solid-state 
amorphization process is nearly 10 times higher than lithation process when selenium nanotube were 
tested in lithiation reaction. Molecule Dynamics (MD) calculation shows all the intermediate phases 
produced in sodiation are good conductor of both electrons and ions. These observations can not only 
reveal the reaction mechanism and reaction process, but also to provide insights to design novel 
nanostructure of electrodes with excellent electrochemical performance. 
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Figure 1.  The local morphology and structure analysis of one selenium nanotube with partial sodiation. 
(a-b) In-situ sodiation process of the one single selenium nanotube. (c) The morphology of the partially 
sodiated selenium nanotube. (e-j) The electron diffraction patterns are taken from the different phase 
region and the interface between two adjacent phases. The partially sodiated selenium nanotube shows 
the three sodiation stages in one nanotube. The unreacted region, amorphous region and the 
recrystallized region. 
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Figure 2. The reaction speed of different diameter selenium nanotubes. The solid-state amorphization 
stage with the highest reaction speed of ~2.8 nm/s; and the total speed of sodiaton process has a speed of 
~1.3 nm/s, due to the lower speed of recrystallization stage in the whole sodiation process. The average 
lithiation speed is ~0.23 nm/s.  
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