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ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS
OF A HIGHER ORDER FUNCTIONAL DIFFERENTIAL EQUATION

HirosHI ONOSE

The asymptotic behavior of nonoscillatory solutions of #»th

order nonlinear functional differential equations
(., @) (e, o) (ry(e) (e (BDy " (£)) 1) 1)) ) )Y
+a@®)flylg®)) =b)

is investigated. Sufficient conditions are provided which ensure

that all nonoscillatory solutions approach zero as t * @ |

1. Introduction

We consider the #nth order functional differential equation with
deviating argument
! ! ! 13 1} 1
(1) (rn_l(t)(rn_2(t)(...[r2(t)(rl(t)y ).
+a(t)flylg(r))) = b(e) ,
where a(t), b(t), gl(t), rl(t), cees rn_l(t) are real-valued and

continuous on [T, ) and f(y) is real-valued and continuous on

(~=, @) .
The following conditions are assumed to hold throughout the paper:

(2a) 1im g(t) = = ;

oo

(2b) yfly) >0 for y # 0 ;
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p. .(s)
(2¢) ri(t) >0 and 1lim pi(t) = 0 , where pi(t) = E—fﬁl?ds .

tro0

1)

i=1, ..., n-1 , (Do(t)

We note that the condition {2c) is satisfied if
dt ,
¢3) I 7 (£) <o 2 =1, ..., n=1 .
T 1

We restrict our consideration to those solutions Y(f) of (1) which exist

on some ray ETy, ©) and satisfy
.SUP{ly(t)l Ztoit <=} >0

for any to € [?y’ W) . Such a solution is said to be oscillatory if it

has arbitrary large zeros; otherwise, it is said to be nonoscillatory. It
is important to find sufficient conditions in order that all nonoscillatory
solutions of (1) tend to zero as ¢t > ® , Many authors have studied this
problem, for example, Hammett [3], Graef and Spikes [11, Grimmer [2],
Kartsatos [4], Kusano and Onose ([5], [61), tonden [7] and Singh [8]. 1In

this paper we present some results on this problem.

2. Non-oscillation theorems

We use the following lemmas to prove our results.

LEMMA 1 [5]. Consider the differential equation

(4) w'(£) - Pp—((g u(t) + f;((—f)) o(t) = 0,

where ¢(t) is continuous on [T, @) , p(t) <is continuously
differentiable on [T, ») and p(t) >0, p'(t) <0, 1lim p(¢) =0,

£
Let u(t) be the solution of (L) on [T, ») satisfying u(T) = 0 . Then
lim ¢(t) = ® [or -] implies 1lim u(t) = ® [or -=] .
e £
LEMMA 2 [5]. Let o(t) be continuous on [T, ) and let v(t) be
continuous differentiable on [T, «) . If the limit 1lim [o(t)v'{(t)+v(t)]

oo

#

exists in the extended real line R" , then the limit 1lim v(t) exists in

oo
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R# .

THEOREM 1. Let the condition (3) hold. Suppose that a(t) =z 0 . If
(5) I P, q(tlalz)dt = =,
(6) [ ecertas <=,

then all nonoscillatory solutions of (1) tend to zero as t > = .

Proof. Let y(f) be a nonoscillatory solution of (1). We may
suppose that y(g(¢)) > 0 for t = t, . We define

(7) Golt) =y(t) , G (£) =7 ()G (t) , T =1, ...,7n1,
t
(8 g0 F [ 0 (01 (o) tor k=2,
1 _
which implies
Py i (t)
uk_l(t) = - BZ:;ng-uk(t) + uk(t) - pn-k(tl]Gn-k(tl)

This shows that uk(t) satisfies the differential equation

p_ . (t)
-k
(9) & u' - u+ ¢ (¢) =0,
oy _x(t) k
or equivalently,
p! ,(t) p! ., (t)
-k n-k
(10) u' - u + ¢, (t) =0,
0, _x(t) P, (t) Tk
where

0 () =1 (&) + o ()6, (¢)

Since uk(tl) = 0 by (8) and since pn_k(t) >0, pé_k(t) <0,

1lim pn_k(t) =0 by (2c), we apply Lemma 1 to (10) to conclude that

£

lim U l(t) = o [or ~»] implies that 1lim uk(t) = o [or -»] . Moreover,
e - £+
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applying Lemma 2 to (9), we conclude that lim uk(t) exists in 7

£

whenever lim Uy (t) exists in R# . From (1) we obtain

tro K1

t t
1) 6,9 - G, (6) ¢ | ao)rlote))ds = [ pladas
1

1

Since the first integral of (11) is positive and, by (6), the second

integral is bounded, there exist a constant Kn-l such that

_ !
G (&) =n (£)G! () <K . for tzt,zt

1 1 2 1°

Dividing the inequality by r_ _(¢t) and integrating from t, to t ,wve

n-1
get
t
ds
G, oty -6 ,(t) =xK J (5 for tzt,,
t n-1
2
which shows, in view of (3), that there exists a constant Kn—2 such that
P 14
Gn-2(t) = Pn_z(t)Gn_3(t) = Kn_2 for t = t2 .

Applying the above argument repeatedly, we have

< <

G, () SK oy ooy G(8) SK , G(t) SK, for t=t,,
where Kh_3, vy Kl’ KO are constants. It follows that Go(t) =z y(t) is
bounded above for ¢t = t2 . We now multiply both sides of (1) by pn_l(t)
and integrate it over [%2’ t] . Then we have

t t
(12) L pn_l(s)G’;_l(s)ds+L e, _1(s)als)f(y(g(s)))ds

2 2

t
= J o (s)b(s)ds .

b2

Noting that on account of (6) the right hand of (12) tends to a finite

1limit as ¢ »> « , we can deduce from (12) that
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(13) r P, ()a(®)f(y(g(£)))dt < =,
t
2
since otherwise we could use Lemma 1 to obtain 1lim uk(t) = -2 for
£+
k=0,1, ..., n-1 , which implies 1lim y(¢) = -© , a contradiction. Next,
s ]

using (12), (13), the boundedness of y(f) and applying Lemma 2, we can
find that 1im uk(t) is finite for each kX =0, 1, ..., ©n-1 . Thus we

10

see that 1im y(t) exists and finite. Namely, 1lim y(Z) = ¢ , where ¢
o oo

is a finite nonnegative constant. If ¢ > 0 , then we have

e/2 < y(g(t)) = 2¢ for sufficiently large t , say t 2 tyzt, .

From (13) and f(y) is continuous, we have a contradiction that
© > r p,_1(t)a(t)f(y(g(¢)))dt = k* r p, L (tlalt)dt = = ,

t
3 t3

where

K*= Min 7{y) >0 .
(e/2)=y=ee

Therefore, we conclude that y(f) tends to zero as ¢t = o .

REMARK. Kusano and Onose [5] obtain the same conclusion with the
additional assumption 1lim inf f(y) > 0 and 1im sup f(y) <0 .
y-)oo y-)_CO
THEOREM 2. Let the condition (3) hold. Suppose that a(t) = 0,
lim inf f(y) > 0 and 1lim sup fly) <0 . If

yre y+-oo
(1k) fm p,_1(tlalt)dt = =,
(15) J Dn_l(t)lb(t)|dt <o

then all nonoscillatory solutions of (1) tends to zero as t + « .
Proof. Let y(t) be a nonoscillatory solution of (1). We may

suppose that y(g(¢)) > 0 for t = t, - Define G.(t) and uk(t) by (7)
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and (8). We now multiply both sides of (1) by pn_l(t) and integrate it

over [fl, t] . Then we have

t t
G2 | pn-l(s)"'é-l(s)d“ft 0,1 (5)ale)F(y(g(s)))ds
1 1

t
= Jt pn_l(s)b(s)ds .

1
By using (12) and (15) we can deduce that
00
(13) [ oy rairlleen)as <=,
tl
since otherwise we could use Lemma 1 to obtain 1lim y(f) = -» , a
£t

contradiction. Next, using (12), (13) and applying Lemma 2, we can find

that 1lim uk(t) (k =0,1, ..., n-1) exist as definite limit finite or
£t
© ., Thus we see 1lim yY(t) = or 1lim y(t) = ¢ , where ¢ is a finite
oo [Zaad

and nonnegative constant. If 1im y(f) = © , then we have
tro0

1im inf f(y(g(¢))) > 0 by assumption, which and (1k4) lead to a
troo

contradiction that Jm P, l(t)a(t)f{y(g(t)))dt = o |
+ -

1
If 1im y(¢£) = ¢ > 0, then also we have a contradiction:
L-ro0
0O
J p,_,(t)alt)fly(g(e)))dt = = .
¢
Therefore we conclude that y(£) tends to zero as ¢ + « . //

REMARK. Theorem 2 contains the result of Kusano and Onose ([5],
Theorem 3).

EXAMPLE 1. Consider the equation

(16) P2 (% () ) )+ ¢73(ve) =y %, ¢>0,
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where Y 1is a positive constant. In this case we have pl(t) = ¢t ,
Since all assumptions c¢f Theorem 2

pp(t) = (1/2)t72 , p () = (1/6)¢7
are satisfied, every nonoscillatory solution of (16) approaches zero as

= t‘g

t »> o ., This equation has a nonoscillatory solution y(t)

EXAMPLE 2. consider the equation
et e'heet t=0,

(17) (et(et(ety'(t))')')' + esty(t+6) = 2k + .
. . . -t

where 0 1is a constant. This equation possesses y(t) = e as a non-

oscillatory solution tending to zero as ¢ » « , It is easy to verify that
-t , p2(t) = (1/2)2_2t s p3(t) = (1/6)6-3t and the conclusions

p,(t) = e
of Theorem 2 are satisfied. Therefore all nonoscillatory solutions of (17)

also tend to zero as ¢ > » |

REMARK. These examples cannot be covered by Kusano and Onose ([5],

Theorem 3).
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