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The transport induced by ocean mesoscale eddies remains unresolved in most
state-of-the-art climate models and needs to be parametrized instead. The natural scale
separation between the forcing and the emergent turbulent flow calls for a diffusive
parametrization, where the eddy-induced fluxes are related to the large-scale gradients
by a diffusion tensor. The standard parametrization scheme in climate modelling consists
in adopting the Gent–McWilliams/Redi (GM/R) form for the diffusion tensor, initially
put forward based on physical intuition and educated guesses before being put on firm
analytical footing using a thickness-weighted average (TWA). In the present contribution,
we provide a direct derivation of this diffusion tensor from the quasi-geostrophic (QG)
dynamics of a horizontally homogeneous three-dimensional patch of ocean hosting a
large-scale vertically sheared zonal flow on the β plane. The derivation hinges on the
identification of a useful cross-invariant defined as the product of the buoyancy and QG
potential vorticity fluctuations. While less general than the TWA approach, the present QG
framework leads to rigorous constraints on the diffusion tensor. First, there is no diapycnal
diffusivity arising in the QG GM/R tensor for low viscosity and small-scale diffusivities.
The diffusion tensor then involves only two vertically dependent coefficients, namely the
GM transport coefficient KGM(z) and the Redi diffusivity KR(z). Second, as identified
already by previous authors, the vertical structures of the two coefficients are related by the
so-called Taylor–Bretherton relation. Finally, while the two coefficients differ generically
in the interior of the water column, we show that they are equal to one another near the
surface and near the bottom of the domain for low-enough dissipative coefficients. We
illustrate these findings by simulating numerically the QG dynamics of a horizontally
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homogeneous patch of ocean hosting a vertically sheared zonal current resembling the
Antarctic Circumpolar Current.

Key words: quasi-geostrophic flows, geostrophic turbulence, ocean processes

1. Introduction

Oceans and planetary atmospheres host currents or jets in thermal-wind balance with
meridional buoyancy gradients. This situation is prone to baroclinic instability, however,
and the resulting flows are strongly turbulent. In the ocean, this turbulence takes the form
of ‘mesoscale’ eddies of size comparable to the Rossby deformation radius, a length scale
of the order of 15–20 km in the Southern Ocean. While these vortices are key contributors
to heat, salt and carbon transport, they are not resolved in state-of-the-art global climate
models, and modellers need to parametrize the turbulent transport instead. It was soon
realized that this turbulent transport is ill-described by standard horizontal diffusion (Gent
2011). Instead, rapid rotation and strong stratification induce quasi-geostrophic (QG) flows
in the ocean interior that transport and mix tracers predominantly along density surfaces.
Redi (1982) thus proposed to relate the sub-grid fluxes to the large-scale gradients through
a diffusion tensor that mixes tracers along mean density surfaces only. While avoiding
spurious cross-isopycnal mixing, such a parametrization scheme is unable to describe
the transport of buoyancy. Gent & McWilliams (1990) subsequently proposed to add
an extra eddy-induced advective flux, ensuring the transport of buoyancy (Gent et al.
1995). Following Griffies (1998), these two contributions are combined conveniently into
a ‘Gent–McWilliams/Redi’ (GM/R) diffusion tensor that includes both a symmetric part,
Redi’s isoneutral diffusion scheme, and an antisymmetric part encoding the GM advective
contribution.

A general derivation of the GM/R diffusion tensor was provided by McDougall &
McIntosh (2001). Using a thickness-weighted average (TWA) together with an expansion
for small fluctuations, they showed that the (GM/R) diffusion tensor governs the
eddy-induced fluxes arising in the evolution equation for the thickness-weighted average
of the tracer concentration. The GM flux then corresponds to advection by a ‘quasi-Stokes’
velocity, which is related directly to the GM transport coefficient KGM and can be
added readily to the Eulerian mean velocity to form the residual velocity (Andrews &
McIntyre 1976). More recently, Young (2012) relaxed the small-fluctuation assumption
and derived an exact TWA formulation of the Boussinesq equations, again framed in
terms of a three-dimensional residual velocity that includes the eddy-induced advection.
Eddy-forcing of the residual velocity arises through the divergence of Eliassen–Palm
vectors, which can be recast in terms of the potential vorticity fluxes using some very
general form of the Taylor–Bretherton relation (see also Maddison & Marshall (2013) and
the discussion around (5.4) below).

While they should guide the implementation of parametrizations into global ocean
models, such very general TWA formulations do not provide prescriptions for the
magnitude or depth dependence of the eddy-induced fluxes. Instead, progress can be
made regarding the overall magnitude and structure of the eddy-induced transport by
leveraging the rapid global rotation and focusing on the simpler QG system. Historically,
this approach has led to great insight into the overall magnitude of the transport induced
by baroclinic turbulence, based on the study of the two-layer QG model (Phillips 1954;
Salmon 1978, 1980; Larichev & Held 1995; Held & Larichev 1996; Arbic & Flierl 2004a,b;
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Derivation of the GM/R diffusion tensor from QG dynamics
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Figure 1. (a) An idealized patch of ocean. A layer of fluid is subject to global rotation at a rate that varies
linearly with the meridional coordinate y. The fluid is density-stratified with profile N(z) for the buoyancy
frequency. The background zonal shear flow has profile U(z). The flow coexists with a background meridional
buoyancy gradient as a result of thermal-wind balance. Bottom friction damps the fluctuating kinetic energy.
(b) Snapshot of the departure buoyancy field b in the equilibrated state of the numerical simulation.

Thompson & Young 2006, 2007; Arbic & Scott 2007; Chang & Held 2019; Gallet &
Ferrari 2020, 2021). In a similar fashion, the goal of the present study is to understand
the structure of the diffusion tensor in a simple and strongly idealized situation. We thus
consider the eddy-induced meridional and vertical transport arising from the QG dynamics
of a three-dimensional horizontally homogeneous vertically sheared zonal flow on the β
plane; see figure 1. Baroclinic instability of the base state leads rapidly to turbulence,
and we wish to characterize the transport properties of the resulting equilibrated state.
Focusing on a QG system allows one to make progress regarding the structure of the
diffusion tensor, specifically as follows.

(1) The TWA coincides with the standard Eulerian average at fixed depth z in the QG
system (see Appendix B), which allows for a particularly compact derivation of the
GM/R diffusion tensor.

(2) In the QG system, there is an inverse cascade of energy and buoyancy variance in the
interior, with no anomalous dissipation or mixing. Hence no diapycnal diffusivity
coefficient appears in the Redi tensor in the limit of vanishing viscosity and
small-scale diffusivities. Together with the (statistical) zonal invariance, this leads to
a GM/R diffusion tensor that involves two vertically dependent transport coefficients
only, the GM coefficient KGM(z) and the Redi diffusivity KR(z). By contrast, the
TWA can be performed for both rotating and non-rotating stratified turbulence, and
the theory does not dictate a priori whether diapycnal fluxes arise. (Such diapycnal
fluxes certainly arise for non-rotating stratified turbulence; see Linden 1979; Peltier
& Caulfield 2003; Maffioli, Brethouwer & Lindborg 2016; Caulfield 2021.)

(3) The QG expression for potential vorticity leads to the Taylor–Bretherton relation
between the profiles of KGM and KR in the interior of the domain.

(4) Additionally, the QG boundary conditions at top and bottom readily provide
constraints on the top and bottom values of KGM and KR. Namely, these two
coefficients are equal at top and bottom for low bottom drag.

We introduce the theoretical set-up in § 2. We highlight the main conservation
relations in § 3, from which we derive the GM/R diffusion tensor in § 4. In § 5, we
identify constraints relating the GM coefficient and the Redi diffusivity. We illustrate
these constraints using direct numerical simulation in § 6, before concluding in § 7. In
Appendix A, we show that the contributions from the small-scale diffusive terms are
negligible in the QG regime. In Appendix B, we make the connection between the present
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QG approach and the more general TWA approach of McDougall & McIntosh (2001).
Finally, the details of the numerical procedure are provided in Appendix C.

2. Quasi-geostrophic dynamics of an idealized three-dimensional patch of ocean

We consider the idealized patch of ocean represented in figure 1. Water occupies a
volume (x, y, z) ∈ [0, L]2 × [−H, 0] with a stress-free boundary at the surface z = 0,
and a linear-friction boundary condition at z = −H. The fluid layer is subject to global
rotation around the vertical axis with a local Coriolis parameter f0 + βy, where y denotes
the meridional (north–south) coordinate. Additionally, the fluid layer is density-stratified
with an arbitrary buoyancy frequency profile N(z), and we restrict attention to a single
stratifying agent. We focus on the rapidly rotating strongly stratified regime for which the
fluid motion is governed by quasi-geostrophy (Salmon 1998; Vallis 2006; Venaille, Vallis
& Smith 2011). In that limit, the velocity field u = (u, v,w) consists of a leading-order
horizontal geostrophic flow (u, v) = (−Py,Px), where the generalized pressure field P is
defined as the opposite of the streamfunction, together with subdominant vertical velocity
w. The buoyancy field is given by B = f0Pz as a result of hydrostatic balance.

The base flow consists of an arbitrary zonal velocity profile U(z) = −Py. Differentiating
with respect to z indicates that the zonal flow is in thermal-wind balance with a
z-dependent meridional buoyancy gradient, ∂yB = −f0 U′(z). We consider the evolution
of arbitrary departures from this base state. We denote as p(x, y, z, t) the departure from
the base pressure field, with u = −py the departure zonal velocity, v = px the departure
meridional velocity, and b = f0 pz the departure buoyancy. In the following, we adopt
dimensionless variables, with time expressed in units of |f0|−1 and lengths in units of
H. For brevity, we use the same symbols for the dimensionless variables. The QG limit is
obtained for small isopycnal slope of the base state, or equivalently, in the small Rossby
number limit for O(1) stratification. Denoting as ε the typical magnitude of the isopycnal
slope, the QG system can be derived through the following scalings:

N2 ∼ 1, β ∼ ε, ∂x, ∂y, ∂z ∼ 1, ∂t ∼ ε,

U ∼ ε, (u, v) ∼ ε, w ∼ ε2, b ∼ ε.

}
(2.1)

A standard asymptotic expansion of the equations of motion leads to the QG system
(Pedlosky 1979; Salmon 1998; Vallis 2006), as recalled in Gallet et al. (2022) for
the specific notations and scalings considered here. The evolution then reduces to a
conservation equation for the QG potential vorticity (QGPV). The dimensionless QGPV
departure q is related to the departure pressure p through

q = Δ⊥p + ∂z

(
pz

N2(z)

)
, (2.2)

where Δ⊥ = ∂xx + ∂yy. The (dimensionless) QGPV conservation equation reads

∂tq + U(z) qx + J( p, q) = [−β + S ′(z)]px + Dq, (2.3)

where the Jacobian is J(g, h) = gxhy − gyhx, and we denote the isopycnal slope of the base
state as S(z) = U′/N2. The first term on the right-hand side of (2.3) corresponds to the
distortion of the background meridional potential vorticity (PV) gradient by the meridional
flow. The second term, Dq, is the contribution from the viscosity and buoyancy diffusivity,
which damp the small-scale vorticity and buoyancy fluctuations. This term is detailed in
Appendix A.
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Derivation of the GM/R diffusion tensor from QG dynamics

At the same level of approximation, the evolution equation for the (dimensionless)
buoyancy departure b = pz reads

∂tb + U(z) bx + J( p, b) = U′(z) px − w N2(z)+ Db, (2.4)

where the diffusive term Db is provided in Appendix A. The first two terms on the
right-hand side are the sources of buoyancy fluctuations in the system; they correspond
to the distortion by the turbulent flow of the background meridional and vertical buoyancy
gradients, respectively. At the surface, where w = 0, this equation reduces to

∂tb|0 + U(0) bx|0 + J( p|0, b|0) = U′(0) px|0 + Db|0, (2.5)

where 0 refers to quantities evaluated at z = 0. Quantities evaluated just above the bottom
Ekman boundary layer are denoted with the subscript −1+. At this depth, the pumping
vertical velocity is given by w|−1+ = κΔ⊥p|−1+ , where the friction coefficient κ can be
either related to the vertical viscosity through standard Ekman layer theory over a flat
bottom boundary, or specified at the outset as an independent coefficient parametrizing
more realistic drag on the ocean floor (see Appendix C and Gallet et al. 2022). The
evolution equation for the buoyancy at z = −1+ reads

∂tb|−1+ + U(−1) bx|−1+ + J( p|−1+, b|−1+)

= U′(−1) px|−1+ − N2(−1) κΔ⊥p|−1+ + Db|−1+ . (2.6)

One way to integrate the QG system consists in time-stepping the QGPV conservation
equation (2.3) together with the top and bottom buoyancy evolutions (2.5) and (2.6). To
infer the pressure field at each time step, one inverts the relation (2.2) using b|−1+ and
b|0 as boundary conditions. A desirable feature of this QG approach is that it is fully
compatible with periodic boundary conditions in x and y for the departure fields. We adopt
such periodic boundary conditions in the following.

In the bulk of the domain, the buoyancy evolution (2.4) provides a diagnostic relation
to infer the subdominant vertical velocity w, the latter being crucial to parametrize
eddy-induced vertical transport.

3. Material invariants: buoyancy, QGPV and the cross-invariant

We denote with an overbar ·̄ a time average together with a horizontal area average. Our
goal is to characterize the transport properties of the flow, more specifically the diffusion
tensor connecting the eddy-induced fluxes to the large-scale background gradients of some
arbitrary tracer, be it active or passive. One can gain insight into the structure of this tensor
by focusing on two specific tracers: buoyancy and QGPV. In this section, we thus derive
rigorous constraints between the meridional and vertical turbulent fluxes of buoyancy and
QGPV: vb(z), wb(z), vq(z) and wq(z).

The first constraint stems from the conservation of buoyancy variance. Multiplying the
buoyancy evolution (2.4) with b before averaging over time, x and y leads to

N2 wb = U′ vb, (3.1)

up to diffusive corrections that vanish in the regime of low viscosity and buoyancy
diffusivity. A proof that the diffusive contributions indeed vanish is provided in
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Appendix A, based on the well-known absence of a forward energy cascade in QG
turbulence. We recast the equality (3.1) in the form

wb = S(z) vb, (3.2)

which shows that the mean buoyancy transport is directed along the mean isopycnals.
We derive a second constraint on the fluxes based on the conservation of the

cross-invariant bq. Multiply the QGPV evolution (2.3) with b and the buoyancy
conservation (2.4) with q. Summing the resulting equations and averaging over time, x
and y leads to

wq = S(z) vq − β − S ′(z)
N2(z)

vb, (3.3)

with the equality holding in the low-diffusivity limit, where, as shown in Appendix A, the
contributions from viscosity and buoyancy diffusivity vanish.

4. Arbitrary tracer: Gent–McWilliams/Redi diffusion tensor

Define the z-dependent eddy diffusivities KR(z) and KGM(z) as

KR(z) = vq
−β + S ′(z)

and KGM(z) = vb
U′(z)

, (4.1a,b)

namely, KR is the ratio of the meridional PV flux to minus the background meridional PV
gradient, while KGM is the ratio of the meridional buoyancy flux to minus the background
meridional buoyancy gradient. The reasons for the notations KGM and KR will become
obvious at the end of the derivation below.

Now consider a (passive or active) tracer τ stirred by the three-dimensional flow
and subject to horizontally uniform gradients Gy(z) = O(ε) and Gz(z) = O(1) in the
meridional and vertical directions, respectively. That is, the total tracer field reads∫ z

0
Gz(z̃) dz̃ + y Gy(z)+ τ(x, y, z, t). (4.2)

Under these conditions and with the scalings (2.1), the evolution equation for τ reads

∂tτ + U(z) τx + J( p, τ ) = −px Gy(z)− w Gz(z)+ Dτ , (4.3)

where Dτ denotes small-scale diffusion. A few remarks are in order regarding the
background meridional and vertical gradients: Gy and Gz above should be understood
as the lowest-order background gradients that enter QG dynamics. Naturally, a
subdominant vertical gradient G(1)z = y ∂zGy(z) = O(ε) exists to ensure the equality of
the cross-derivatives ∂y(Gz + G(1)z ) = ∂zGy. However, one can check easily that G(1)z is
subdominant and does not arise in the QG evolution (4.3). Similarly, keeping G(1)z on the
right-hand side of (4.6) would lead to negligible corrections to the fluxes, of higher order
in ε.

The meridional and vertical fluxes of τ are related to the background meridional and
vertical gradients Gy and Gz through a diffusion tensor(

vτ

wτ

)
=
[

A1(z) A2(z)
A3(z) A4(z)

](
Gy
Gz

)
, (4.4)

where the Ai(z) are unknown z-dependent coefficients at this stage. Apply relation (4.4)
to the tracers b and q, the associated background gradients being inferred readily from
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Derivation of the GM/R diffusion tensor from QG dynamics

the right-hand-side terms of (2.3) and (2.4): Gy = −U′(z) and Gz = N2 for τ = b, and
Gy = β − S ′(z) and Gz = 0 for τ = q. We obtain the following fluxes:(

vb
wb

)
=
(−A1 U′(z)+ A2N2

−A3 U′(z)+ A4N2

)
,

(
vq
wq

)
=
(

A1[β − S ′(z)]
A3[β − S ′(z)]

)
. (4.5a,b)

There are four constraints on these four fluxes, which allow us to express the four
coefficients Ai in terms of KGM(z) and KR(z): the first two constraints are simply the
definitions (4.1) of KGM and KR, the third constraint is (3.2), namely the fact that the mean
transport of b is along the mean isopycnals, and the fourth constraint is the cross-invariant
relation (3.3). After a straightforward calculation of the coefficients Ai, the diffusion tensor
connecting the fluxes to the background gradients becomes(

vτ

wτ

)
=
[ −KR (KGM − KR)S
−(KGM + KR)S −KRS2

](
Gy
Gz

)
. (4.6)

This form for the diffusion tensor corresponds to the GM/R parametrization, where
KGM(z) denotes the z-dependent GM coefficient, and KR(z) denotes the Redi diffusivity.
The former represents the skew flux associated with adiabatic transport by the eddying
flow (Griffies 1998). Using the definition in (4.1) of KGM , we check in Appendix B
that the GM part of the tensor (4.6) corresponds to the QG limit of the advective fluxes
associated with the more general quasi-Stokes streamfunction introduced by McDougall
& McIntosh (2001). The Redi part of the tensor represents mixing along the neutral
direction in the limit of weak isopycnal slope S(z). As can be inferred from the QGPV
conservation equation, the Redi diffusivity KR(z) also equals the Taylor–Kubo eddy
diffusivity coefficient deduced at any height z from the Lagrangian correlation function
of the horizontal QG velocity field. Several similar estimates for the PV diffusivity have
been compared in channel geometry by Abernathey, Ferreira & Klocker (2013).

5. Constraints on the GM and Redi coefficients

The derivation above allows us to obtain constraints on the GM and Redi coefficients as
defined by (4.1). First, at the upper boundary the buoyancy equation (2.5) has exactly the
same structure as the QGPV conservation equation (2.3). Both equations correspond to
advection by the base zonal flow and the QG flow at the upper boundary, with a source
term that corresponds to the distortion of a background meridional gradient. We conclude
that the diffusivities relating the meridional flux to the background meridional gradient
are equal for q and b at z = 0 (and given by the Taylor–Kubo eddy diffusivity coefficient
associated with the surface horizontal flow). Using the definitions (4.1), this leads to the
constraint

KGM(0) = KR(0). (5.1)

The same relation holds near the bottom boundary (just above the Ekman boundary layer)
when the drag coefficient is low:

KGM(−1+) = KR(−1+). (5.2)

The equality of KGM(z) and KR(z) is a common assumption when implementing the
GM/R parametrization in global models (Griffies 1998). We put this assumption on a
firmer analytical footing by showing that it holds near the upper and lower boundaries,
although the two coefficients differ generically in the interior of the fluid column. In the
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general case, however, we can further relate the vertical dependence of KGM(z) and KR(z)
through the Taylor–Bretherton relation. Multiplying (2.2) with v = px before averaging
horizontally yields, after a few integrations by parts in the horizontal directions,

vq = d
dz

(
vb
N2

)
. (5.3)

This equation corresponds to the horizontal average of a more general relation derived
initially by Bretherton (1966) and often referred to as the Taylor–Bretherton relation
(Taylor 1915; Dritschel & McIntyre 2008; Young 2012). Using the definitions (4.1), we
recast (5.3) as

KR(S ′ − β) = d
dz
(KGMS). (5.4)

This equality was obtained previously by several authors (e.g. Smith & Marshall 2009)
and is recalled here for the sake of completeness only.

6. A numerical example

With the goal of illustrating the results above, we turn to the direct numerical
simulation of an isolated horizontally homogeneous patch of ocean. The set-up is
chosen to reproduce conditions in the Antarctic Circumpolar Current (ACC), with
surface-intensified stratification, shear and turbulence. The base state consists of a
(dimensionless) stratification decreasing linearly with depth, from N2(0) = 400 at the
surface to N2(−1) = 50 at the bottom, together with an exponential profile for the
background shear flow, U(z) = Ro e2z with Ro = 0.03, and a dimensionless planetary
vorticity gradient β = 4.0 × 10−5. These values for Ro and β are ten times smaller than
typical values in the ACC; this choice leaves invariant the dissipation-free QG dynamics
while ensuring that the numerical simulation is indeed performed in the fully QG regime.
In other words, we simulate an idealized horizontally homogeneous and fully QG version
of the ACC. We have also kept f0 > 0, which leads conveniently to vb > 0 while being
equivalent to the ACC situation up to an equatorial symmetry. We solve for the fully
nonlinear evolution of the departures from the base state inside a domain of dimensionless
size (x, y, z) ∈ [0, 500]2 × [−1, 0] using periodic boundary conditions in the horizontal
directions and small values for the dissipative coefficients. The numerical procedure is
detailed in Appendix C.

After some transient, the system reaches a statistically steady equilibrated state,
illustrated in figure 1 through a snapshot of the departure buoyancy field b. We extract
the time and horizontal area averages of the meridional and vertical fluxes of buoyancy
and QGPV in this statistically steady state. The corresponding profiles are shown in
figure 2, where figure 2(a) provides the diagnosed GM coefficient and Redi diffusivity.
In agreement with results from re-entrant channel simulations (Abernathey et al. 2013),
KGM(z) is monotonic in the interior of the domain, whereas KR(z) exhibits a maximum
at mid-depth (Tréguier 1999; Smith & Marshall 2009). In line with the constraints (5.1)
and (5.2), the interior profiles of KGM(z) and KR(z) tend to a common limiting value
as we approach the top or bottom boundary. This tendency is disrupted by diffusive
boundary layer effects in the immediate vicinity of the boundaries (more strongly so near
the surface). These boundary layers shrink as we lower the diffusivities employed in the
numerical simulation.
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Adiabatic transport Cross-invariant relationGM/R coefficients(a) (b) (c)
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Figure 2. Time and horizontally averaged profiles from the numerical simulation. (a) Transport coefficients
as defined in (4.1) (grey region corresponding to the depth where the meridional QGPV gradient vanishes).
(b) Vertical buoyancy flux compared to the GM/R prediction, which validates adiabatic transport in the interior.
(c) Vertical QGPV flux compared to the GM/R prediction, which validates the cross-invariant relation (3.3).

Having diagnosed KGM(z) and KR(z), we turn to the vertical fluxes of buoyancy
and QGPV, with the goal of comparing the numerical fluxes to the predictions of
the GM/R diffusion tensor. Figure 2(b) shows that the vertical buoyancy flux wb is
captured accurately by the GM/R prediction SKGM U′(z). Because SKGM U′(z) = Svb,
this validates the fact that buoyancy is transported adiabatically in the interior, in line
with (3.2). Figure 2(c) shows that the vertical QGPV flux wq is captured accurately by the
GM/R prediction −S(KGM + KR)(β − S ′), the latter expression being also equal to the
right-hand side of the cross-invariant relation (3.3). The good agreement in figure 2(c) thus
validates the simple and exact cross-invariant relation (3.3) in the interior of the domain.

7. Conclusion

We have studied the transport properties of the turbulent QG flow arising from the
baroclinic instability of a horizontally homogeneous vertically sheared zonal current.
While less general than the TWA formulation of the Boussinesq equations (McDougall &
McIntosh 2001; Young 2012), the QG limit allows one to make progress on the structure of
the diffusion tensor relating the eddy-induced fluxes to the background gradients. Based
on the conservation of buoyancy variance and of a cross-invariant involving buoyancy and
QGPV, we thus derived a particularly simple GM/R form for the diffusion tensor. First, in
the interior of the domain, there are no diapycnal fluxes, provided that the viscosity and
small-scale diffusivities are small. The diffusion tensor then involves only two vertically
dependent coefficients: the GM transport coefficient KGM(z), and the Redi diffusivity
KR(z). Second, based on the definition of QGPV, one can relate KGM and KR through
the Taylor–Bretherton relation (5.4). Finally, based on the QGPV and buoyancy evolution
equations, one obtains that KGM and KR are equal to one another at top and bottom.
These results provide some support for the common modelling assumption KGM � KR
near the boundaries (Griffies 1998). However, the two coefficients are allowed to depart
from one another in the interior of the fluid column, and indeed they do in the present
numerical simulation (in line with previous studies; see Abernathey et al. 2013). It would
be interesting to investigate whether some equivalent of the boundary relation KGM � KR
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exists beyond the present idealized QG framework, for a primitive equation or Boussinesq
system. TWA would likely play a central role for such an extension.
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Appendix A. Diffusive contributions

We consider the impact of the standard diffusive terms (viscosity and buoyancy
diffusivity) within the framework of a QG system. We use different coefficients for the
diffusivities in the horizontal and vertical directions: E⊥ and Ez, respectively, for the
horizontal and vertical dimensionless viscosities (Ekman numbers), and Eb,⊥ and Eb,z,
respectively, for the horizontal and vertical dimensionless buoyancy diffusivities. With
these notations, the diffusive term in the buoyancy equation (2.4) reads

Db = Eb,⊥Δ⊥b + Eb,z ∂zzb, (A1)

while the diffusive term in the QGPV conservation equation (2.3) reads

Dq = E⊥Δ2
⊥p + EzΔ⊥pzz + ∂z

[
1

N2

(
Eb,⊥Δ⊥b + Eb,z∂zzb

)]
. (A2)

In contrast to standard three-dimensional turbulence, QG dynamics are characterized by
an inverse energy cascade (Charney 1971), together with a forward cascade of buoyancy
variance at the boundaries only: in the limit where the various diffusive coefficients
Ei are sent to zero simultaneously, there is no ‘anomalous’ energy dissipation and no
‘anomalous’ dissipation of buoyancy variance in the interior (Lapeyre 2017). That is, the
limit Ei (Δ⊥p)2 → 0 holds for any z, and the limits Ei |∇⊥b|2 → 0 and Ei (bz)2 → 0 hold
pointwise for z /=−1, 0. Additionally, any z-derivative of these profiles also vanishes in
the vanishing-diffusivity limit for z /=−1, 0. The diffusive contribution to the right-hand
side of the adiabatic transport relation (3.2) reads

bDb = −Eb,⊥ |∇⊥b|2 − Eb,z (bz)2 + Eb,z

2
d
dz

b2. (A3)

The three terms vanish in the vanishing-diffusivity limit for z /=−1, 0, leading to bDb →
0 and (3.2). The diffusive contribution to the right-hand side of the cross-invariant relation
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(3.3) reads (bDq + qDb)/N2, where

qDb = Eb,⊥
2

d
dz
(Δ⊥p)2 + Eb,z

2

[
− d3

dz3 (∇⊥p)2 + 3
d
dz
(∇⊥b)2

]

+ Eb,⊥

{
− d

dz

[
(∇⊥b)2

N2

]
+ 1

2N2
d
dz
(∇⊥b)2

}

+ Eb,z

{[
d2

dz2

(
b2

2

)
− (bz)2

]
d
dz

(
1

N2

)
+ 1

2N2
d
dz

b2
z

}
, (A4)

bDq = E⊥
2

d
dz
(Δ⊥p)2 − Ez

2
d
dz
(∇⊥b)2

+ d
dz

[
−Eb,⊥

N2 (∇⊥b)2 + Eb,z

2N2
d2

dz2 b2 − Eb,z

N2 (bz)2
]

+ Eb,⊥
2N2

d
dz
(∇⊥b)2 − Eb,z

2N2
d
dz
(bz)2. (A5)

The terms on the right-hand sides of both expressions vanish in the vanishing-diffusivity
limit for z /=−1, 0, leading to qDb + bDq → 0. Hence the approximate relation (3.3) for
low diffusivities.

Appendix B. Connection to the TWA and the residual mean approach

B.1. The evolution equations for the TWA and for the standard fixed-z averaged tracer
concentration are identical in the QG limit

For a given tracer τ , McDougall & McIntosh (2001) consider the evolution equations
for the TWA τ̂ and for the standard fixed-z average τ̄ , where the time average is to be
understood as an average over a few eddy turnover times. They show that the two evolution
equations differ by the divergence of some vector E, see their equations (53–55). With the
QG scalings (2.1), however, this additional term is negligible. The horizontal components
of E are O(ε3), smaller than the meridional flux vτ = O(ε2) discussed in the present
study. The vertical component of E is the time derivative of some O(ε2)material invariant,
averaged over the slow QG eddy turnover time scale 1/ε. The latter time derivative is
thus of order at least ε4, much smaller than the vertical flux wτ = O(ε3) discussed in the
present study. The vector E is thus a higher-order term that is negligible at the level of the
QG approximation. In other words, the evolution equations for the TWA and the fixed-z
average are identical at the level of the QG approximation.

B.2. The coefficient KGM of the present study describes advection by the quasi-Stokes
velocity in the QG limit

In the general TWA formulation of McDougall & McIntosh (2001), the fluxes arising from
the antisymmetric part of the diffusion tensor are expressed in terms of a quasi-Stokes
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streamfunction ψ as [
0 −ψ · ey

ψ · ey 0

](
Gy
Gz

)
, (B1)

where we restrict attention to the case of zonally invariant statistics. With the QG scalings
(2.1), the y component of the quasi-Stokes streamfunction provided in McDougall &
McIntosh (2001) reduces to ψ · ey = −vb/N2 + O(ε3). Using our definition in (4.1) for
KGM , we can re-express the right-hand side as −KGMS + O(ε3). This shows that (B1) is
indeed equivalent to the GM part of the tensor (4.6) of the present study at the QG level
of approximation.

Appendix C. Direct numerical simulation

The numerical simulations are performed using an intermediate set of equations between
the Boussinesq equations and the QG system. Indeed, on the one hand, the QG system –
(2.3) with the boundary conditions (2.5)–(2.6) – is rather impractical for implementation
in standard pseudo-spectral solvers. On the other hand, going back to the full primitive
equations is also impractical because the latter are incompatible with periodic boundary
conditions in the horizontal directions: they involve terms that are proportional to y, thus
breaking the invariance to translations in y. Fortunately these terms are subdominant
in the QG range of parameters, and a convenient way to simulate the QG dynamics
of a patch of ocean consists in discarding them from the set of Boussinesq equations.
There are two such terms. First, the base state has a z-dependent meridional buoyancy
gradient, and the vertical advection of the associated buoyancy field leads to coefficients
that are proportional to y. We neglect this subdominant vertical advection of the
background meridional buoyancy gradient. Second, the planetary vorticity gradient leads
to a stretching term of the form ( f0 + βy) ∂zu in the vorticity equation. We neglect
the subdominant contribution βy ∂zu in the following. Specifically, we end up with the
following set of dimensionless primitive-like equations for the departure fields:

∂tu + U′(z)w ex + U(z) ∂xu + (u · ∇)u + ez × u − β[ψey +Δ−1
⊥ {ψyz} ez]

= −∇p + bez + E⊥Δ⊥u + Ez ∂zzu, (C1)

∂tb + U(z) bx − U′(z) v + N2(z)w + u · ∇b = Eb,⊥Δ⊥b + Eb,z ∂zzb, (C2)

where u = (u, v,w) now denotes the velocity departure from the base state. The toroidal
streamfunction ψ(x, y, z, t) has a vanishing horizontal area average at every depth z
and is defined as ψ = Δ−1

⊥ {∂yu − ∂xv}. For rapid rotation and strong stratification, the
set (C1-C2) reduces to the limiting QG system ((2.3) with the boundary conditions
(2.5)–(2.6)). Additionally, the form of the β term ensures conservation of mechanical
energy.

We solve (C1)–(C2) inside a horizontally periodic domain with the pseudo-spectral
solver Coral (Miquel 2021), used previously for the Eady model (Gallet et al. 2022) and
for turbulent convective flows (Miquel et al. 2020; Bouillaut et al. 2021), and validated
against both analytical results (Miquel et al. 2019) and solutions computed with the
Dedalus software (Burns et al. 2020). The background stratification is strong, and the
global rotation is fast (low Rossby number), to ensure a strongly QG regime. We use
insulated boundary conditions at top and bottom for b, free-slip boundary conditions at
the surface for the velocity departure, and a frictional boundary condition at the bottom,
∂zu|−1 = −(κ̃/Ez)u|−1, ∂zv|−1 = −(κ̃/Ez)v|−1 and w|−1 = 0. Such parametrized bottom
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drag is detailed in the study of the Eady model (Gallet et al. 2022) together with the
connection between the coefficient κ̃ and the QG friction coefficient κ arising in (2.6).
The dissipative coefficients in the simulation have values κ̃ = 4.5 × 10−4, Ez = 3 × 10−6,
E⊥ = 0.003, Eb,z = 3 × 10−7 and Eb,⊥ = 0.001.
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