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ON SOME GENERALISATIONS OF THE ERDOS DISTANCE
PROBLEM OVER FINITE FIELDS

IGOR E. SHPARLINSKI

We use exponential sums to obtain new lower bounds on the number of distinct
distances defined by all pairs of points (a,b) e A x B for two given sets A,B C F 1

where F, is a finite field of g elements and n ^ 1 is an integer.

1. INTRODUCTION

Given a ring H and a finite set £ C Kn we use A(Tln,£) to denote the number of
distinct distances defined by the pairs of points from £, that is,

where for x = (xu..., xn),y - (yu..., yn) € Un we define

(1) d(x,y)

Throughout this paper, the Vinogradov symbols » and <C have their usual meanings
(we recall that U < V, and V » U are both equivalent to the assertion that U = O(V)).
The constants implied by them may depend on the dimension n and the degree A; of
certain polynomials which appear in our generalisation of the original problem.

Then the Erdos Distance Conjecture asserts that over the real numbers, that is, for
11 = R, the bound

holds for any finite set £ C Rn. Despite that there are some very interesting lower bounds
on A(R",£), this conjecture is still widely open in any dimension including n = 2. For
some recent achievements and generalisations. See [1, 2, 3, 4, 5, 6] and references
therein.
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Iosevich and Rudnev [5] have recently considered this problem for sets over finite
fields, that is, for A(F£,£). Among several other results, they show that, for any set

(2)

Here we consider two generalisations of this problem. Given n polynomials fj(X, Y)
€ &q[X, Y], j = 1 , . . . , n, we define the generalised distance

(3)

where f = ( / i , . . . , / n ) -
Now, for two sets A, B C F£ we define

, yeB}\.

In the special case of the Euclidean distance function f0 = (/i,o, • . . , /n,o)> where
fjfi{X, Y) = {X- Yf, j = 1 , . . . , n, we simply write

Here we suggest a slightly different approach to treat these extensions. Although
in the special case of A(F£, £) our results are generally weaker than those of Iosevich
and Rudnev [5], in some particular instances we obtain slightly stronger statements. For
example, we show that

(4) A(F?,£) = 9 for \£\

which does not follow from (2).

2. SETS OF EUCLIDEAN DISTANCES

THEOREM 1 . For arbitrary sets A,B C FJ,

PROOF: Let x be a nontrivial additive character of Fq. See [7] for basis properties

of additive characters. In particular, we repeatedly use the identity

£««•{: «-?
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We consider character sums

(6) a € F, ,

where as before d(x, y) is given by (1).

By the Cauchy inequality we derive,

\S(a,A,B)\2£U
yeB

= MIEE*(°

x€F» y€B

= Ml E *(a

y,z€B ^

- W E x(«
y,z6B V

E x(«
x€F» ^

fl E

v,))

since if y ^ z then by (5) at least one inner sum in the product vanishes. Therefore,

Let N(X) be the number of solutions to the equation

(7) d(x,y) = x, x e A y e B

Then by (5) we have

(8)

Separating the term |.4| \B\ q~l corresponding to a = 0, we obtain,

N{X) -

Hence,

AeF,

9 Q

= ̂ E E

q2 Z*,
AeF,
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since by (5) the sum over A vanishes unless a = b. Thus,

<\A\\B\qn.
A€F,

Each term with N(X) = 0 contributes \A\2\B\2/q2 to the left hand side. Therefore

(q -T(¥"q,A,B))1^^- > \A\\B\qn

which yields the desired result. Q

In particular, Theorem 1 immediately implies (4).

We now introduce one more approach, to prove a different estimate which is stronger
than that of Theorem 1 when one set is much smaller than the other.

THEOREM 2 . For every odd q and arbitrary sets A, B C. F£,

T(¥^,A, B) » min{g
1/3, | ^ | 1 / 3 |S | 2 / 3 g - ( 2 n " 1 ) / 3 } -

P R O O F : We define character sums S(a,A,B) by (6), as in the proof of Theorem 1.

For a € FJ, by the Holder inequality, we derive,

|5(o, A,B)\4

y€B y€B

u>v,y,z€B

E x(*
X6FJ V

E
j=l

2 a
> + vi " V* ~ ZA

Since q is odd and o 6 F*, then by (5), the sum over each xjf j = 1 n, vanishes,
unless Uj + Vj = yj + Zj. Hence for a € FJ we have

u,v,y,z6B
u+v=y+»
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We also have 5(0, A, B) = \A\ \B\. Therefore, again by (5), we derive the inequality

aeF;

u,v,y,z6B
u+v=y+*

u,v,y,ze£ i
u+v=y+z

u,v,y,z65
u+v=y+z

where T is the number of solutions to the system of n + 1 equations

in u, v, y, z £ J3. There are exactly \B\2 possible values for y,z £ B. When y, z are
fixed, substituting Vj = yj+ z, — Uj in the first equation, we obtain a nontrivial quadratic
equation for u 1 ( . . . , un (since q is odd). Thus there are 0{q1i~1) possible vectors u, which
now define v uniquely. Therefore T ^ \B\2qn~l which leads to the bound

o€F,

As in the proof of Theorem 1, we use Af(A) to denote the number of solutions to (7).
Then from (8) we deduce

E
A6F, ^ AeF, a,6,c,d6F,

xS(a, A, 5)5(6, A, B)S{c, A, B)S(d, A, B)

= \ E 5(a' A>
a+b+c+d=0
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By the Holder inequality

A6F,
a+b+c+d=0

o,6,c,deF,
a+b+c+d=0

1/*

V o,l.,c,<feF,
a+b+c+d=0

a,6,c,deF,
a+b+c+d=0

a+b+c+d=0

Clearly

A€F,

Now, by the Holder inequality again,

{\A\ \B\)A =
A€F,

which implies the desired result. D

We see that Theorem 2 is nontrivial for |.4||£|2 > Cq2n~l for some constant C > 0
depending only on n.

3. SETS OF GENERALISED DISTANCES

The following bound follows the same lines as the proof of Theorem 1.

THEOREM 3 . Let f = (/i, . .-,/„), wAere each of the polynomials fj(X,Y)
e Fq[X,Y], j = l , . . . ,n , is of degree at most k and is not of the form fj(X,Y)
= gj{X) + hj{Y) with gj(X) G F,[*], hj{Y) e ¥q[Y\. Then, for arbitrary sets A,BC¥^,

PROOF: AS before, we fix a nontrivial additive character x of F, and consider char-
acter sums

(9) 5f(a,AB)

where df(x, y) is given by (3).
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Arguing as in the proof of Theorem 1, by the Cauchy inequality we derive,

\St(a,A,B)\U\A\ E fl E x(a{fj(xj,yj)-fj(xj,zj))).
e B l ¥ »

If fj{X, yj) — fj(X, Zj) is constant, the corresponding sum over Xj is equal to q by absolute
value, otherwise we estimate this sum as O(qll2) by the Weil bound.

It is easy to see that if a polynomial f(X, Y) G Wq[X, Y] of degree deg / < k is not
of the form f(X,Y) = g(X) + h{Y) with g(X) G Fq[X], h{Y) G ¥q[Y], then for every
y G ¥q, there are at most A; values of z such that f(X, y) - f(X, z) is constant.

For every y G B and an integer u G {0,.. . , n}, there are O(qn~") vectors z G B for
which fj(X, yj) — fj(X, Zj) is constant for exactly v values of j G {1 , . . . , n}. Therefore

n

|Sf(a,AS)|2<
«/=0

i/=0

Let Âf (A) be the number of solutions to the equation

df(x,y) = A, x 6 A y e s .

Then by (5) we have the following analogues of (8)

\ \ x(-a\)Sf(a,A,B).

Separating the term \A\ \B\ q~l corresponding to a = 0, as in the proof of Theorem 1, we
obtain,

A6F,

Each term with 7Vf (A) = 0 contributes |.4|2|B|2/g2 to the left hand side. Therefore

4,g))|-4|y|2>l4||g|g
3"/2

which implies the desired result. D

In particular, we see that there is a constant C > 0, depending only on n and k
such that for any f satisfying the conditions of Theorem 3 we have Tf{¥^,A, B) > q/2
provided that \A\ \B\ 2 Cq3"'2*2.

https://doi.org/10.1017/S0004972700038867 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038867


292 I.E. Shparlinski [8]

REFERENCES

[1] M.B. Erdogan, 'A bilinear Fourier extension theorem and applications to the distance set
problem', Intern. Math. Res. Notices 23 (2005), 1411-1425.

[2] S. Hofmann and A. Iosevich, 'Circular averages and Falconer/ErdSs distance conjecture
in the plane for random metrics', Proc. Amer. Mat. Soc. 133 (2005), 133-143.

[3] A. Iosevich and I. Laba, 'Distance sets of well-distributed planar sets', Discrete Comput.
Geom. 31 (2004), 243-250.

[4] A. Iosevich and M. Rudnev, 'Spherical averages, distance sets, and lattice points on
convex surfaces', (preprint, 2005).

[5] A. Iosevich and M. Rudnev, 'Erdds distance problem in vector spaces over finite fields',
Trans. Amer. Math. Soc. (to appear).

[6] N. Katz and G. Tardos, 'A new entropy inequality for the Erdds distance problem', in
Towards a theory of geometric graphs, Contemp. Math., 342 (Amer. Math. Soc, Provi-
dence, RI, 2004), pp. 119-126.

[7] R. Lidl and H. Niederreiter, Finite fields (Cambridge University Press, Cambridge, 1997).

Department of Computing
Macquarie University
Sydney, NSW 2109
Australia
e-mail igor@ics.mq.edu.au

https://doi.org/10.1017/S0004972700038867 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038867

