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Shape of sessile drops in the large-Bond-number
‘pancake’ limit
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We revisit the classical problem of calculating the pancake-like shape of a sessile drop
at large Bond numbers. Starting from a formulation where drop volume and contact
angle are prescribed, we develop an asymptotic scheme which systematically produces
approximations to the two key pancake parameters, height and radius. The scheme is
based on asymptotic matching of a ‘flat region’ where capillarity is negligible and an
‘edge region’ near the contact line. Major simplifications follow from the distinction
between algebraically and exponentially small terms, together with the use of two exact
integral relations. The first represents a force balance in the vertical direction. The second,
which can be interpreted as a radial force balance on the drop edge (up to exponentially
small terms), generalises an approximate force balance used in classical treatments. The
resulting approximations for the geometric pancake parameters, which go beyond known
leading-order results, are compared with numerical calculations tailored to the pancake
limit. These, in turn, are facilitated by an asymptotic approximation for the exponentially
small apex curvature, which we obtain using a Wentzel–Kramers–Brillouin method. We
also consider the comparable two-dimensional problem, where similar integral balances
explicitly determine the pancake parameters in closed form up to an exponentially small
error.

Key words: drops

1. Introduction

Calculating the shape of a sessile drop on a horizontal substrate is a classical hydrostatic
problem (Finn 1986). Its understanding is a prerequisite to both more complicated static
drop configurations (Concus 1968; Concus & Finn 1969) and the transition to drop
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Figure 1. Numerically evaluated drop shape for α = π and α = π/2, generated using the scheme of § 6;
(a) B = 1 and (b) B = 10.

motion on substrates (Dussan V. 1979; Hodges, Jensen & Rallison 2004). Owing to
axial symmetry, the interfacial force balance normal to the drop interface may be written
as an ordinary differential equation. The complete mathematical problem governing the
drop shape consists of that equation together with appropriate subsidiary conditions. The
dimensionless problem involves only two parameters. The first is the contact angle α,
specified at the contact line. The second is the Bond number B, which enters through the
interfacial force balance; it represents the ratio of gravitational to capillary forces.

No closed-form solution exists for arbitrary B and α (Finn 1986). The extreme limits
of small and large B, which provide approximate descriptions, are therefore of interest. In
the limit B → 0, wherein gravity is negligible, the drop shape is a spherical cap (Chesters
1977; Shanahan 1984; Smith & Van de Ven 1984; Quéré, Azzopardi & Delattre 1998).
This limit is regular, except for the case of a non-wetting drop (α = π) where the flat-spot
region near the contact line must be addressed separately (Mahadevan & Pomeau 1999;
Hodges et al. 2004; Schnitzer, Davis & Yariv 2020).

In the other extreme, B → ∞, gravity is dominant. The drop adopts a pancake-like
shape where surface tension is negligible except near the edge, see figure 1. This
problem, originally addressed by Laplace (1805) and Rayleigh (1916), constitutes a
classical example of a boundary-layer configuration (Rienstra 1990; Van Dyke 1994).
When formulating the problem in a manner which reflects experimental protocol, the drop
volume is specified (Quéré et al. 1998; Aussillous & Quéré 2006). Using that approach,
Quéré and coworkers addressed the pancake limit using two different derivations. The first
is a ‘mechanical’ one (De Gennes, Brochard-Wyart & Quéré 2003), using an approximate
radial force balance on the drop edge. The second (Quéré 2005) uses an energetic
approach, where the constraint of a specified volume was handled using Lagrange
multipliers. In both approaches, the authors obtain approximations for the pancake shape
parameters (radius and height) without solving any differential equations.

It is desirable to devise a systematic scheme for the large-B limit which, on one hand,
would shed light upon the above-mentioned approximations, and, on the other hand, would
allow for the possibility of going beyond them to any asymptotic order. The large-B limit
was analysed by Rienstra (1990) using asymptotic terminology and notation. Reinstra’s
analysis, however, is based on a formulation where contact angle and drop volume are not
prescribed quantities, resulting in an analysis that ultimately provides explicit results only
to leading order. Moreover, Reinstra’s analysis relies on direct solution of the governing
differential equations, whereas the mechanistic approach in De Gennes et al. (2003)
suggests that integral balances may provide valuable simplifications.
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Shape of sessile drops in the ‘pancake’ limit

Our goal here is to revisit the pancake limit B � 1 using a contemporary formulation
where the drop volume is specified. In particular, we shall employ the method of
matched asymptotic expansions (Hinch 1991), natural for handling this singular limit, to
systematically derive asymptotic approximations of the pancake shape parameters, going
beyond known leading-order results. Motivated by the mechanistic approach in De Gennes
et al. (2003), we shall employ two integral-force balances in order to simplify our analysis:
a familiar vertical balance and a second, newly derived, balance that we shall be able to
interpret as a generalisation of the intuitive leading-order radial balance used in De Gennes
et al. (2003).

The paper is arranged as follows. In the next section, we formulate the hydrostatic
problem and derive the vertical force balance. In § 3 we discuss the meniscus
parameterisation and derive the generalised radial balance mentioned above. In § 4 we
deduce scalings and leading-order approximations for the pancake shape parameters.
Facilitated by the distinction between algebraically and exponentially small terms, the
asymptotic analysis in the limit B → ∞ is carried out in § 5. A numerical scheme
for solving the exact problem, tailored to large values of B, is introduced in § 6. An
approximation of the exponentially small apex pressure, required for the application of
that scheme at these values, is obtained in § 7 using a Wentzel–Kramers–Brillouin (WKB)
method. In § 8 we compare the large-B asymptotic approximations with the numerical
calculations. The large-B limit of the comparable two-dimensional problem is discussed
in § 9. We conclude at § 10.

2. Problem formulation

A drop of density ρ and surface tension γ rests on a horizontal substrate. The drop volume
is 4πa3/3. The contact angle is α. In formulating a dimensionless problem, we adopt a
convention where lengths are normalised by a and pressure by γ /a. We employ cylindrical
(r, θ, z) coordinates, r = 0 being the symmetry axis and the plane z = 0 at the substrate.
The contact-line radius is denoted by r∗. The height of the free surface at the symmetry
axis is denoted by z∗.

The pressure field within the drop is given by

p = p∗ − Bz, (2.1)

where p∗ is the (as yet unknown) pressure at z = 0 and B = ρga2/γ is the Bond number,
representing the ratio of gravity to capillarity. This number may be written as the ratio of
length scales

B = (a/l)2, (2.2)

in which the capillary length l is defined by

l2 = γ

ρg
. (2.3)

Using (2.1), the Young–Laplace equation condition at the free surface reads

p∗ − Bz = ∇ · n̂, (2.4)

wherein n̂ in an outward-pointing unit vector normal to the surface. This equation is
supplemented by the volume constraint

drop volume = 4π

3
, (2.5)
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together with the prescription of a contact angle α,

n̂ = êr sin α + êz cos α, at z = 0. (2.6)

Defining the unit vector m̂ = êθ × n̂, we have

m̂ = êr cos α − êz sin α, at z = 0. (2.7)

That vector is tangential to the meniscus and perpendicular to the contact line.
In what follows, it is convenient to employ an integral-force balance (with forces

normalised by γ a). Considering the drop together with the meniscus, that balance involves
the pressure force at the substrate, êzπr∗2p∗, the drop weight −êz(4π/3)B (recall (2.5)),
and the surface tension, provided by the integral of m̂ over the contact circle (of length
2πr∗). We therefore obtain using (2.7)

p∗r∗2 = 4B
3

+ 2r∗ sin α. (2.8)

While condition (2.8) does not provide any independent information, it may serve as a
convenient alternative to (2.5).

For future reference, we note that the apex pressure is

p∗∗ = p∗ − Bz∗. (2.9)

3. Shape parametrisation

Following Rienstra (1990) we employ parametrisation in the meridian plane using the
arclength s measured from the detachment point. The free surface is described using the
local inclination angle φ, whereby the outward unit vector normal to the surface is

n̂ = êr sin φ − êz cos φ. (3.1)

The associated curvature is ∇ · n̂ = dφ/ds + r−1 sin φ. The Young–Laplace equation
(2.4) then gives

dφ

ds
+ sin φ

r
= p∗ − Bz. (3.2)

Regarding r and z as functions of s, they are governed by the differential equations

dr
ds

= cos φ,
dz
ds

= sin φ. (3.3a,b)

These first-order equations are supplemented by the ‘initial’ conditions

r(0) = r∗, z(0) = 0, (3.4a,b)

as well as the contact-angle condition (cf. (2.6))

φ(0) = π − α. (3.5)

The arclength s ranges between 0 and sM , wherein the maximal value sM is set by the
condition φ(sM) = π. The two parameters in the problem, p∗ and r∗, are to be determined
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Shape of sessile drops in the ‘pancake’ limit

from the volume constraint (cf. (2.5)),∫ sM

0
r2 dz

ds
ds = 4

3
, (3.6)

and the symmetry condition,
r(sM) = 0. (3.7)

In the analysis that follows it is preferable to employ φ as the independent variable
(running from π − α to π) instead of s. With a slight abuse of notation, equations
(3.2)–(3.3) are then replaced by

dr
dφ

= r cos φ

p∗r − Brz − sin φ
,

dz
dφ

= r sin φ

p∗r − Brz − sin φ
, (3.8a,b)

while conditions (3.4) become

r(π − α) = r∗, z(π − α) = 0. (3.9a,b)

The volume constraint (3.6) now reads∫ π

π−α

r2 dz
dφ

dφ = 4
3
, (3.10)

while the symmetry condition (3.7) becomes

r(π) = 0. (3.11)

In that formulation, the drop height is obtained as

z∗ = z(π). (3.12)

A useful integral equation may be obtained as follows. We write (3.8b) in the form

( p∗ − Bz) dz − sin φ

r
dz
dφ

dφ = sin φ dφ, (3.13)

and integrate over φ from π − α to π, which implies integration over z from 0 to z∗ (see
(3.9b) and (3.12)). This gives

p∗z∗ − Bz∗2

2
−

∫ π

π−α

sin φ

r
dz
dφ

dφ = 1 − cos α. (3.14)

4. Scalings and pancake size as B → ∞
For given α and B, the problem formulation of § 2 defines the base pressure p∗ and the
shape – in particular r∗ and z∗. There is no closed-form analytic solution to that problem
(Finn 1986). Our interest lies in the limit of large drops, where B is large. With gravity
being dominant, it is evident that the drop adopts an approximate pancake shape, with
the radius being approximately r∗ and the uniform height being approximately z∗. In this
section, we intend to find the scaling of these shape parameters, and then evaluate them
(approximately) without solving any differential equations.

We begin with scaling arguments. It is evident from the volume constraint (2.5) that
r∗2z∗ = ord(1). From the Young–Laplace balance (2.4) we see that p∗ = ord(Bz∗). Since
the latter relation involves the unknown p∗ we need another scaling law. To that end,

961 A13-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

24
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.243


E. Yariv and O. Schnitzer

consider the edge region about the rim. In that region the shape is independent at leading
order of the drop volume. Since the only pertinent length scale is then the capillary length
l (recall (2.3)), it follows that (see (2.2))

z∗ = ord(B−1/2). (4.1)

Consequently, we have

r∗ = ord(B1/4), p∗ = ord(B1/2). (4.2a,b)

We can now go beyond scaling, obtaining three approximations governing the above
quantities. The first follows from the volume constraint (2.5), which gives here

r∗2z∗ ≈ 4
3 . (4.3)

The second is the Young–Laplace balance (2.4), which, when applied to the flat portion of
the pancake shape, gives

p∗ ≈ Bz∗. (4.4)

The third is derived from the integral relation (3.14). It follows from (4.1)–(4.2) that the
integral term in (3.14) is subdominant to the ord(1) terms. We therefore obtain

p∗z∗ − Bz∗2

2
≈ 1 − cos α. (4.5)

The solution of (4.3)–(4.5) is

p∗ ≈ B1/2Π0, z∗ ≈ B−1/2Π0, r∗ ≈ B1/4R∗
0, (4.6a–c)

wherein

Π0 = 2 sin
α

2
, R∗

0 =
√

2
3 sin(α/2)

. (4.7a,b)

These constitute the dimensionless counterparts of results obtained in De Gennes et al.
(2003) and Quéré (2005). Note that the force balance (2.8) is trivially satisfied at leading
order, with the last term subdominant. This is consistent with our comment following (2.8)
regarding independence.

It is interesting to note that De Gennes et al. (2003) use (see their (2.7) and their
figure 2.4) a dimensional version of (4.5), which presumably expresses ‘equilibrium of
the forces (per unit length of the line of contact).’ De Gennes et al. (2003) do not explain
the nature of approximation in their equation (2.7). (With the contact-line curvature in the
azimuthal direction being ignored, it is not an exact balance.) In contrast to the intuitive
approach in De Gennes et al. (2003), here we have obtained (4.5) by approximating
the exact integral balance (3.14). As will become evident, that exact condition can be
interpreted in the limit B → ∞ as an ‘edge balance’, up to exponentially small terms,
with (4.5) emerging at leading order.

It is also worth noting that the approximate relation (4.5) may be obtained using a
different approach. As in the derivation of (2.8), we employ an integral force balance on
the drop together with its meniscus. Here, however, we consider half of the drop, applying
the force balance in a direction perpendicular to a mid-plane. Since gravity does not
contribute in that direction, we have a balance between pressure force on the mid-plane and
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surface-tension forces. In the pancake approximation, the pressure force is approximately
given by

2r∗
∫ z∗

0
p(z) dz. (4.8)

It is opposed by surface tension at the ‘top’ flat meniscus, ≈ 2r∗, and supplemented
by surface-tension forces at the contact line which, when projected perpendicular to
mid-plane, approximately sum up to 2r∗ cos α (recall (2.7)). We therefore have

∫ z∗

0
p(z) dz ≈ 1 − cos α. (4.9)

Plugging in (2.1) gives (4.5). The derivation of an exact force balance over half the drop,
is, however, not as straightforward. We therefore prefer to employ the exact relation (3.14),
which is later used beyond leading order.

5. Asymptotic analysis in the limit B → ∞
In what follows we proceed with a systematic asymptotic calculation, perturbing about
(4.6)–(4.7). This allows us to improve upon the approximation originally obtained by
Quéré and coworkers. The analysis is facilitated by the conceptual decomposition of the
drop domain into a ‘flat region’, where capillarity is negligible, and an ‘edge region’, close
to the contact line, where capillarity play a dominant role.

5.1. Rescaling
Motivated by (4.6), we introduce rescaled quantities

p∗ = B1/2Π, z∗ = B−1/2Z∗, r∗ = B1/4R∗. (5.1a–c)

These satisfy

lim
B→∞

Π = Π0, lim
B→∞

Z∗ = Π0, lim
B→∞

R∗ = R∗
0, (5.2a–c)

wherein Π0 and R∗
0 are given by (4.7). In terms of the rescaled quantities, the pressure field

(2.1) reads

p = B1/2(Π − Z), (5.3)

with the apex pressure (2.9) becoming

p∗∗ = B1/2(Π − Z∗), (5.4)

and the vertical force balance (2.8) reading

R∗2
Π = 4

3 + 2B−3/4R∗ sin α. (5.5)

Similarly to (5.1b,c), we also define the associated stretched coordinates Z and R as

z = B−1/2Z, r = B1/4R. (5.6a,b)
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5.2. Exponentially small terms
In terms of the rescaled quantities, the Young–Laplace balance (2.4) becomes

Π − Z = B−1/2∇ · n̂. (5.7)

In the flat region we can write the shape as

Z = Π + G(R). (5.8)

We claim that G is exponentially small in that region. Indeed, with Z being uniform at
leading order, ∇ · n̂ vanishes, so does not provide a correction term in (5.7) at any algebraic
order.

In particular, we note that
Z∗ = Π + G(0), (5.9)

that is,
Z∗ = Π + exponentially small terms. (5.10)

Neglecting such terms we may replace Z∗ by Π , reducing the number of parameters.
With height variations being exponentially small in the flat region, it is clear that the

contribution from that region to the integral in the balance (3.14) is also exponentially
small. That integral is therefore dominated by the edge region at all algebraic orders and
thence (3.14) can be interpreted as an edge balance.

5.3. The edge region
We have already observed that the extent of edge region is ord(B−1/2). The stretched
coordinate Z, as defined in (5.6), is therefore appropriate for that region too. The
appropriate stretched coordinate X in the radial direction is defined via

r = B1/4R∗ + B−1/2X, (5.11)

or, using (5.6b),
R = R∗ + B−3/4X. (5.12)

With a slight abuse of notation, the edge shape is written as

X = X(φ), Z = Z(φ), (5.13a,b)

whereby (5.12) provides the parametric form

R = R∗ + B−3/4X(φ). (5.14)

Equations (3.8) become

dX
dφ

= cos φ

Π − Z − B−3/4R−1 sin φ
,

dZ
dφ

= sin φ

Π − Z − B−3/4R−1 sin φ
, (5.15a,b)

with R provided by (5.14), while conditions (3.9) now read

X(π − α) = 0, Z(π − α) = 0. (5.16a,b)

Last, making use of (5.10), the integral relation (3.14) is simplified to

Π2

2
− B−3/4

∫ π

π−α

sin φ

R
dZ
dφ

dφ = 1 − cos α, (5.17)

with an exponentially small error. As in (5.15), R is provided by (5.14).
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5.4. Asymptotic expansions
Both the vertical force balance (5.5) and the edge balance (5.17) imply asymptotic
correction of relative magnitude O(B−3/4) to the limiting values (5.2). (That magnitude
is also suggested by (5.15).) Given (5.10), we only need to deal with two parameters. We
therefore write

Π = Π0 + B−3/4Π1 + · · · , R∗ = R∗
0 + B−3/4R∗

1 + · · · . (5.18a,b)

We therefore employ the expansions

X = X0(φ) + B−3/4X1(φ) + · · · , Z = Z0(φ) + B−3/4Z1(φ) + · · · . (5.19a,b)

Note that (5.14) gives

R = R∗
0 + B−3/4 [

R∗
1 + X0(φ)

] + · · · . (5.20)

Our goal is the calculation of the leading-order corrections Π1 and R∗
1. The requisite two

equations are obtained from the integral balances at ord(B−3/4). Thus, from the vertical
balance (5.5) we find

R∗
0Π1 + 2Π0R∗

1 = 2 sin α, (5.21)

while from the radial balance (5.17) we obtain, using (5.20),

Π0Π1 = 1
R∗

0

∫ π

π−α

dZ0

dφ
sin φ dφ. (5.22)

To obtain Z0(φ) we need to explicitly consider the edge region.

5.5. Leading-order edge shape
At leading order, (5.15) becomes

dX0

dφ
= cos φ

Π0 − Z0
,

dZ0

dφ
= sin φ

Π0 − Z0
, (5.23a,b)

while conditions (5.16) give

X0(π − α) = 0, Z0(π − α) = 0. (5.24a,b)

Using (4.7a) we readily find the solution of (5.23b) and (5.24b)

Z0 = Π0 − 2 cos
φ

2
. (5.25)

As φ → π, Z0 → Π0, in agreement with the expected approach to the pancake flatness
(5.10). In particular, we obtain from (5.25):

Z0 = Π0 − (π − φ) + o(π − φ), as φ → π. (5.26)

Substituting (5.25) into (5.23a) yields, using (5.24a),

X0 = 2 sin
φ

2
− arctanh sin

φ

2
− 2 cos

α

2
+ arctanh cos

α

2
. (5.27)

As expected, X0 → −∞ as φ → π. The approach is logarithmically slow; thus

X0 ∼ − ln
4

π − φ
+ 4 sin2 α

4
+ arctanh cos

α

2
, as φ → π, (5.28)

where the asymptotic error is algebraically small in π − φ.
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For φ > π/2 the meniscus shape may be written in the form

Z0 = H(X0). (5.29)

In what follows, we require the behaviour of H as X0 → −∞. Substituting (5.28) into
(5.26) yields

H(X0) ∼ Π0 − 4 exp
(

X0 − 4 sin2 α

4
− arctanh cos

α

2

)
, as X0 → −∞. (5.30)

Note the exponential approach to the flat-region height Π0.

5.6. Leading-order shape corrections
Having calculated Z0(φ), we can obtain the shape corrections. Substituting (5.25) into
(5.22) gives, upon making use of (4.7),

Π1 =
(

2
3

)1/2 1 − cos3(α/2)

sin1/2(α/2)
, (5.31)

which is positive for all contact angles. From (5.21) we then obtain

R∗
1 = 5

6
cos

α

2
− 1

12
sec2 α

4
. (5.32)

It is positive for 0 < α < α̃π and negative for α̃π < α < π, where α̃ ≈ 0.89.
Recalling (5.10), we have obtained the leading-order corrections to the rescaled shape

parameters Z∗ and R∗. In obtaining these corrections we have used the integral balances
(5.5) and (5.17) at ord(B−3/4), and the edge shape at leading order. We did not use the
volume constraint (2.5). It may appear that constraint (2.5) at ord(B−3/4) in conjunction
with the leading edge solution (5.25) and (5.27) may be used as an alternative equation for
obtaining Π1 and R∗

1. In Appendix A we show that the volume constraint (2.5) is trivially
satisfied at ord(B−3/4). This, of course, was to be expected given the dependency between
(2.5) and (2.8).

6. Numerical scheme

It is clear that dr/dφ is large in the flat region, where φ is approximately constant. It
follows that (3.8) become numerically challenging in the limit B → ∞. In constructing a
numerical scheme appropriate for that limit, it is therefore more convenient to employ the
more primitive formulation (3.2)–(3.7).

We actually employ a variant of that formulation, which allows us to reduce the number
of parameters. Thus, we set the origin at apex, with an axial axis z̄ pointing downwards

z̄ = z∗ − z. (6.1)

The local inclination angle is now φ̄ = π − φ. It starts at the zero value at the apex,
where z̄ = 0, and reaches the contact angle at the substrate, where z̄ = z∗. We denote the
arclength, as measured from the apex, by s̄.
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Shape of sessile drops in the ‘pancake’ limit

In terms of the new variables, (3.2) becomes

dφ̄

ds̄
+ sin φ̄

r
= p∗∗ + Bz̄, (6.2)

wherein p∗∗ is the apex pressure (2.9). Upon replacing s, z and φ by s̄, z̄ and φ̄, (3.3)
remains intact,

dr
ds̄

= cos φ̄,
dz̄
ds̄

= sin φ̄, (6.3a,b)

while the initial conditions (3.4)–(3.5) become

r(0) = 0, z̄(0) = 0, φ̄(0) = 0. (6.4a–c)

The arclength s̄ ranges between 0 and sM , wherein now the maximal value sM is obtained
by the condition φ̄(sM) = α.

In the above description, r∗ no longer appears in the problem formulation, so the only
remaining parameter is p∗∗. It is determined from the volume constraint (cf. (3.6))

∫ sM

0
r2 dz

ds̄
ds̄ = 4

3
. (6.5)

In implementing the above numerically, we observe that the second term in (6.2)
becomes indefinite at s̄ = 0. Taylor expansion in conjunction with (3.3a) readily yields

dφ̄

ds̄
= p∗∗

2
at s̄ = 0, (6.6)

which replaces (6.2) at the initial step (s̄ = 0).
For given values of B and α, the numerical scheme is as follows. Using an initial guess

for p∗∗, the initial-value problem (6.2)–(6.4) is integrated until φ̄ reaches the value α.
The violation in the volume constraint (6.5) is then used to iterate for p∗∗. This scheme
works for arbitrary values of B, but becomes sensitive to the initial guess for p∗∗ when B
becomes large. This is hardly surprising: given (5.4) and (5.9)–(5.10), the apex pressure,

p∗∗ = −B1/2G(0), (6.7)

is exponentially small. It is therefore desirable to obtain an asymptotic approximation for
p∗∗ (or, equivalently, for the apex curvature) in the pancake limit. The exponentially small
curvature profile in the flat region can be obtained using the WKB method. This is carried
out in the following section, resulting in an explicit approximation for p∗∗.

7. Exponentially small apex curvature

Recalling that p∗∗ is given by (6.7), we need an approximation for G(R). Linearising the
expression for curvature in cylindrical coordinates (Pozrikidis 2011) and making use of
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(5.8) yields

∇ · n̂ = −B−1
(

d2G
dR2 + 1

R
dG
dR

)
, (7.1)

with errors that are exponentially small relative to G itself. Substituting into (5.7)–(5.8)
yields a differential equation governing G,

B−3/2
(

d2G
dR2 + 1

R
dG
dR

)
= G. (7.2)

A straightforward application of the WKB method to (7.2) in the limit B → ∞ yields G(R)

as the linear combination of

C±
e±B3/4R

R1/2 . (7.3)

As shown below, the coefficients C± are determined by asymptotic matching with
a near-apex region at small R and the edge region near R = R∗, with the WKB
approximation understood to hold for 0 < R < R∗.

Consider first the near-apex region. We notice that for R = ord(B−3/4) a dominant
balance is formed involving all three terms in (7.2). (Note that R = ord(B−3/4) corresponds
to r = ord(B−1/2); recalling (2.2), this represents dimensional distances comparable to the
capillary length l.) Defining � = B3/4R we obtain (with a slight abuse of notation)

d2G
d� 2 + 1

�

dG
d�

− G = 0. (7.4)

This is the modified Bessel equation of order 0, whose solutions are the modified Bessel
functions I0(�) and K0(�). The solution that is regular at � = 0 is

G(�) = CI0(�). (7.5)

For large � , G(�) ∼ Ce�/(2π�)1/2. Matching with (7.3) implies that C− = 0 and
C+ = B−3/8C/(2π)1/2. We conclude that

G(R) = CB−3/8

(2πR)1/2 eB3/4R. (7.6)

To match with the edge region we employ the intermediate variable ξ , defined by (cf.
(5.11))

r = B1/4R∗ + B−τ ξ, (7.7)

where −1/4 < τ < 1/2. In terms of ξ , the pancake solution (7.6) gives, at leading order,

Z ∼ Π + CB−3/8

(2πR∗
0)

1/2 eB3/4R∗
0 eR∗

1 eB1/2−τ ξ . (7.8)

On the other hand, we obtain from (5.30)

H ∼ Π0 − 4 exp
{

B1/2−τ ξ − 4 sin2 α

4
− arctanh cos

α

2

}
. (7.9)

Comparing the variable term we conclude that

C = −4(2πR∗
0)

1/2B3/8e−B3/4R∗
0 exp

{
−R∗

1 − 4 sin2 α

4
− arctanh cos

α

2

}
. (7.10)

961 A13-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

24
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.243


Shape of sessile drops in the ‘pancake’ limit

0.5

1.0

1.5

2.0(a) (b)

0 5 10 15

B

z∗

B
0 5 10 15

0.5

1.0

1.5

2.0

Figure 2. Dimensionless drop height z∗ as a function of B for (a) α = π and (b) α = π/2. Thick solid
lines: numerical solution; thin solid lines: leading-order approximation (4.6b); dashed lines: two-term
approximation (8.1).

Substituting (7.5) into (6.7) we obtain p∗∗ = −B1/2C. Making use of (7.10) we find the
exponentially small apex pressure

p∗∗ = 4(2πR∗
0)

1/2B7/8e−B3/4R∗
0 exp

{
−R∗

1 − 4 sin2 α

4
− arctanh cos

α

2

}
. (7.11)

8. Comparison with numerical solutions

Using (7.11) as an initial guess for p∗∗, the numerical scheme of § 6 works well even for
large values of B. In the present section we illustrate the usefulness of the asymptotic
results by comparing them with those obtained from numerical solutions.

Figure 2 shows z∗ as a function of B for α = π (perfect non-wetting) and α = π/2. The
thick solid lines present the numerical solution; the thin solid lines depict the leading-order
approximation (4.6b), wherein Π0 is given by (4.7a); the dashed lines portray the two-term
approximation

z∗ ∼ B−1/2Π0 + B−5/4Π1, (8.1)

obtained from (5.6a), (5.10) and (5.18a), wherein Π1 is given by (5.31). With the second
term in (8.1) being O(B−5/4), it is unsurprising that the one-term approximation (4.6a)
is quite satisfactory. Note that the correction Π1 is positive for both contact angles; see
indeed (5.31) et seq.

Figure 3 shows r∗ as function of B, again for α = π and α = π/2. The thick solid lines
present the numerical solution. The thin solid lines depict the leading-order approximation
(4.6c), wherein R∗

0 is given by (4.7b); the dashed lines show the respective two-term
approximation,

r∗ ∼ B1/4R∗
0 + B−1/2R∗

1, (8.2)

obtained from (5.6b) and (5.18b), wherein R∗
1 is given by (5.32). With the second term in

(8.2) being O(B−1/2) it is unsurprising that the one-term approximation (4.6c) is rather
unsatisfactory. Note that the correction R∗

1 is negative for α = π and positive for α = π/2;
see indeed (5.32) et seq.

While aimed at large B, the numerical scheme is valid for all B, and in particular for
B = 0, where the drop becomes a spherical cap. In that geometry, the non-wetting case
α = π corresponds to a sphere of radius unity, where z∗ = 2 and r∗ = 0, while the case
α = π/2 corresponds to a hemisphere of volume 4π/3, where z∗ = r∗ = 21/3(≈ 1.26).
The numerical solution indeed provides these values, see figures 2 and 3.
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Figure 3. Dimensionless contact-line radius r∗ as a function of B for (a) α = π and (b) α = π/2. Thick
solid lines: numerical solution; thin solid lines: leading-order approximation (4.6c); dashed lines: two-term
approximation (8.2).
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Figure 4. Maximal drop height rmax as a function of B for α = π. Thick solid line: numerical solution; thin
solid line: leading-order approximation B1/4R∗

0; dashed lines: two-term approximation (8.4).

Another quantity of interest is rmax, the maximal value of r (Quéré et al. 1998). For
hydrophilic drops (0 < α < π/2) it merely coincides with r∗. For hydrophobic drops
(π/2 < α < π) it is larger, given by (cf. (5.11))

rmax = B1/4R∗ + B−1/2X(π/2). (8.3)

The difference between r∗ and rmax appears at the ord(B−1/2) correction, consisting of
both the perturbation to R∗ and the maximal value of X0

rmax ∼ B1/4R∗
0 + B−1/2 [

R∗
1 + X0(π/2)

]
. (8.4)

Figure 4 portrays rmax as a function of B for non-wetting drops (α = π). The thick solid
line presents the numerical solution; the thin solid line is the leading-order approximation,
rmax ∼ B1/4R∗

0; the dashed line is the two-term approximation (8.4). The utility of the
two-term approximation is evident.

Last, we show in figure 5 the variation with B of the apex pressure p∗∗ for both α = π
and α = π/2. The thick solid line presents the numerical solution, while the thin solid line
depicts approximation (7.11).
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Figure 5. Dimensionless apex pressure p∗∗ as a function of B for (a) α = π and (b) α = π/2. Thick solid
lines: numerical solution; thin solid lines: WKB approximation (7.11).

9. Two-dimensional drops

The preceding analysis has been immensely simplified by the distinction between
algebraically and exponentially small terms. To further illustrate the benefit of that
distinction, it proves expedient to consider the comparable two-dimensional problem.

In that problem, it is the drop area, πa2, that is specified. We employ the same
normalisation process as before. To retain the same notation as in the three-dimensional
problem, we use Cartesian coordinates which are denoted by (r, z). Given the symmetry
about the drop mid-plane, we may restrict the analysis to r > 0. The problem formulation
of § 2 remains intact, with the volume constraint (2.5) being replaced by

half drop area = π

2
, (9.1)

and the force balance (2.8) being replaced by

p∗r∗ = πB
2

+ sin α. (9.2)

In two dimensions we have another useful force balance, now in the Cartesian
r-direction. Indeed, following the arguments leading to (4.9) we find here∫ z∗

0
p(z) dz = 1 − cos α. (9.3)

Note that, unlike (4.9), (9.3) is exact. Plugging in (2.1) we obtain

p∗z∗ − Bz∗2

2
= 1 − cos α, (9.4)

which is the counterpart of the three-dimensional balance (4.5).
We therefore see a fundamental difference between the three- and two-dimensional

problems. In the three-dimensional problem, (4.5) constitutes an approximated form of
either a half-drop balance or an edge balance. Both balances depend upon the detailed drop
shape (see e.g. (3.14)). In the two-dimensional problem, on the other hand, the half-drop
balance (9.4) is expressed as an algebraic equation in terms of the fundamental geometric
parameters.

This difference is instrumental in the analysis of the limit B → ∞. Laplace balance
(2.4) again gives (4.4). The arguments in the three-dimensional analysis, which implicate
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that the error in (4.4) is exponentially small, hold in the two-dimensional problem as well.
Neglecting exponentially small terms, we therefore replace approximation (4.4) with

p∗ = Bz∗. (9.5)

Conveniently, we have at our disposal three algebraic equations which can be used to
determine p∗, r∗ and z∗. Thus, plugging (9.5) into (9.4) gives

p∗ = 2B1/2 sin
α

2
, z∗ = 2B−1/2 sin

α

2
. (9.6a,b)

From (9.2) we then find

r∗ = πB1/2

4 sin(α/2)
+ cos(α/2)

B1/2 . (9.7)

Note that the area conservation condition (9.1) has not been used.
There is therefore no need for a detailed asymptotic analysis, and, in particular, no need

to analyse the edge region. The error in (9.6)–(9.7) is asymptotically smaller than any
negative power of B.

10. Concluding remarks

We have analytically obtained the pancake-like shape of a sessile drop in the limit of large
Bond number. Our analysis made use of two integral balances: the first represents a force
balance in the vertical direction, accounting for volume conservation; the second follows
from the natural parameterisation of the drop boundary using a local inclination angle.

A key observation in our analysis is that the deviations from flatness over the majority
of the free surface are exponentially small. This allows us to reduce the number of
governing parameters, and leads to the subsequent interpretation of the second of the
above-mentioned balances as a radial edge balance. This is naturally followed by a singular
perturbation analysis of the shape problem. We have used that analysis to calculate
leading-order corrections to the shape parameters calculated by Quéré and coworkers (De
Gennes et al. 2003; Quéré 2005). Further corrections may be also calculated in closed
form, if desired. We have corroborated our asymptotic results using a numerical scheme
tailored to large Bond numbers. The numerical scheme is based upon integration from the
drop apex. This was used in conjunction with a WKB approximation for the exponentially
small apex pressure.

Recapitulating our approximations in a dimensional form, we express them in terms of
the drop volume Ω , rather than the derived quantity a. Thus, from (8.1) and (8.2) we have
the height and contact-line radius

Π0 l + (4π/3)1/2Π1l5/2Ω−1/2, (3/4π)1/2R∗
0Ω

1/2l−1/2 + lR∗
1. (10.1a,b)

Here, the coefficients Π0 and Π1 are provided by (4.7b) and (5.31), respectively, while the
coefficients R∗

0 and R∗
1 are provided by (4.7b) and (5.32), respectively. All four coefficients

are explicitly given as functions of α. For example, for non-wetting drops (α = π) we
obtain the height 2l + (8π/9)1/2l5/2Ω−1/2 and the radius (2π)−1/2Ω1/2l−1/2 − l/6.

In our analysis we have assumed that the contact angle is fixed. It is worth noting that the
resulting asymptotic scheme breaks down at nearly wetting conditions, where α � 1: see
e.g. (4.7b). No such non-uniformities occur at the other extreme; indeed, our results are
valid even for non-wetting drops, where α = π. The limit of small contact angles (with
arbitrary Bond numbers) was recently addressed by Yariv (2022). In that analysis, only
leading-order approximations have been derived. This contrasts the present investigation
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of a different limit, where the goal lies in the construction of a systematic approximation
scheme.

As mentioned in § 1, the large-B problem was already analysed by Rienstra (1990).
In formulating the dimensionless problem, Rienstra (1990) used the maximal radius
of the circular horizontal cross-sections as a length scale for normalisation. Assuming
non-wetting conditions, Rienstra (1990) calculated the drop shape numerically, integrating
from the apex (where the drop surface is just horizontal) to the maximal radius (where
it is just vertical). The large-B analysis of Rienstra (1990) conforms to the above
methodology, which is clearly unaffected by the contact-angle condition. As such, the
shape approximations provided by Rienstra (1990) are independent of the contact angle.
Since the maximal radius is a derived quantity in the present paradigm (see (8.3)–(8.4)),
the transformation between the two different schemes is explicit only to leading order.
Indeed, it may be verified that the maximal drop radius predicted at the end of § 4 in
Rienstra (1990) agrees with the leading term in the present (8.4).

A key element in our analysis is the use of an exact integral balance which reduces at
leading order to the intuitive ‘radial balance’ utilised by De Gennes et al. (2003). Given
that the integral balance is local to the edge region (up to exponentially small terms),
it is possible to calculate a comparably accurate approximation for r∗ and z∗ based on
a numerical solution of the edge-region problem. Technically, one needs to solve (5.15)
subject to initial conditions (5.16). There is only one unknown parameter in that problem,
namely Π ; it is determined by the additional condition

Z(π) = Π, (10.2)

which is valid up to an exponentially small error (see (5.10)). With Π determined, R∗ is
obtained from (5.5) as

R∗ =
√

4
3Π

+ sin2 α

Π2B3/2 + sin α

ΠB3/4 . (10.3)

The resulting approximation, where the error is asymptotically smaller than any negative
power of B, constitutes the three-dimensional analogue of (9.6)–(9.7).

The advantage of the above approach over a full numerical solution is that the
edge-region problem is characterised by a single scale. The above combination of
asymptotic and numerical approaches follows modern ‘hybrid’ procedures, where one
wants to avoid unnecessary expansions in the small parameter (Kropinski, Ward & Keller
1995).
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Appendix A. Volume conservation

Writing the drop shape as r = f (Z), the volume constraint (2.5) reads∫ Z∗

0
f 2(Z) dZ = 4B1/2

3
. (A1)
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We note that substitution of (5.25) into (5.27) provides the edge shape as a function
X0(Z0), which is defined for 0 < Z0 < Π0, and diverges logarithmically slow as Z0 → Π0.
Extending on this, we describe the edge shape by the function X(Z), defined for 0 < Z <

Π . It follows that (cf. (5.14))

f (Z) = B1/4R∗ + B−1/2X(Z). (A2)

Substitution into (A1) gives∫ Z∗

0

[
R∗ + B−3/4X(Z)

]2
dZ = 4

3 . (A3)

Upon expanding and using (5.10), we find

R∗2
Π + 2B−3/4R∗

∫ Π

0
X(Z) dZ + · · · = 4

3 . (A4)

Plugging in expansions (5.18) and replacing the function X(Z) by X0(Z0) at the ord(B−3/4)
term, we find

R∗
0

2
Π0 + B−3/4

[
R∗

0
2
Π1 + 2Π0R∗

0R∗
1 + 2R∗

0

∫ Π0

0
X0(Z0) dZ0

]
+ · · · = 4

3 . (A5)

The ord(1) balance is trivially satisfied. At ord(B−3/4) we get

R∗
0Π1 + 2Π0R∗

1 + 2
∫ Π0

0
X0(Z0) dZ0 = 0, (A6)

or, upon using (5.21) and changing the integration variable,∫ π

π−α

X0(φ)
dZ0

dφ
dφ = − sin α. (A7)

By inserting the expressions (5.25) and (5.27) we find that (A7) is trivially satisfied.
When the integral balance (2.8) is used, the volume constraint does not provide any
independent information.
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