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Abstract

Let £? be a unital Banach algebra. Assume that a has a generalized inverse a+. Then a = a + Sa 6 srf is
said to be a stable perturbation of a if asrfC\(\—aa+)stf = (0). In this paper we give various conditions for
stable perturbation of a generalized invertible element and show that the equation as/r\(\ — aa+)srf = {0}
is closely related to the gap function 8 {asrf, asrf). These results will be applied to error estimates for
perturbations of the Moore-Penrose inverse in C*-algebras and the Drazin inverse in Banach algebras.

2000 Mathematics subject classification: primary 46H99,46N40; secondary 65J05.

1. Introduction

Throughout the paper, srf is a complex Banach algebra with unit 1. Let GL(^) denote
the group of all invertible elements in srf. An element a in srf is said to be generalized
invertible if there is a b € srf such that aba = b and bab = b. Such an element b is
called a generalized inverse of a, denoted by a+ (certainly such an a+ is not unique).
If £/ is a C*-algebra and a e &/, the Moore-Penrose inverse of a is defined as the
element a* satisfying

(1.1) aa*a = a,. a*aa*=a\ (a^a)* = a1a, (aa*)* = aa\

When a ^ 0, af is unique by [11]. We denote by GI(^/) the set of all generalized
invertible elements in srf. If srf is a C*-algebra and a e G\(srf) then, by [11,
Theorem 6], af exists so that the set of all Moore-Penrose invertible elements in srf
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272 Yifeng Xue [2]

is GI(<s/). Recall from [9] that a e s/ is Drazin invertible if there are a b e srf and a
natural number k such that

(1.2) akba = ak, bab = b, ab = ba.

The least k such that (1.2) holds for some b is called the index of a, denoted
by Ind (a). In this case, the b in (1.2) is called the Drazin inverse of a and we
denote it by aD. When Ind (a) = 1, aD is called the group inverse of a and we
use the symbol a# to denote it; if a £ 0 and Ind (a) = 0 then a e G L ( J ^ ) . Put
DCO = {a G .e/|aD exists} and G(^ ) = [a e D(^) | Ind(a) < 1). It may
observed that GL(.eO c G ( J ^ ) c D(.s/) and GL{srf) U G ( J ^ ) c GIGO. Moreover,
for any a € D(J</) and x e

xax'1 e DOG/), IndOcajT1) = Ind (a), {xax~x)D = M V .

In recent years, many results have been published concerning the continuity of the
Moore-Penrose inverse in C*-algebras and the Drazin inverse in Banach algebras (see,
for example, [10,12,14,16]). In [10,16], Rakocevic gave many equivalent conditions
for the continuity of the Moore-Penrose inverse in C*-algebras and the Drazin inverse
in Banach algebras respectively. Connected with the continuity of generalized inverses
and Drazin inverses, quantitative analysis of perturbations of Moore-Penrose inverses
in C*-algebras and Drazin inverses in Banach algebras has not been fully developed
though Castro-Gonzalez and Kolihain [2] and Rakocevic and Wei in [17] have made
a start on this programme.

Compared those with the study of the Moore-Penrose inverses on Hilbert spaces
and Drazin inverses on Banach spaces, there are many fruitful results concerning the
quantitative analysis of the perturbation of the Moore-Penrose inverses on Hilbert
spaces and Drazin inverses on Banach spaces. For example, in [5,7,20] the author
gave an estimate of perturbation bounds for the Moore-Penrose inverse on Hilbert
spaces under stable perturbation of operators, which is a generalization of rank-
preserving perturbation of matrices. Meanwhile, for the Drazin inverse on Banach
spaces, many perturbation analysis results have been obtained in [2], [3], [4] and [13]
by means of the gap between operators (which is the gap between their graphs) or
the gap between the subspaces Ran {Tk) , Ran (fk) and Ker Tk, Ker fk of the Drazin
invertible operators T and f (where k = max{Ind(r), Ind (f)}).

In order to give a quantitative analysis of perturbations of generalized inverses in
C*-algebras and the Drazin inverse in Banach algebras without using the gap function,
we first generalize the concept of the so-called stable perturbation of operators in [6]
to the case of Banach algebras and establish a self-contained perturbation theory.
This theory provides several useful conditions for stable perturbation. Some of these
involve deep properties of idempotents in Banach algebras. Then we apply this theory
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to estimate the perturbation bounds of the Moore-Penrose inverse in C*-algebras and
the Drazin inverse in Banach algebras.

2. Stable perturbation in Banach algebras

Let X be a Banach space and B(X) be the Banach algebra of all bounded linear
operators on X. For T e B{X), we write Ran (T) (respectively Ker T) to denote the
range (respectively null space) of T. Let T e Gl(B(X)) and f = T+ST e B(X). We
say that f is a stable perturbation of T if Ran (f) nker T+ = {0} for some generalized
inverse T+ of T (cf. [6, Definition 3.1]). When f is a stable perturbation of T and
lir+H ||5r|| < 1, f has a generalized inverse of the form f+ = (I + T+ST)-1T+
(cf. [6, Corollary 3.1]). It is also noted that if f and T are m x n matrices with
|| 7+1| || 571 < 1, then rankf = rankT if and only if Ran (f) n KerT+ = {0} (cf.
[6, Corollary 3.2]). In short, from [5-7,20] we can see that this concept plays a very
important role in studying perturbations of generalized inverses in infinite-dimensional
spaces.

For any a e &/, let La be the left multiplier on srf, so that Lax = ax for all x e srf'.
Then La 6 B(s>f) and Ran(La) = asrf and KerLa = {x e srf\ax = 0}. It is easy
to check that if a € GI(^) then La e Gl{B(srf)) and La+ is one of its generalized
inverses. Moreover, Ker(La+) = (1 — aa+)srf. Thus, if a = a + Sa e srf then

Ran (L5) D Ker (La+) = asrf D (1 - aa+)&7.

This leads to the following definition.

DEFINITION 2.1. Let stf be a unital Banach algebra and a = a + Sa e d for
a e GI(_0O. We say that a is a stable perturbation of a (with respect to a+) if

= {0}.

The following conditions provide means for efficient handling of stable perturba-
tions of elements of GI(,«O.

PROPOSITION 2.2. Leta e GI(^) and a = a + Sa erf with \\a+\\\\8a\\ < 1. Then
the following conditions are equivalent.

(1) a e GICO with a+ = (1 + a+Sa)~xa+;
(2) a is a stable perturbation of a;
(3) a(l+
(4) (l-aa
(5) (1 - aa+)«5a(l - a+a) = (1 - aa+)<5a(l + a+Sa)~la+8a{\ - a+a).
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PROOF. (1)=>(2). Let x e asrf n (1 — aa+)srf. Then a+x = 0 and x = ay for
some y e stf. Put z = (1 + -5aa+);c. Using a+(l + 6aa+)- ' = (1 + a+8a)-la+, we
have

aa+ = (a + 8a)a+(l + 8aa+y] = 1 - (1 - aa+)(\ + Sac*)-1.

Thus (1 — ad+)z = x = ay and hence x = 0.

(2)=K3). Set z = a{\ + a+Sa)~l(l - a+a) e a ^ . Since

aa+z = a{\ + a+3d){\ + a+8a)-\l - a+a) = 0,

it follows that z e asrf n (1 — aa+)d = {0}, so z = 0.

(3)^(4). In fact:

(1 - aa+){\ + Saa+y^ = (1 + 8aa+ - aa+)(\ + 8aa+yla

= a-a(\+ a+8ay\a+8a + 1 + a+a - 1)
= a(l+a+8ay\l-a+a).

(3)=K5). We have

(1 - aa+)8a(\ + a+8ayla+8a(l - a+a)
+ - a+a) - (1 - aa+)5a(l + a+8ayx{\ - a+a)

- a+a).

(5)=>(1). The computation above shows that if (5) is true then

(1 - aa+)8a{\ + a+8a)~\\ - a+a) = 0.

Since aa+a{\ + a+8a)-\\ - a+a) = 0, we have a(l + a+8a)-l(l - a+a) = 0.
Put 6 = (1 + a+8ayla+. Then aba = a and bafe = b, that is, a e GIO0 with
5+ = (l+a+8a)-la+. D

COROLLARY 2.3. Ler SB be a unital Banach subalgebra of'stf'. Let a e GI(^) and
a = a + 8a e £8 with \\a+\\ \\8a\\ < 1. Then aSB<T\(\- aa+)33 = {0} if and only if

= {0}.

PROOF. The "if" part is obvious. We now prove the "only if" part. By Propo-
sition 2.2 (1), aSB n (1 - aa+)& = {0} implies that a+ = (1 + a+8a)-xa+ for
a 6 Gl{3§). Since GI(^) c GI(^), we have a^/ (1 (1 - aa+)srf = {0} by using
Proposition 2.2 again. •

Let Vi, V2 be subspaces in X. Put

lsup{dist(^, V2)\x € V,, ||x|| = 1}, V, ?£ {0}.

The gap function 5 (Vj, V2) of V! and V2 is defined by

8 (V,, V2) = max {5 (V,, V2), 5 (V2,
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By [8, Lemma 3.2], 8 (V,, V2) = 8 (VX,V2), where 7 , is the closure of VJ in X for
i = 1,2.

LEMMA 2.4. For idempotents pu p2 € stf, 8 {p\$4', p2srf) < \\p\ - p2\\.

PROOF. The assertion is trivial when p\ = 0. If p\ ^ 0 then for any z e P\£? with

llzll = 1,

dist(z, p2s0 < \\P\Z- p2z\\ < \\pi - p2\\.

Thus 8 (p\#/, p2srf) < \\p\ — p2\\ and hence 8 (pt£/, p2srf) < ||pi — p2||- Q

PROPOSITION 2.5. Let a e GI(^) andd = a + 8a ex/with ||a+||||<5a|| < 1.

(1) Ifaa+ £ 1 and 8 (atf', astf) < 1/||1 - aa+\\ then asrf n (1 - aa+)^ = {0};
(2) Ifast n (1 - a a + ) ^ = {0} then

8 (cuzf, ass) <

PROOF. (1) If asrf n (1 - aa+)s^ £ {0}, we can find x e as>? n (1 - aa+)#/
with ||;t|| = 1. Then for any y e srf, (1 — aa+)(x — ay) = x and it follows that
1 < ||1 — aa+|| |jx -ay\\. Thus &{asi/,asi/) > ||1 - aa+\\~\ which contradicts the
assumption.
(2) In this case, a e GI(^) with a = (1 + a+8a)~ia+ by Proposition 2.2. Note that

aa+g/ = asrf and aa+srf = asrf. Therefore, by Lemma 2.4,
I {as/, asrf) < \\aa+ - aa+\\ = ||(1 - aa+)[\ - (1 + a+8a)~x]\\

REMARK. If ||a+||||5c(|| < (1 + ||1 - aa+H2)"1 then Proposition 2.5 shows that
as/n(l -aa+)srf = {0} if and only if 8 (aj/, asrf) < ||1 -aa+ir1 .

As an application of stable perturbation in C*-algebras, we give perturbation
analysis for generalized inverses in a C*-algebra as follows.

PROPOSITION 2.6. Let srf be a unital C*-algebra. Suppose a € GI(^) and
a = a + Sa e srf with ||a+||||5a|| < 1. Suppose that asrf D (1 - aa^)srf = {0}.
Then a e GI(^) and

\\8a\
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PROOF. By [15], srf has a faithful representation {n, Hn) such that n{s&) is a unital
C*-subalgebraofB(//)with/ =n{\). Put A = it(a),A = n(a),8A = A-A. Then
A[B(HX)] Pi (/ - AA^)[B(Hn)] = {0} by Corollary 2.3. Let n e Ran (A) n Ker Af.
Then A*r) — 0 and 77 = A£o for some | 0 e #»• Choose a nonzero vector £, e Hn

and put Aj£ = (£, £i)$0, A2£ = (t,£i)»? for all £ € #„. Then A2 = AA, and
A2 = (/ - AA*)A2. Thus

A2 e A[B(HR)] n (/ - AA^tBC^)] = {0}

so that x) = 0, that is, A is a stable perturbation of A as operators on Hn. Therefore
Af exists and ||Af || < \\Af\\/(l - HA+HHcSAII) by [7, Theorem 1] and

IIA+1| - 2 l - | |At | | | |5A| |

by [20, Proposition 7].
Since n is a *-isometry and 0 is an isolated point of the spectrum of A* A, it

follows that 0 is an isolated point of the spectrum of a*a, that is, a e Gl(srf) and (2.1)
follows. •

Let s# be a unital C*-algebra and {an}~ c GI(^/)\{0} with lim^oo an = ao. In
[16], Rakocevic gave various equivalent conditions that make limn^oo^ = a\ in si'.
Combining [16, Theorem 2.2] with Lemma 2.4 and Proposition 2.6, we have the
following result.

COROLLARY 2.7. Let srf be a unital C*-algebra and {an}g° c GI(^)\{0} with
Hindoo an = a0. Then following conditions are equivalent:

(1) al-+a0;
(2) ana\ -> aoa

f
o;

(3) a\an -*• af
oaQ;

(4) sup, ||at || < + o o ;
(5) an#/ n (1 — aQal)s/ =• {0}forn large enough.

PROOF. The proof of the equivalence of (1), (2), (3) and (4) follows from [16,
Theorem 2.2].

(3)=»(5). By Lemma 2.4,

8 (ansrf, ao£?) = 8 (ana\srf', a§a\srf) < \ana\ - aoal\\ .

So lim^oo 8 (an#/, aos>/) = 0 and hence, ansrf D (1 - a§a\)srf = {0} for n large
enough by Proposition 2.5 (take 8a0 = an -a0 and d0 = a0 + 8a0).

(5)=>-(l). When an£/ Pi (1 — aoal^g? = {0} for sufficiently large n, we have
limn_oo a\ = a\ by Proposition 2.6. •
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3. Some further conditions for stable perturbation

We know from [6, Corollary 3.1] that, for T, f = T + 8T e B(X) with T+ existing
and || r +1 | || 5 71| < 1, if dim Kerf = dim Ker T < +oo (or rank f = rank T when
dim X < +oo) then f is a stable perturbation of T. We will extend this result to the
case of Banach algebras.

For a € srf, put Ker (a) = {x e srf\ax = 0} and coKer(a) = {x e srf\xa = 0).
Obviously, if a 6 Gl(s>?) then Ker (a) = (1 - a+a)#f and coKer (a) = srf{\ — aa+).

LEMMA 3.1. Let a e Gl(#f) and a = a + Sa e £? with ||a+||||c5a|| < 1. Put

pa = (l+a+<5a)-1(l -a+a), qa = (1 - aa+)(l + 8aa+)~\

Then Ker (a) c pasrf and coKer (a) C srfqa.

PROOF. Let x e Ker (a) and y e coKer (a). Then

(a+a - 1 + 1 + a+Sa)x = 0, y(aa+ - 1 + 1 + Saa+) = 0.

Consequently, x = pax, y = yqa, that is, Ker (a) C pa^ and coKer (a) C s&qa- •

Let p, q be idempotents in a complex Banach algebra S'. Recall that p and q are
equivalent in <§ (in symbols, p ~ q) if there are x, y e S such that p = xy, q — yx.
Note that x, y can be chosen so that px = xq = x and qy = yp = y. Also p and q are
said to be similar (in symbols, p « q), if there is an a e GL(<?) such that p = a~lqa
when £ is unital; if £ is nonunital p « q means that there is an a e GL(<f) such that
p = a~lqa, where g = [k + x\ X 6 C, x e S\.

Clearly, if p ^ q, then p ~ q.
Let <£" be a Banach algebra with unit 1. <? is said to be finite if for any idempotent

e e S with e ~ 1, we have e = 1. If ^ is nonunital and £ is finite, we will say £
is finite. For example, every finite dimensional Banach algebra is finite; the matrix
algebra over a commutative Banach algebra is finite; and the Banach algebra Jf(X)
consisting of all compact operators on X is finite (this can be shown by means of the
Fredholm index).

Let p be a nonzero idempotent in £. We will say p is finite if p£p is finite.

LEMMA 3.2. Let p, q, r be nonzero idempotents in a Banach algebra £.

(1) If p ~ q and q ~ r then p ~ r;
(2) If p is finite and pq = qp = q and p ~ q then p = q;
(3) If p is finite and p ~ q then q is finite.

https://doi.org/10.1017/S1446788700036892 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036892


278 YifengXue [8]

PROOF. (1) Let xx,yx, x2, y2 e ibe such that

P=xxyx, q = yxxx, q=x2y2, r = y2x2.

Put z, = xxx2, z2 = y2y\. Then zxz2 = p, Z2Z\ = r.
(2) Let x, y e £ be such that

p=xy, q=yx, px=xq=x, qy = yp = y.

Since pq = qp = q, it follows that x = pxp, y = pyp. Thus p ~ q in p<f p. Noting
that p is the unit of p£p and p<?/? is finite, we have p = q.
(3) Let e be an idempotent in q£q with e ~ q. Let a,b e £be such that

(3.1) p = ab, q = ba, pa=aq=a, qb = bp = b.

Put / = aeb. Then f p = pf = f by (3.1). From eq =qe = e, we get that / 2 = / .
Since / ~ e ~ g ~ p by (1) and p is finite, we have / = p by (2) and hence e = <?
by (3.1). •

THEOREM 3.3. Let srf be a unital Banach algebra and let a, a = a + Sa e GI(,s/)
with ||a+||||<5a|| < 1. If I - a+a (or 1 - aa+) is finite and 1 - a+a ~ 1 - a+d
(or 1 — aa+ ~ 1 - aa+), then as? n (1 — aa+)srf = {0}.

PROOF. Let pa, qa be as in Lemma 3.1. From

pa = (l+ a+8a)-\\ - a+a)(\ + a+Sa), qa = (l + Saa+)(\ - aa+)(l + &aa+)~\

we see that pa and qa are idempotents and pa ~ 1 — a+a, qa « 1 - aa+.
Now put p = 1 — a+a, ^ = 1 — aa+. Then, by Lemma 3.1, pap = p and ^qa = q.

Set UJI = 1 + ppa(\ — p), w2 = 1 + (1 — q)qaq. Then u;i, iu2 e GL(^) with
wf1 = ! - PPa(l - P). u>2

1 - 1 - (1 - <7)<?a<j. Set p, = wipaw;\ qx = w2
xqaw2.

Using pap = p, qqa = q, we obtain

(3.2) ^ = pa - ppa(\ - p), pip = ppt = p;

(3.3) qx =q0- (1 -q)qaq, qxq -qqx =q.

Since 1 — a+a ~ pi ~ p (or 1 — aa+ ~ qx ~ 9) and 1 — a+a (or 1 — aa+) is finite, it
follows from (3.1) (or (3.2)) and Lemma 3.2 that px = p (or qx = q), that is, p = pp
(or g = qq) and hence

a(l + a+&a)-\\ - a+a) = 0 (or (1 - aa+)(l + 8aa+yxa = 0).

Therefore asrf n (1 - o a + ) ^ = {0} by Proposition 2.2. •
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Let p be a nonzero idempotent in Banach algebra S. We say p is minimal if
pSp = [kp\k e C}. Let M(£) denote the set of all minimal idempotents in S'. Now
suppose that S is a semiprime Banach algebra (that is, for any x e <A(0} there is
y e S such that yxy ^ 0) and M{<§) ^ 0. Then the socle Sg is defined as the smallest
ideal which contains {Sp\p e Af (<?)} (or {pS\p e M (<?)}) (cf. [18, pages 45-47]).

According to [1], a right (or left) ideal M of <§ is of finite order if M is the sum
of a finite number of minimal right (or left) ideals of S. The order 9{M) of M is
defined as the smallest number of minimal right (or left) ideals which have sum M
whenM ^ {0} and 6(M) = 0if M = {0}. By [1, Lemma 1.1], 6{M) = m> 1 if and
only if there are e\, • • • , em e M{£) D M with e,e; = 0, i ^ j , i, j = 1, • • • , m such
that M = (JX, ed& (or ^(£7=. *))•

THEOREM 3.4. Lets*? be a unital Banach algebra with M(srf) ^ 0. L^ra €
= a + Sa e srf with ||a+||||5a|| < 1. Assume that Ker (a) (or coKer (a)) is of

finite order. Then so is the Ker (a) (or coKer (a)).
In addition, if Q (Ker (a)) = ^(Ker(a)) (or 6»(coKer(a)) = 6>(coKer(a))j f/ie« a w

^ra/j/e perturbation of a.

PROOF. We only give the proof for right ideals Ker (a) and Ker (a). The proof of
the remainder is similar.

Let pa — (1 + a+<5<z)~'(l — a+a). Since pa ~ 1 — a+a, we have

0(paJi/) =9((l- a+a)O?) = G (Ker (a)) < +oo.

Suppose that 0(Ker (a)) = n > 1. Then there are et, ..., en € M(£?) D paj>f such
that

(3.4) pa#/ = elrfA \-en&7, e^j = 0, / £ j , i, j - 1, . . . , « .

Pute = YM=\ e>- Then pasrf = esrf, that is, pae = e, epa = pa. Since Ker (a) C pasrf
by Lemma 3.1, we have

and by (3.4) e,[Ker(a)] c ets/, i = \ n.

Assume that Ker (a) ^ {0}. Since both e,[Ker (a)] and etsrf are right ideals and e^
is minimal, it follows that

*?,[Ker(a)] = {0} or e,[Ker(5)] = ets/, i = 1, . . . , « .

Without loss of generality, we may assume that e,[Ker (a)] = et^ for / = 1,..., k
and e,[Ker (a)] = {0} for i = k + 1 , . . . , n. Put e' = £f=1 e,. Then

Ker (a) = e[Ker(a)] = e'[Ker(a)] = e'srf.
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This means that 0(Ker (a)) =k <n.
If 0(Ker(a)) = 0(Ker(a)), we have Ker(a) = esrf = pad by the above argu-

ment. Thus a{\ + a+8a)~\\ - a+a) = 0 and hence asrf D (1 - aa+)srf = {0} by
Proposition 2.2. •

4. Perturbation analysis for Drazin inverse

Let a e G (#/) and put a" = l-aa*. Then a" is an idempotent and aa" = a"a = 0
and a#an = ana* = 0. Let a - a +8a e sf with /c#(a)efl < (1 + Ha" II)"1, where
/c#(a) = ||a||||a#|| and ea = \\8a\\\\a\\-1. Put

<D(o) = 1 + Sa (1 - aa#) Sa [ ( / + a*8a)~l a#] .

Since

ea

"1it follows that *(a) e GL(^) and 4)-'(a) = (O(a))"1 = ^ ~ 0 (l - *(a))" with

LEMMA 4.1. Let a e G(£?) and a = a + 8a e &? with K#(a)ea < (1 + Ufl̂
Put

C(o) = a" Sa(l + a#«5a)-'a#, D(a) = (1 + a*8ayla*<$>-\a).

If a n (1 - a a V = {0} then a. e G{#?) with

(4.2) a* = (1 + C(a))(D(a) + D2(a)5aa*)(l - C(a)).

PROOF. Clearly, 1 + C(a) e GL(^) with (1 + C(a)y{ = 1 - C(a). Applying
conditions (3) and (5) from Proposition 2.2 to a0 = (1 — C(a))a(l + C(a)), we have

a0 = a + aa*8aaa* + aa#8aa"8a{\ + a* 8 a) a* + aa*8aa"

a*8a)aa* + aa*8aan.

Noting that a" (I + a#8ayla* = 0 and <I>(a)a7r = a71, it can be checked that

a* = (1 + a* 8a)~l a*®'1 (a) + [(1 + a*8a)-la*Q-l(a)]2 8aa*

= D(a) + D2(a)8aa".

Therefore a# = (1 + C(a))(D(a) + D2{a)8aan){\ - C(a)). •
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We now give a perturbation analysis for group inverses under stable perturbation
as follows.

THEOREM 4.2. Let a e G(srf)anda = a + 8a € srf with K#{a)€a < (1 + Hal)"1.
Assume that asrf D (1 - aa*)£/ = {0}. Then a e G(srf) and

-#

PROOF. We keep C(a), D(a) as in Lemma 4.1. Then, by Lemma 4.1, a e
Since D(a)(I - C(a)) = D(a), it follows from (4.2) that

(4.3) a* = (I + C(a))D(a) + (/ + C(a))D2(a)Saa"(I - C(a)),

(4.4) | f l # | < ( l + l|C(fl)|

We have, by (4.1),

Since

i + lic(fl)ii<
 1 + (l'fl;r|1"

1 - K#(a)ea

we deduce that

(«, |g., < "Z^^l"-! - W

by (4.4). Finally, by (4.3),

| |a#- f l* | |< \\D(a)-a«\\ + \\C(a)D(a

Now we have

ID(a) - a*\\ = ||[(1 + c'Sfl)-^* - a*] <t>-\a) + a*

\\a K#((X)€a ., . ,. .. „ „ ,. .
< Ji—u 4>~ (a) + " p^~

||a#|[ A:#(a)ea

. 1 1 / 7 " I I .
HC(fl)D(fl)|| <

l-(l + \\a'\\)K,(a)ca'

.\\a"\\K§(a)€a (l

< 1).

Therefore

l l a # - a # l l < ^ .. a .. „. ' ^ # a £!. •
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L e t a, a = a + Sa e srf and pu t &a> = (a + Sa)J — aJ, j = 1 , . . . , « . Th en

Suppose ea < 1. From above, we can deduce that

(4.6) \\8a"\\ < ||«5a|
y=0

Let a g D ( ^ ) with Ind (a) = k. Put a* = 1 - aaD, irD(a) = ||a||||aD||. It is
well-known that (a")* = (aD)n, an(aD)n = l-an andaD = (an)V~' for any « > jfe.
So Ker (a") = a " ^ and a W = (1 - a " ) ^ for all n>k.

Using Theorem 4.2, we can give perturbation bounds for Drazin invertible elements
in a Banach algebra srf as follows.

COROLLARY 4.3. Leta,a = a + &a e D{srf) with Ind (a) = ku Ind (a) = k2 and

If (I -a*)£?na"£/ = {0}then

2 1 K

PROOF. Noting that KD{a) > \\aaD\\ > 1, we have ea < 1 and

1
(2" -

by (4.6). Since aD = (a")*a"-', aD = (a")^""1, it follows that

| 5 D | | < ||(a")#|| Hall"-1 (1 + e j " " 1 < 2"-' Hall"-1 ||

\aD-aD\

(an)# - (a")#\\ \\a\rl + (2""1 - 1) \\aD\

by (4.6). Then applying Theorem 4.2 to (a")# and (a")#, we obtain the assertion. •

Let {an}™=0 C D ( ^ ) and l i m ^ ^ an = a0. By [10, Theorem 4.1], l im^^ a° = a0
D

ifandonlyiflimn^ooa°an = a^a0, if and only if supn>, ||an
D|| < +oo,etc. In addition,

if supn>0 Ind (an) < +oo, we have the following.
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COROLLARY 4.4. Let an e D{srf)for n > 0 with l im,,-^ an = a0 and suppose that
I = supn>0Ind(an) < +00.

(1) limn^oo a° = a® if and only if (I — a*)srf D a^sd = {0}for n large enough.
(2) If OQ is a finite idempotent in srf then lim^oo^" = a® if and only if a" ~ a j

for n large enough.
(3) If M(stf) £ <p and 9(a%*/) < +00 then lim^oo^0 = a0

D if and only if
= 9(a*e/)for sufficiently large n.

PROOF. (1) The "if" part comes from Corollary 4.3. On the other hand, since
a'n#/ = (1 - a%)£/ for n > 0 and l im, ,^ a® = ag, it follows from Lemma 2.4 that
limn_00 8(al

ns#, a'os</) = 0 and consequently a\srf 0(1 — al
0{a'QY)s^ — {0} for n large

enough by Proposition 2.5, that is, (1 - a%)&/ f) a^s^ = {0}.
(2) If a" ~ aj for n large enough then a'n is a stable perturbation of a'o by Theo-

rem 3.3. Thus lim^oo of = a0
D by Corollary 4.3.

On the other hand, if limn^oo a^ = a° then for sufficiently large n we have
| |< - flj|| < ||2aJ - l||->. Put Zn = 1 + (2aJ - 1 ) K - «o)- T h e n 111 - -z-H < 1.
that is, zn e G L ( J ^ ) and zn<z~' = a j .
(3) If 6{an

ns#) = e(a%£?) for n large enough then l im^^a,? = a0
D by Theo-

rem 3.4 and Corollary 4.3. Conversely, when limbec a® = a° we have a"n % aj for
sufficiently large n by the proof of (2) and hence 9(a*#/) = 0{a^). •

REMARK. Corollary 4.4 (1) covers [10, Corollary 3.4] and Corollary 4.4 (2), (3)
covers [19, Theorem 2].
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