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Abstract In this paper, using the Schauder Fixed Point Theorem and the Vidossich Theorem, we study
the existence of solutions and the structure of the set of solutions of the Darboux problem involving the
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1. Introduction

In this paper we prove the existence of solutions and investigate the topological charac-
terization of the set of solutions of the following Darboux problem:

∂2z

∂x∂y
= f(x, y, z),

z(x, 0) = 0, 0 � x � d1,

z(0, y) = 0, 0 � y � d2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)

where K = {(x, y) : 0 � x � d1, 0 � y � d2}, B = {z ∈ C(K) : ‖z‖∞ � b}, d1, d2, b > 0,
and f is a function on K × B. As usual, C(K) denotes the space of all continuous
functions z : K → R with the uniform norm ‖ · ‖∞, ∂2z/∂x∂y denotes the mixed distri-
butional derivative of z. The function f in the above Darboux problem is distributionally
Henstock–Kurzweil integrable on K.

The Darboux problem has been studied by many authors (see, for example, [1,4,6–8]).
In particular, in [4] Bugajewski and Szufla used the approximate derivatives instead of the
usual derivatives to consider the corresponding problem and obtained some interesting
results.

In this paper, instead of the approximate derivatives we use the distributional deriva-
tives to study the Darboux problem (1.1). It is known that the notion of a distri-
butional derivative is very general, including, for example, ordinary derivatives and
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approximate derivatives. Firstly, we define the distributional Henstock–Kurzweil integral
(DHK-integral) on Q, where Q denotes the open rectangle (a, b) × (c, d) on R

2. Secondly,
we prove the existence of solutions of the Darboux problem (1.1). Thirdly, we investigate
the structure of the set of solutions. The theorems obtained extend the results of [4,7].

We say that a distribution f is DHK-integrable on Q if there is a continuous function
F ∈ BC on Q̄ whose second-order mixed distributional derivative is f (see § 2 for the
definition of BC). The space of DHK-integrable distributions on Q is a separable Banach
space under an appropriative norm.

From the definition of the DHK-integral, we know that the DHK-integral contains the
Riemann integral, Lebesgue integral, Henstock–Kurzweil integral and the wide Denjoy
integral (for details, see [5,9–11,13,15–17]).

This paper is organized as follows. In § 2, we present the preliminary concepts and the
properties of the DHK-integral, including the Fubini Theorem, Dominated Convergence
Theorem and some lemmas of the DHK-integral on Q. In § 3, we apply the Schauder Fixed
Point Theorem in order to discuss the existence of solutions of (1.1). We also show that the
set of solutions of equation (1.1) is an Rδ by using the Vidossich Theorem stated in [14].
Here, Rδ is the intersection of a decreasing sequence of compact absolute retracts [3].
In § 4, we give an example to show that our results generalize the corresponding results
of [4,7] substantially.

2. Preliminaries

We denote by Q the open rectangle (a, b)×(c, d) in the plane R
2, and by D(Q) the subset

of C∞(Q) such that every φ ∈ D(Q) has a compact support in Q. A distribution on Q is
defined to be a continuous linear functional on D(Q). The space of all distributions on
Q, denoted by D′(Q), is the dual space of D(Q).

For simplicity, we write ∂ = ∂xy = ∂yx to denote the mixed distributional derivative.
We denote by ∂1 and ∂2 the distributional derivatives with respect to x and y, respectively,
and by ‘

∫
’ the DHK-integral.

We introduce the definition of BC .

Definition 2.1. BC = {F ∈ C(Q̄) : F (a, y) = F (x, c) = 0 for x ∈ [a, b], y ∈ [c, d]},
where Q̄ is the closure of Q.

It can be verified that BC is a closed subspace of C(Q̄) with the uniform norm ‖F‖∞ =
max{|F (x, y)| : (x, y) ∈ Q̄, F (x, y) ∈ C(Q̄)}.

Now we are able to define the distributional Henstock–Kurzweil integral:

DHK(Q) = {f ∈ D′(Q) | f = ∂F, F ∈ BC}.

It is easy to see that if f ∈ DHK(Q), the corresponding continuous function F ∈ BC

satisfying ∂F = f is unique.

Definition 2.2. A distribution f is DHK-integrable on Q if f ∈ DHK(Q).
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The DHK-integral of f on Q is given by
∫

Q

f = Ff (b, d).

Remark 2.3. If we consider only the DHK-integral in a one-dimensional interval, then
the DHK-integral is the AC-integral of [13]. That is, f is DHK-integrable on [a, b] ⊂ R

1

if there exists a continuous function F on [a, b] with F (a) = 0 whose distributional
derivative is f (see [13] for details).

We consider the structure of space DHK(Q). For f ∈ DHK(Q), the norm is defined by

‖f‖ = sup
{∣∣∣∣

∫
(a,x)×(c,y)

f

∣∣∣∣ : (x, y) ∈ Q̄

}
.

Lemma 2.4 (Ang et al . [2, Theorem 1]). The normed space (DHK(Q), ‖ · ‖) is
complete, separable and isomorphic to (BC , ‖ · ‖∞).

We will state a Fubini-type theorem for the DHK-integral which will be used later. At
first we introduce some definitions.

Definition 2.5. Let f ∈ DHK(Q), x ∈ [a, b], y ∈ [c, d]. We define
∫ x

a

f(ξ, ·) dξ = ∂2Ff (x, ·) in D′((c, d)),
∫ y

c

f(·, η) dη = ∂1Ff (·, y) in D′((a, b)).

It is clear that∫ x

a

f(s, ·) ds ∈ DHK((c, d)),
∫ y

c

f(·, t) dt ∈ DHK((a, b)),

where DHK((a, b)) and DHK((c, d)) are respectively the spaces of DHK-integrable distri-
butions on (a, b) and (c, d), i.e.

DHK((a, b)) = {f ∈ D′(a, b) | f = ∂F, F ∈ BC},

where BC = {F ∈ C([a, b]) : F (a) = 0}, and f is the distributional derivative of F .

Lemma 2.6 (Fubini Theorem [2, Theorem 4]). For all f ∈ DHK(Q), we have

∫
Q

f =
∫ b

a

( ∫ d

c

f(·, η) dη

)
=

∫ d

c

( ∫ b

a

f(ξ, ·) dξ

)
.

Since the space L1 of Lebesgue integrable functions is a Banach space and there exist
excellent convergence theorems, the Lebesgue integral has many important applications.
It follows from Lemma 2.4 that DHK(Q) is also a separable Banach space. In fact, the
DHK-integral also has significant convergence theorems.
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Definition 2.7. A sequence {fn : fn ∈ DHK(Q)} is said to converge strongly to f ∈
DHK(Q) if ‖fn − f‖ → 0 as n → ∞.

Now we introduce an order in the space DHK(Q). For f, g ∈ DHK(Q), we say that
f � g (or g � f) if and only if f − g is a positive measure on Q. In [2] it is shown that
the DHK-integral has the order-preserving property, i.e.

∫
Q

f �
∫

Q

g, (2.1)

whenever f � g, f, g ∈ DHK(Q) [2, p. 360].
For a sequence {fn} ⊂ DHK(Q), an important question is whether the convergence of

fn → f with f ∈ DHK(Q) implies

lim
n→∞

∫
Q

fn =
∫

Q

f.

The following convergence theorem gives the answer.

Lemma 2.8 (Dominated Convergence Theorem of the DHK-integral [2,
Corollary 5]). Let {fn} ⊂ DHK(Q) such that fn → f in D′(Q). Suppose there exist
g, h ∈ DHK(Q) satisfying g � fn � h for all n ∈ N . Then f ∈ DHK(Q) and

lim
n→∞

∫
Q

fn =
∫

Q

f.

Lemma 2.9 (Ang et al . [2, Theorem 2]).

(i) Let f ∈ DHK(Q) and Q′ = (a′, b′) × (c′, d′) ⊂ Q. Then f |Q′ ∈ DHK(Q′).

(ii) For a � m � b and c � n � d, let Q1 = (a, m) × (c, n), Q2 = (m, b) × (c, n), Q3 =
(a, m)× (n, d), Q4 = (m, b)× (n, d). Then, for each (f1, f2, f3, f4) ∈

∏4
i=1 DHK(Qi),

there exists a unique f ∈ DHK(Q) such that f |Qi = fi, 1 � i � 4. Moreover,

∫
Q

f =
4∑

i=1

∫
Qi

fi.

(iii) Let a < m < m′ < b and f ∈ D′(Q). Then f ∈ DHK(Q) if and only if f |(a,m′)×(c,d) ∈
DHK((a, m′) × (c, d)) and f |(m,b)×(c,d) ∈ DHK((m, b) × (c, d)).

3. Main results and proofs

In this section, we consider the Darboux problem (1.1), where K = {(x, y) : 0 � x �
d1, 0 � y � d2}, B = {z ∈ C(K) : ‖z‖∞ � b} and d1, d2, b > 0, f is a function on K ×B.
As before, ∂2z/∂x∂y denotes the mixed distributional derivative of z.

Definition 3.1. A function z ∈ C(J) with J ⊂ K is a solution of equation (1.1) if it
satisfies equation (1.1) with z(x, y) ∈ B for (x, y) ∈ J .

https://doi.org/10.1017/S0013091510001343 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510001343


The Darboux problem involving the distributional Henstock–Kurzweil integral 201

To prove the existence of solutions of equation (1.1), we need the following well-known
Schauder Fixed Point Theorem.

Lemma 3.2 (Schechter [12, Theorem 6.15]). Let M be a convex, closed subset
of a normed vector space X. Let T be a continuous map of M into a compact subset K

of M . Then T has a fixed point.

In what follows, we assume that f satisfies the following assumptions:

(D1) f is DHK-integrable on K for every z ∈ B;

(D2) z → f(x, y, z) is continuous for almost every (x, y) ∈ K;

(D3) there exist g, h ∈ DHK satisfying g(·, ·) � f(·, ·, z) � h(·, ·) for every z ∈ B.

We now present the first main result of this paper.

Theorem 3.3. Under the assumptions (D1)–(D3), there exists at least one solution
to equation (1.1) on J , for J ⊂ K.

Proof. We give the proof in three steps.

Step 1. Obviously, equation (1.1) is equivalent to the following integral equation:

z(x, y) =
∫

[0,x]×[0,y]
f(ξ, η, z(ξ, η)) dξ dη. (3.1)

Since g, h ∈ DHK, the primitives of g, h are continuous on K.
Let

b = max
K′⊆K

{∣∣∣∣
∫

K′
g

∣∣∣∣,
∣∣∣∣
∫

K′
h

∣∣∣∣
}

.

Choose positive numbers d′
1, d

′
2 in such a way that

−b �
∫

[0,x]×[0,y]
g � b and − b �

∫
[0,x]×[0,y]

h � b,

for 0 � x � d′
1, 0 � y � d′

2, J = {(x, y) : 0 � x � d′
1, 0 � y � d′

2}.
By (2.1) and the condition (D3), we have∫

[0,x]×[0,y]
f(·, ·, z) �

∫
[0,x]×[0,y]

h � b,

∫
[0,x]×[0,y]

f(·, ·, z) �
∫

[0,x]×[0,y]
g � −b.

Define
F (z)(x, y) =

∫
[0,x]×[0,y]

f(ξ, η, z(ξ, η)) dξ dη,

for z ∈ B̃, (x, y) ∈ J , where B̃ = {z ∈ C(J) : ‖z‖∞ � b}. Then

‖F (z)‖∞ =
∥∥∥∥

∫
[0,x]×[0,y]

f

∥∥∥∥
∞

= max
(x,y)∈J

∣∣∣∣
∫

[0,x]×[0,y]
f(·, ·, z(·, ·))

∣∣∣∣ � b

for z ∈ B̃. So F (z)(x, y) ∈ B̃ and therefore F (B̃) ⊂ B̃.
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Step 2. We verify that the family F (B̃) is equi-uniformly continuous.

F (z)(x1, y1) − F (z)(x2, y2)

=
∫

[0,x1]×[0,y1]
f(ξ, η, z(ξ, η)) dξ dη −

∫
[0,x2]×[0,y2]

f(ξ, η, z(ξ, η)) dξ dη,

for (x1, y2), (x2, y2) ∈ J , z ∈ B̃.
According to the Fubini theorem of the DHK-integral,

F (z)(x1, y1) − F (z)(x2, y2)

=
∫ x2

0

( ∫ y1

0
f(ξ, η, z(ξ, η)) dξ

)
dη +

∫ x1

x2

( ∫ y1

0
f(ξ, η, z(ξ, η)) dξ

)
dη

−
∫ y1

0

( ∫ x2

0
f(ξ, η, z(ξ, η)) dξ

)
dη +

∫ y1

y2

( ∫ x2

0
f(ξ, η, z(ξ, η)) dξ

)
dη

=
∫ x1

x2

( ∫ y1

0
f(ξ, η, z(ξ, η)) dξ

)
dη +

∫ y1

y2

( ∫ x2

0
f(ξ, η, z(ξ, η)) dξ

)
dη.

Further, by the condition (D3), we have the following inequalities:∫ x1

x2

( ∫ y1

0
g(ξ, η) dξ

)
dη +

∫ y1

y2

( ∫ x2

0
g(ξ, η) dξ

)
dη

� F (z)(x1, y1) − F (z)(x2, y2)

�
∫ x1

x2

( ∫ y1

0
h(ξ, η) dξ

)
dη +

∫ y1

y2

( ∫ x2

0
h(ξ, η) dξ

)
dη.

Hence,

|F (z)(x1, y1) − F (z)(x2, y2)|

�
∣∣∣∣
∫

[x1,x2]×[0,y1]
g

∣∣∣∣ +
∣∣∣∣
∫

[0,x2]×[y2,y1]
g

∣∣∣∣ +
∣∣∣∣
∫

[x1,x2]×[0,y1]
h

∣∣∣∣ +
∣∣∣∣
∫

[0,x2]×[y2,y1]
h

∣∣∣∣.
Since g, h ∈ DHK, the primitives of g and h are continuous and so are uniformly

continuous on J . Hence, by the above inequality, the family F (B̃) is equi-uniformly
continuous. In view of the Ascoli–Arzelà Theorem, F (B̃) is relatively compact.

Step 3. Lastly, we verify that the map F : B̃ → B̃ is continuous. Let z0 ∈ B̃ and let
{zm} be a sequence such that zm ∈ B̃ for m ∈ N and zm → z0 as m → ∞. According to
condition (D2), f(·, ·, zm) → f(·, ·, z0) as m → ∞.

By Lemma 2.8 and condition (D3),

lim
m→∞

∫
B̃

f(·, ·, zm) ds =
∫

B̃

f(·, ·, z0) ds.

Hence, limm→∞ F (zm)(·) = F (z0)(·), which implies that F is continuous.
Thus, F is a compact mapping. By Lemma 3.2, F has at least one fixed point, which

completes the proof. �
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In order to give a topological characterization of the solution set of equation (1.1), we
state the well-known Vidossich Theorem.

Let Cu(K, Y ) be the space of all continuous mappings x : K → Y , where K is a
compact convex subset of a normed space and Y is a metric space equipped with the
topology of uniform convergence. Denote by B(t0, ε) the closed ball with centre t0 and
radius ε. Denote by x|A the restriction of the map x to A.

Lemma 3.4 (Vidossich Theorem [14, Corollary 1.2]). Let K be a compact
convex subset of a normed space, Y be a closed convex subset of a Banach space Y0, and
F be a compact map Cu(K, Y ) → Cu(K, Y ). If there are t0 ∈ K and y0 ∈ Y such that
the following two conditions hold

(i) F (x)(t0) = y0, x ∈ C(K, Y ),

(ii) For every ε > 0,

x|kε
= y|kε

⇒ F (x)|kε
= F (y)|kε

, x, y ∈ C(K, Y ),

where Kε = B(t0, ε) ∩ K.

Then the set of fixed points of F is an Rδ.

Recall that an Rδ is the intersection of a decreasing sequence of compact absolute
retracts. Furthermore, Vidossich [14] pointed out that Rδ is a non-empty, compact and
connected set.

Now we come to the second main result.

Theorem 3.5. Under the above assumptions (D1)–(D3), there exists an interval J ⊂
K such that the set S of all solutions of equation (1.1) defined on J is an Rδ.

Proof. In the proof of Theorem 3.3, we proved that the operator F maps B̃ into B̃

and F is a compact mapping.
On the other hand, it is clear that F satisfies conditions (i) and (ii) of Lemma 3.4.

Thus, F satisfies all conditions of Lemma 3.4 and therefore the set S is an Rδ, which
completes the proof. �

Remarks 3.6.

(i) We note that if g is a Lebesgue integrable function, h = −g,

(L)
∫ x

0

∫ y

0
f(ξ, η, z) dξ dη (3.2)

exists for every z ∈ B and ∂2z/∂x∂y denotes the mixed usual derivative of z, then
Theorem 3.5 reduces to the classical Carathéodory existence theorem discussed
in [7].
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(ii) If g and h are Denjoy integrable functions,

(D)
∫ x

0

∫ y

0
f(ξ, η, z) dξ dη (3.3)

exists for every z ∈ B and ∂2
apz/∂x∂y denotes the mixed approximate derivative of

z (see [5] for the definition), then Theorem 3.5 reduces to [4, Theorem 3].

Therefore, Theorem 3.5 is an extension of the corresponding results in [4,7].

4. An example

Example 4.1. Consider the following Darboux problem:

∂2z

∂x∂y
= f(x, y, z) = g(x, y, z) + l(x, y),

z(x, 0) = 0, 0 � x � 1,

z(0, y) = 0, 0 � y � 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

where l(x, y) is distributionally Henstock–Kurzweil integrable on [0, 1] × [0, 1] but not
necessarily Lebesgue integrable, and g(x, y, z) satisfies the Carathéodory conditions:

(L1) the map z 
→ g(x, y, z) is continuous for a.e. (x, y) ∈ [0, 1] × [0, 1];

(L2) the map (x, y) 
→ g(x, y, z) is measurable for all ‖z‖∞ � 1;

(L3) there exists g1(x, y) ∈ L1([0, 1] × [0, 1]) such that |g(x, y, z)| � g1(x, y) for a.e.
(x, y) ∈ [0, 1] × [0, 1] and ‖z‖∞ � 1.

We know the DHK-integral contains the wide Denjoy integral. Note that l(x, y) is
distributionally Henstock–Kurzweil integrable, according to equation (4.1) and condition
(L3); thus, we have

l(x, y) − g1(x, y) � f(x, y, z) � l(x, y) + g1(x, y)

for (x, y) ∈ [0, 1] × [0, 1], ‖z‖∞ � 1.
Since l(x, y) ∈ DHK, g1(x, y) ∈ L1, we have l ± g1 ∈ DHK. Hence, the existence of a

solution of equation (4.1) is guaranteed by Theorem 3.3. However, the existence theorems
of [4,7] are ineffective for equation (4.1).

Furthermore, Theorem 3.5 shows that the set of solutions to problem (4.1) is an Rδ.
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