
Canad. J. Math. Vol. 70 (6), 2018 pp. 1284–1318
http://dx.doi.org/10.4153/CJM-2017-043-4
©Canadian Mathematical Society 2018

Long Sets of Lengths With
Maximal Elasticity

Alfred Geroldinger and Qinghai Zhong

Abstract. We introduce anew invariant describing the structure of sets of lengths in atomicmonoids
and domains. For an atomicmonoid H, let ∆ρ(H) be the set of all positive integers d that occur as
diòerences of arbitrarily long arithmetical progressions contained in sets of lengths having maximal
elasticity ρ(H). We study ∆ρ(H) for transfer Krull monoids of ûnite type (including commutative
Krull domains with ûnite class group) with methods from additive combinatorics, and also for a
class of weakly Krull domains (including orders in algebraic number ûelds) for which we use ideal
theoreticmethods.

1 Introduction

Let H be a monoid or domain such that every non-zero and non-unit element can
be written as a ûnite product of atoms. If a = u1 ⋅ ⋅ ⋅uk is a factorization into atoms
u1 , . . . , uk , then k is called the length of this factorization and the set L(a) ⊂ N of
all possible factorization lengths is called the set of lengths of a. _e system L(H) =
{L(a) ∣ a ∈ H} of all sets of lengths is a well-studied means of describing the non-
uniqueness of factorizations of H. If there is some a ∈ H such that ∣L(a)∣ > 1, then
L(an) ⊃ L(a) + ⋅ ⋅ ⋅ + L(a), whence L(an) has more than n elements for every n ∈ N.
Weak-ideal theoretic conditions onH guarantee that all sets of lengths are ûnite. _en
apart from the trivial case where all sets of lengths are singletons, L(H) is a family
of ûnite subsets of the integers containing arbitrarily long sets. Only in a couple of
very special cases can the system L(H) be written down explicitly. In general, L(H)
is described by parameters such as the set of distances ∆(H), the elasticity ρ(H), and
others. We recall the deûnition of the elasticity ρ(H). If L ∈ L(H), then ρ(L) =
sup(L)/min L is the elasticity of L (thus ρ(L) = 1 if and only if ∣L∣ = 1). _e elasticity
ρ(H) ofH is the supremumof all ρ(L) over all L ∈ L(H), andwe say that it is accepted
if there is some L ∈ L(H) such that ρ(H) = ρ(L) <∞.

_e goal of the present paper is to study the possible diòerences of arbitrarily long
arithmetical progressions contained in sets of lengths having maximal possible elas-
ticity. More precisely, suppose thatH has accepted elasticitywith 1 < ρ(H) <∞. _en
let ∆ρ(H) denote the set of all d ∈ N with the following property: for every k ∈ N,
there is some Lk ∈ L(H) with ρ(Lk) = ρ(H) and

Lk = yk + (L′k ∪ {0, d , . . . , ℓkd} ∪ L′′k ) ⊂ yk + dZ,
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where yk ∈ Z, max L′k < 0, min L′′k > ℓkd, and ℓk ≥ k. We study ∆ρ(H) for transfer
Krull monoids of ûnite type and for classes of weakly Krull monoids.
A transfer Krull monoid of ûnite type is a monoid having a weak transfer homo-

morphism to amonoid of zero-sum sequences over a ûnite subset of an abelian group.
Transfer homomorphisms preserve factorization lengths, which implies that the sys-
tems of sets of lengths of the two monoids coincide. _is setting includes commuta-
tiveKrull domainswith ûnite class group, but also classes of not necessarily integrally
closed noetherian domains, and classes of non-commutative Dedekind prime rings
(for a detailed discussion see the beginning of Section 3).

Let H be a transfer Krull monoid over a ûnite abelian group G such that ∣G∣ ≥ 3.
_en L(H) = L(B(G)) =∶ L(G), whence sets of lengths of H can be studied in the
monoid B(G) of zero-sum sequences over G and methods from additive combina-
torics can be applied. _is setting has found wide interest in the literature [8, 17, 34].
Our main results on ∆ρ( ⋅ ) for transfer Krull monoids are summarized a�er Conjec-
ture 3.20. In a discussion preceding Lemma 3.2 we review the tools from zero-sum
theory required for studying ∆ρ( ⋅ ) and their state of the art. A central question in all
studies of systems of sets of lengths is the so-called Characterization Problem, which
askswhether for two non-isomorphic ûnite abelian groupsG andG′ (withDavenport
constantD(G) ≥ 4), the systems of sets of lengthsL(G) andL(G′) can coincide. _e
standing conjecture is that this is not possible (see [15, §6] for a survey, and [20,25,37]
for recent progress), and the new invariant ∆ρ( ⋅ ) turns out to be a further useful tool
in these investigations (Corollary 3.19).

Within factorization theory the case of (transfer) Krull monoids and domains is
by far the best-understood case. Much less is known in the non-Krull case. _emost
investigated class is Mori domains R with non-zero conductor f, ûnite v-class group,
and a ûniteness condition on the factor ring R/f (see [13, 31]). However, in the over-
whelming number of situations only abstract arithmetical ûniteness results are known
but no precise results (such as in the Krull case). Mori domains, which are weakly
Krull, have a deûning family of one-dimensional local Mori domains,which provides
a strategy for obtaining precise results. In Section 4 we study ∆ρ( ⋅ ) for such weakly
Krull Mori domains and for their monoids of v-invertible v-ideals, under natural al-
gebraic ûniteness assumptions that are satisûed, among others, by orders in algebraic
number ûelds (_eorem 4.4). _is is done by studying the local case ûrst and then
the local results are glued together with the help of the associated T-block monoid.
Our results on ∆ρ( ⋅ ) allow us to reveal further classes of weakly Krull monoids that
are not transfer Krull (Corollary 4.6).

2 Background on Sets of Lengths

For integers a and b, we denote by [a, b] = {x ∈ Z ∣ a ≤ x ≤ b} the discrete interval
between a and b. Let L ⊂ Z be a subset. If d ∈ N and ℓ,M ∈ N0, then L is called
an almost arithmetical progression (AAP for short) with diòerence d, length ℓ, and
bound M if

(2.1) L = y + (L′ ∪ {0, d , . . . , ℓd} ∪ L′′) ⊂ y + dZ,

where y ∈ Z, L′ ⊂ [−M ,−1], and L′′ ⊂ ℓd + [1,M]. If L′ ⊂ Z, then
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L + L′ = {a + b ∣ a ∈ L, b ∈ L′}

denotes the sumset. If L = {m1 , . . . ,mk} ⊂ Z is ûnite with k ∈ N0 and m1 < ⋅ ⋅ ⋅ < mk ,
then ∆(L) = {m i −m i−1 ∣ i ∈ [2, k]} ⊂ N denotes the set of distances of L. If L ⊂ N is
a subset of the positive integers, then ρ(L) = sup L/min L denotes its elasticity, and
for convenience we set ρ({0}) = 1.

Let G be a ûnite abelian group. Let r ∈ N and (e1 , . . . , er) be an r-tuple of elements
of G. _en (e1 , . . . , er) is said to be independent if e i /= 0 for all i ∈ [1, r] and if for
all (m1 , . . . ,mr) ∈ Zr an equation m1e1 + ⋅ ⋅ ⋅ +mrer = 0 implies that m i e i = 0 for all
i ∈ [1, r]. Furthermore, (e1 , . . . , er) is said to be a basis of G if it is independent and
G = ⟨e1⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨er⟩. For every n ∈ N, we denote by Cn an additive cyclic group of
order n.
By a monoid, we mean an associative semigroup with unit element, and, if not

stated otherwise,weusemultiplicativenotation. LetH be amonoidwithunit-element
1 = 1H ∈ H. We denote by H× the group of invertible elements and say that H is
reduced if H× = {1}. Let S ⊂ H be a subset and a ∈ S. _en [S] ⊂ H denotes
the submonoid generated by S, and [a] = [{a}] = {ak ∣ k ∈ N0} is the submonoid
generated by a. We say that the subset S is divisor-closed if a, b ∈ H and ab ∈ S implies
that a, b ∈ S. We denote by [[S]] the smallest divisor-closed submonoid containing S,
and [[a]] = [[{a}]] is the smallest divisor-closed submonoid of H containing a. _e
monoid H is said to be unit-cancellative if for each two elements a, u ∈ H any of the
equations au = a or ua = a implies that u ∈ H×. Clearly, every cancellativemonoid is
unit-cancellative.

Suppose that H is unit-cancellative. An element u ∈ H is said to be irreducible (or
an atom) if u ∉ H× and any equation of the form u = ab, with a, b ∈ H, implies that
a ∈ H× or b ∈ H×. Let A(H) denote the set of atoms, and we say that H is atomic if
everynon-unit is a ûniteproduct of atoms. IfH satisûes the ascending chain condition
on principal le� ideals and on principal right ideals, then H is atomic [11, _eorem
2.6]. If a ∈ H ∖ H× and a = u1 ⋅ ⋅ ⋅uk , where k ∈ N and u1 , . . . , uk ∈ A(H), then k is a
factorization length of a, and

LH(a) = L(a) = {k ∣ k is a factorization length of a} ⊂ N

denotes the set of lengths of a. It is convenient to set L(a) = {0} for all a ∈ H× (note
that every divisor of an invertible element is again invertible). _e family

L(H) = {L(a) ∣ a ∈ H}

is called the system of sets of lengths of H, and

ρ(H) = sup{ρ(L) ∣ L ∈ L(H)} ∈ R≥1 ∪ {∞}

denotes the elasticity of H. We say that a monoid H has accepted elasticity if it is
atomic unit-cancellative with elasticity ρ(H) < ∞ and there is an L ∈ L(H) such
that ρ(L) = ρ(H). Let H be a monoid with accepted elasticity. _en sup L < ∞
for every L ∈ L(H) and for a subset S ⊂ H, ∆H(S) = ⋃a∈S ∆(LH(a)) ⊂ N denotes
the set of distances of S. Let S ⊂ H be a divisor-closed submonoid and a ∈ S. _en
S× = H×, A(S) = A(H) ∩ S, LS(a) = LH(a), and L(S) ⊂ L(H). Furthermore, we
have ∆S(S) = ∆H(S) and we set ∆(S) = ∆S(S) and ∆(H) = ∆H(H). By deûnition
we have ∆(H) = ∅ if and only if ρ(H) = 1.
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For any set P, we denote by F(P) the free abelian monoid with basis P. If

a =∏
p∈P

pvp(a) ∈ F(P),

where vp ∶F(P) → N0 is the p-adic exponent, then ∣a∣ = ∑p∈P vp(a) ∈ N0 is the
length of a. Let D be amonoid. A submonoid H ⊂ D is said to be saturated if a ∈ D,
b ∈ H, and either ab ∈ H or ba ∈ H implies that a ∈ H. A commutative monoid H
is Krull if its associated reduced monoid is a saturated submonoid of a free abelian
monoid [17,_eorem 2.4.8]. A commutative domain is Krull if and only if its monoid
of non-zero elements is a Krull monoid. _e theory of commutative Krull monoids
and domains is presented in [17,28].

Let G be an additive abelian group and G0 ⊂ G a nonempty subset. An element

S = g1 ⋅ ⋅ ⋅ gℓ = ∏
g∈G0

gvg(S) ∈ F(G0)

is said to be a zero-sum sequence if its sum σ(S) = g1+⋅ ⋅ ⋅+ gℓ = ∑g∈G0 vg(S)g equals
zero. _en the setB(G0) of all zero-sum sequences overG0 is a submonoid, and since
B(G0) ⊂ F(G0) is saturated, it is a commutative Krull monoid. If S is as above, then
∣S∣ = ℓ ∈ N0 is the length of S and supp(S) = {g1 , . . . , gℓ} ⊂ G denotes its support. _e
monoidB(G0) plays a crucial role in Section 3. It is usual to setL(G0) ∶= L(B(G0)),
A(G0) ∶= A(B(G0)), ρ(G0) ∶= ρ(B(G0)), and ∆(G0) ∶= ∆(B(G0)) (although this
is an abuse of notation, it will never lead to confusion). If G0 is ûnite, then A(G0) is
ûnite and D(G0) = max{∣U ∣ ∣ U ∈ A(G0)} ∈ N denotes the Davenport constant of
G0.

Now we introduce the new arithmetical invariant, ∆ρ( ⋅ ), to be studied in the
present paper. For convenience we repeat the deûnition of the well-studied invari-
ant ∆1( ⋅ ).

Deûnition 2.1 Let H be an atomic unit-cancellativemonoid.
(i) [17, Deûnition 4.3.12] Let ∆1(H) denote the set of all d ∈ N having the follow-

ing property. For every k ∈ N, there is some Lk ∈ L(H) that is an AAP with
diòerence d and length at least k.

(ii) Let ∆ρ(H) denote the set of all d ∈ N having the following property. For every
k ∈ N, there is some Lk ∈ L(H) that is an AAP with diòerence d, length at least
k, and with ρ(Lk) = ρ(H).

(iii) We set ∆∗ρ(H) = {min∆H([a]) ∣ a ∈ H with ρ(L(a)) = ρ(H)}.

By deûnition, we have

(2.2) ∆ρ(H) ⊂ ∆1(H) ⊂ ∆(H),

and ∆ρ(H) = ∅ if H does not have accepted elasticity.
_e set ∆1(H) is studiedwith the help of the set ∆∗(H),which is deûned as the set

of all d ∈ N having the following property ([17, Deûnition 4.3.12]): there is a divisor-
closed submonoid S ⊂ H with ∆(S) /= ∅ and d = min∆(S). If H is a commutative
cancellative BF-monoid, then, by [17, Proposition 4.3.14],

(2.3) ∆∗(H) = {min∆([[a]]) ∣ a ∈ H with ∆([[a]]) /= ∅}.
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_e sets ∆∗(H), called the set of minimal distances of H, and ∆1(H) have found
wide attention, so far mainly for transfer Krull monoids over ûnite abelian groups
[20,24,25,32,37].

In the present paperwe study∆ρ(H), and the set∆∗ρ(H) is a technical tool to do so.
_e relationship between the two sets is the topic of Lemma 2.4. In particular,we have
∅ /= ∆∗ρ(H) ⊂ ∆ρ(H) (provided that H has accepted elasticity ρ(H) > 1). Equations
(2.3) and (2.4) reveal the formal correspondence between ∆∗(H) and ∆∗ρ(H) in the
case of commutative monoids. However, there exist commutative monoids H and
divisor-closed submonoids S ⊂ H with ρ(S) = ρ(H) > 1 such thatmin∆(S) ∉ ∆ρ(H)
(use _eorem 3.5 with S = H ∈ {B(C4),B(C6),B(C10}). _us, in contrast to (2.3),
in (2.4) we cannot replace [[a]] by an arbitrary divisor-closed submonoid.

In contrast to the formal similarity in the deûnitions, the invariants ∆ρ(H) and
∆1(H) show a very diòerent behavior (in particular for transfer Krull monoids over
ûnite abelian groups, see Section 3). _us the additional requirement on the elasticity
is a very strong one.

We start with a technical lemma analysing the set ∆∗ρ(H).

Lemma 2.2 Let S ⊂ H be a submonoid with ∆H(S) /= ∅.
(i) min∆H(S) = gcd ∆H(S).
(ii) If H is commutative, then min∆([[S]]) = min∆H([[S]]) = min∆H(S), whence

(2.4) ∆∗ρ(H) = {min∆([[a]]) ∣ a ∈ H with ρ(L(a)) = ρ(H)}.

(iii) Let a, b ∈ S with ρ(LH(a)) = ρ(LH(b)) = ρ(H). _en ρ(LH(ab)) = ρ(H). In
particular, ρ(LH(ak)) = ρ(H) for every k ∈ N and ρ([[a]]) = ρ(H).

Proof (i) It is suõcient to prove that min∆H(S) ∣ d′ for every d′ ∈ ∆H(S). Let d =
min∆H(S) and assume to the contrary that there exists d′ ∈ ∆H(S) such that d ∤ d′.

We set d0 = gcd(d , d′). _en d0 < d and there exist x , y ∈ N such that d0 =
xd − yd′. Let a1 , a2 ∈ S be such that {ℓ1 , ℓ1 +d} ⊂ LH(a1) and {ℓ2 −d′ , ℓ2} ⊂ LH(a2).
_us

{xℓ1 , xℓ1+d , . . . , xℓ1+xd} ⊂ LH(ax1 ), {yℓ2−yd′ , yℓ2−(y−1)d′ , . . . , yℓ2} ⊂ LH(ay2).

_erefore {xℓ1 + yℓ2 , xℓ1 + yℓ2 + xd − yd′} ⊂ LH(ax1 a
y
2), which implies that d ≤

xd − yd′ = d0, a contradiction.
(ii) Suppose that H is commutative. Since S ⊂ [[S]] and [[S]] ⊂ H is divisor-closed,

it follows that min∆([[S]]) = min∆H([[S]]) ≤ min∆H(S). To verify the reverse
inequality, let b ∈ [[S]] with min∆(LH(b)) = min∆([[S]]). _ere is a c ∈ H such that
bc ∈ S. Since LH(b) + LH(c) ⊂ LH(bc), we infer that

min∆H(S) ≤ min∆(LH(bc)) ≤ min∆(LH(b)) = min∆([[S]]).

In particular, if S = [a], then min∆([[a]]) = min∆H([a]) and hence the equation
for ∆∗ρ(H) follows.

(iii) Since L(a) + L(b) ⊂ L(ab), it follows that

minL(ab) ≤ minL(a) +minL(b) ≤ maxL(a) +maxL(b) ≤ maxL(ab),
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and hence

ρ(H) ≥ ρ(L(ab)) = maxL(ab)
minL(ab)

≥
maxL(a) +maxL(b)
minL(a) +minL(b)

≥ min{
maxL(a)
minL(a)

,
maxL(b)
minL(b)

} = ρ(H).

_e in particular statement follows by induction on k.

We continue with a simple observation on the structure of the sets Lk , which pop
up in the deûnition of ∆ρ(H), for all monoids H under consideration. To do so, we
need a further deûnition. Let d ∈ N,M ∈ N0, and {0, d} ⊂D ⊂ [0, d]. A subset L ⊂ Z
is called an almost arithmetical multiprogression (AAMP for short) with diòerence d,
periodD, and boundM, if L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y +D+ dZ, where y ∈ Z is a shi�
parameter,
● L∗ is ûnite nonempty with min L∗ = 0 and L∗ = (D + dZ) ∩ [0,max L∗],
● L′ ⊂ [−M ,−1] and L′′ ⊂ max L∗ + [1,M].

_e following characterization of ∆ρ(H) follows from the very deûnitions.

Lemma 2.3 Let H be a monoid with accepted elasticity and with ûnite non-empty
set of distances, and let M ∈ N. Suppose that every L ∈ L(H) is an AAMP with some
diòerence d ∈ ∆(H) and boundM. _en ∆ρ(H) is the set of all d ∈ Nwith the following
property: for every k ∈ N there is some ak ∈ H such that ρ(L(ak)) = ρ(H) and

L(ak) = y + (L′ ∪ {0, d , . . . , ℓd} ∪ L′′) ⊂ y + dZ,

where y ∈ Z, ℓ ≥ k, L′ ⊂ [−M ,−1], and L′′ ⊂ ℓd + [1,M].

_e assumption in Lemma 2.3, that all sets of lengths are AAMP with global
bounds, is a well-studied property in factorization theory. It holds true, among oth-
ers, for transfer Krull monoids of ûnite type (see §3) and for weakly Krull monoids
(_eorem 4.4). We refer to [17, Chapter 4.7] for a survey on settings where sets of
lengths are AAMP and also to [18]. _us, under this assumption, the above lemma
shows that the sets Lk (in Deûnition 2.1 (ii) of ∆ρ(H)) have globally bounded begin-
ning and end parts L′ and L′′, and the goal is to study the set of possible distances in
themiddle part, which can get arbitrarily long.

Lemma 2.4 Let H be amonoid with accepted elasticity.
(i) If ρ(H) > 1, then ∅ /= ∆∗ρ(H) ⊂ ∆ρ(H) and min∆∗ρ(H) = min∆ρ(H). In

particular, if ρ(H) > 1 and ∣∆(H)∣ = 1, then ∆∗ρ(H) = ∆ρ(H) = ∆(H).
(ii) If S ⊂ H is a divisor-closed submonoid with ρ(S) = ρ(H), then ∆ρ(S) ⊂ ∆ρ(H).
(iii) If H is commutative and cancellative with ûnitely many atoms up to asso-

ciates, then ∆ρ(H) ⊂ {d ∈ N ∣ d divides some d′ ∈ ∆∗ρ(H)}. In particular,
max∆ρ(H) = max∆∗ρ(H).

(iv) ∆ρ(H) = ∅ if and only if ∆1(H) = ∅ if and only if ∆(H) = ∅ if and only if
ρ(H) = 1.
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Proof (i) Suppose that ρ(H) > 1. _en, by deûnition, there is an a ∈ H with
ρ(L(a)) = ρ(H) > 1 whence ∆H([a]) /= ∅ and thus ∆∗ρ(H) /= ∅. To verify that
∆∗ρ(H) ⊂ ∆ρ(H), we set d = min∆H([a]). _en there is an ℓ ∈ N such that d ∈

∆(L(aℓ)) and thus for every k ∈ N the set L(akℓ) contains an arithmetical progres-
sion with diòerence d and length at least k. Since min∆H([a]) = gcd ∆H([a]) by
Lemma 2.2 (ii), L(akℓ) is an AAP with diòerence d and length at least k for every
k ∈ N. By Lemma 2.2 (iii) , we have ρ(LH(akℓ)) = ρ(H) and thus d ∈ ∆ρ(H).

Since ∆∗ρ(H) ⊂ ∆ρ(H), it follows that min∆ρ(H) ≤ min∆∗ρ(H). To verify the
reverse inequality, let d ∈ ∆ρ(H) be given. _en there is an a ∈ H such that L(a) is an
AAP with diòerence d, length at least 1, and ρ(L(a)) = ρ(H). _us min∆H([a]) ∈
∆∗ρ(H) by deûnition, and clearly we havemin∆H([a]) ≤ min∆(L(a)) = d.

If ρ(H) > 1 and ∣∆(H)∣ = 1, then the inclusions given in (2.2) imply that ∆∗ρ(H) =

∆ρ(H) = ∆(H).
(ii) Suppose that S ⊂ H is divisor-closed with ρ(S) = ρ(H). _en for every a ∈ S,

we have LS(a) = LH(a), and hence L(S) ⊂ L(H). If d ∈ ∆ρ(S), then by deûnition,
for every k ∈ N, there is some Lk ∈ L(S) ⊂ L(H) that is an AAP with diòerence d,
length at least k, and with ρ(Lk) = ρ(S) = ρ(H), and thus d ∈ ∆ρ(H).

(iii) Clearly, the in particular statement follows from the asserted inclusion and
from the fact that ∆∗ρ(H) ⊂ ∆ρ(H) as shown in (i). Several times we will use the
fact that ûnitely generated commutativemonoids are locally tame and have accepted
elasticity [17,_eorem 3.1.4].

Without restriction wemay suppose that H is reduced, and we set

A(H) = {u1 , . . . , ut}

with t ∈ N. Let d ∈ ∆ρ(H) be given. _en for every k ∈ N, there is a bk ∈ H such that
ρ(L(bk)) = ρ(H) and L(bk) is an AAP with diòerence d and length ℓk ≥ k. Since
A(H) is ûnite, there are a nonempty subset A ⊂ A(H), say A = {u1 , . . . , us} with
s ∈ [1, t], a constant M1 ∈ N0, and a subsequence (bmk)k≥1 of (bk)k≥1, say bmk = ck
for all k ∈ N, such that, again for all k ∈ N, ck =∏t

i=1 u
mk , i
i wheremk , i ≥ k for i ∈ [1, s]

and mk , i ≤ M1 for i ∈ [s + 1, t]. By [17, _eorem 4.3.6] (applied to the monoid
[[u1 ⋅ ⋅ ⋅us]]), Lk = L(∏

s
i=1 u

mk , i
i ) is an AAP with diòerence d′ = min∆([[u1 ⋅ ⋅ ⋅us]])

for every k ∈ N. Since H is locally tame, [17, Proposition 4.3.4] implies that there is a
constant M2 ∈ N0 such that for every k ∈ N

maxL(ck) ≤ max Lk +M2 and minL(ck) ≥ min Lk −M2 .

Since for every k ∈ N there is a yk ∈ N such that yk + Lk ⊂ L(ck), we infer that
d divides d′. Being a divisor-closed submonoid of a ûnitely generated monoid, the
monoid [[u1 ⋅ ⋅ ⋅us]] is ûnitely generated by [17, Proposition 2.7.5]. _us there is an

a ∈ [[u1 ⋅ ⋅ ⋅us]]

such that ρ(L(a)) = ρ([[u1 ⋅ ⋅ ⋅us]]). Since d divides d′ = min∆([[u1 ⋅ ⋅ ⋅us]]) and d′
divides min∆([[a]]), it follows that d divides min∆([[a]]).

Next we verify that ρ([[u1 ⋅ ⋅ ⋅us]]) = ρ(H) from which it follows that

min∆([[a]]) ∈ ∆∗ρ(H)
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by Lemma 2.2 (ii). For k ∈ N, we have

ρ(H) =
maxL(ck)
minL(ck)

≤
max Lk +M2

min Lk −M2
and

max Lk

min Lk
≤ ρ([[u1 ⋅ ⋅ ⋅us]]) ≤ ρ(H).

If k →∞, then (max Lk +M2)/(min Lk −M2) → maxL(ck)/minL(ck), which im-
plies that ρ([[u1 ⋅ ⋅ ⋅us]]) = ρ(H).

(iv) _is follows from (i) and from the basic relation given in (2.2).

Lemma 2.5 Let H be a monoid with accepted elasticity. _en for every nonempty
subset ∆ ⊂ ∆ρ(H), there is a d ∈ ∆ρ(H) such that d ≤ gcd ∆.

Proof Let ∆ = {d1 , . . . , dn} ⊂ ∆ρ(H) be a nonempty subset. For every i ∈ [1, n]
and every k ∈ N there is an a i ,k ∈ H such that L(a i ,k) is an AAP with diòerence d i ,
length at least k, andwith ρ(L(a i ,k)) = ρ(H). By Lemma 2.2 (iii), L(a1,k ⋅ ⋅ ⋅ an ,k) has
elasticity ρ(H) for all k ∈ N, and thus d = min∆H([a1,k ⋅ ⋅ ⋅ an ,k]) ∈ ∆∗ρ(H) ⊂ ∆ρ(H).
If k is suõciently large, then gcd(d1 , . . . , dn) occurs as a distance of the sumset

L(a1,k) + ⋅ ⋅ ⋅ + L(an ,k).

Since the sumset L(a1,k) + ⋅ ⋅ ⋅ + L(an ,k) ⊂ L(a1,k ⋅ ⋅ ⋅ an ,k) and

d = gcd ∆H([a1,k ⋅ ⋅ ⋅ an ,k])

by Lemma 2.2 (i), d divides any distance of ∆(L(a1,k ⋅ ⋅ ⋅ an ,k)) whence it divides
gcd(d1 , . . . , dn).

Lemma 2.6 Let H = H1 × ⋅ ⋅ ⋅ × Hn where n ∈ N and H1 , . . . ,Hn are atomic unit-
cancellativemonoids.
(i) _en ρ(H) = sup{ρ(H1), . . . , ρ(Hn)}, and H has accepted elasticity if and only

if there is some i ∈ [1, n] such that H i has accepted elasticity ρ(H i) = ρ(H).
(ii) Let s ∈ [1, n] and suppose that H i has accepted elasticity ρ(H i) = ρ(H) for all

i ∈ [1, s], and that H i either does not have accepted elasticity or ρ(H i) < ρ(H)
for all i ∈ [s + 1, n]. We set

∆′ = {gcd{d i ∣i ∈ I} ∣ d i ∈ ∆ρ(H i) for all i ∈ I,∅ /= I ⊂ [1, s]} ,

∆′′ = {gcd{d i ∣i ∈ I} ∣ d i ∈ ∆∗ρ(H i) for all i ∈ I,∅ /= I ⊂ [1, s]} .

_en ∆′ ⊂ ∆ρ(H), ∆′′ ⊂ ∆∗ρ(H), and if ∣∆(H i)∣ = 1 for all i ∈ [1, s], then ∆′ =
∆′′ = ∆∗ρ(H) = ∆ρ(H).

Proof (i)_e formula for ρ(H) follows from [17, Proposition 1.4.5],where a proof is
given for cancellativemonoids but the proof of the general case runs along the same
lines. _e formula for ρ(H) immediately implies the second assertion.

(ii) First we show that ∆′ ⊂ ∆ρ(H). Let ∅ /= I ⊂ [1, s], say I = [1, r], and choose
d i ∈ ∆ρ(H i) for every i ∈ [1, r]. For each i ∈ [1, r] and every ℓ ∈ N there is an
a i ,ℓ ∈ H i such that L(a i ,ℓ) is an AAP with diòerence d i , length at least 2ℓ, and with
ρ(L(a i ,ℓ)) = ρ(H). _en ρ(L(a1,ℓ ⋅ ⋅ ⋅ ar ,ℓ)) = ρ(H) by Lemma 2.2 (iii). _us, for all
suõciently large ℓ, the sumset L(a1,ℓ)+ ⋅ ⋅ ⋅ + L(ar ,ℓ) = L(a1,ℓ ⋅ ⋅ ⋅ ar ,ℓ) is an AAP with
diòerence gcd(d1 , . . . , dr) and length at least ℓ.
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Second we show that ∆′′ ⊂ ∆∗ρ(H). Let ∅ /= I ⊂ [1, s], say I = [1, r], and choose
d i ∈ ∆∗ρ(H i) for every i ∈ [1, r]. _us there are a i ∈ H i such that ρ(L(a i)) = ρ(H)

and min∆H i ([a i]) = min∆H([a i]) = d i for all i ∈ [1, r]. _erefore, again for all
i ∈ [1, r], there is an ℓ i ∈ N such that d i ∈ ∆(L(aℓ i

i )) and thus, for every k ∈ N,
L(a2kℓ i

i ) contains an arithmetical progression with diòerence d i and length at least
2k. Setting ℓ = max(ℓ1 , . . . , ℓr) we infer that

L((a1 ⋅ ⋅ ⋅ ar)
2kℓ) = L(a2kℓ

1 ) + ⋅ ⋅ ⋅ + L(a2kℓ
r )

is an AAP with diòerence gcd(d1 , . . . , dr) and length at least k for all suõciently
large k. _us min∆H([a1 ⋅ ⋅ ⋅ ar]) = gcd(d1 , . . . , dr). Since ρ(L(a1 ⋅ ⋅ ⋅ ar)) = ρ(H)
by Lemma 2.2 (iii), it follows that gcd(d1 , . . . , dr) = min∆H([a1 ⋅ ⋅ ⋅ ar]) ∈ ∆∗ρ(H).

Now suppose that∆(H i) = {d i} for all i ∈ [1, s]. _en∆∗ρ(H i) = ∆ρ(H i) = ∆(H i)

by Lemma 2.4 (i), and hence ∆′ = ∆′′. By the two previous assertions, it remains to
show that ∆ρ(H) ⊂ ∆′. _en all four sets are equal as asserted.

Let d ∈ ∆ρ(H) and let k ∈ N be suõciently large. _en there are

a1,k ∈ H1 , . . . , as ,k ∈ Hs

such that L(a1,k ⋅ ⋅ ⋅ as ,k) is an AAP with diòerence d, elasticity ρ(H), and length at
least k. Since ∆(H i) = {d i} for all i ∈ [1, s],

L(a1,k ⋅ ⋅ ⋅ as ,k) = L(a1,k) + ⋅ ⋅ ⋅ + L(as ,k)

is a sumset of arithmetical progressions with diòerences d1 , . . . , ds . A�er renum-
bering if necessary there is an r ∈ [1, s] such that ∣L(a i ,k)∣ > 1 for all i ∈ [1, r] and
∣L(a i ,k)∣ = 1 for all i ∈ [r+ 1, s]. _uswe clearly obtain that d ≥ gcd(d1 , . . . , dr). Since
L(a1,k ⋅ ⋅ ⋅ as ,k) is an AAP with diòerence d and length at least k with k being suõ-
ciently large, it follows that L(a1,k ⋅ ⋅ ⋅ as ,k) ⊂ y + dZ for some y ∈ Z (see (2.1)), which
implies that d ∣ d i for all i ∈ [1, r]. _us d = gcd(d1 , . . . , dr) and hence d ∈ ∆′.

3 Transfer Krull Monoids

An atomic unit-cancellative monoid H is said to be a transfer Krull monoid if either
of the following two equivalent properties is satisûed.
(a) _ere is a commutative Krull monoid B and a weak transfer homomorphism

θ∶H → B.
(b) _ere is an abelian groupG, a subsetG0 ⊂ G, and aweak transferhomomorphism

θ∶H → B(G0).
In case (b) we say that H is a transfer Krull monoid over G0, and if G0 is ûnite, then
H is said to be a transfer Krull monoid of ûnite type. We do not repeat the technical
deûnition of weak transfer homomorphisms (introduced by Baeth and Smertnig [3])
because we use only that they preserve sets of lengths. _erefore L(H) = L(G0)
[15, Lemma 4.2], which, by deûnition, implies that

(3.1) ∆(H) = ∆(G0), ∆ρ(H) = ∆ρ(G0), ρ(H) = ρ(G0),

and H has accepted elasticity if and only if B(G0) has accepted elasticity. Note that,
as with other invariants, we use the abbreviations

∆1(G0) ∶= ∆1(B(G0)), ∆∗ρ(G0) ∶= ∆∗ρ(B(G0)), and ∆ρ(G0) ∶= ∆ρ(B(G0)).
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Every commutative Krull monoid (and thus every commutative Krull domain) with
class group G is a transfer Krull monoid over the subset G0 ⊂ G containing prime
divisors. In particular, if the class group G is ûnite and every class contains a prime
divisor (which holds true for holomorphy rings in global ûelds), then it is a transfer
Krull monoid over G. Deep results reveal large classes of bounded HNP (hereditary
noetherian prime) rings to be transferKrull [3,35,36]. Tomention one of these results
in detail, let O be a ring of integers of an algebraic number ûeld K, A a central simple
algebra over K, and R a classical maximalO-order of A. _en themonoid of cancella-
tive elements of R is transfer Krull if and only if every stably free le� R-ideal is free,
and if this holds, then it is a tranfer Krull monoid over a ûnite abelian group (namely
a ray class group ofO). We refer to [15] for a detailed discussion of commutativeKrull
monoids with ûnite class group and of further transfer Krull monoids.

Let H be a transferKrull monoid over a ûnite abelian groupG. _e systemL(H) =
L(G), together with all parameters controlling it, is a central object of interest in
factorization theory (see [34] for a survey). By (2.2) and Lemma 2.4 (i), we have

∆∗ρ(G) ⊂ ∆ρ(G) ⊂ ∆1(G) ⊂ ∆(G).

_e set ∆(G) is an interval by [22], but ∆1(G) is far from being an interval [32]. A
characterization when ∆1(G) is an interval can be found in [37]. We have

max∆1(G) = max{r(G) − 1, exp(G) − 2}

for ∣G∣ ≥ 3, by [24]. _is section will reveal that ∆ρ(G) is quite diòerent from ∆1(G).
We start with a result for transfer Krull monoids over arbitrary ûnite subsets. It

shows that in ûnitely generated commutativeKrull monoids H with ûnite class group
(and without restriction on the classes containing prime divisors) a large variety of
ûnite sets can be realized as ∆ρ(H) sets (Lemma 2.5 shows that not every ûnite set
can be realized as a ∆ρ( ⋅ ) set of some monoid; see also Lemmas 2.6 and 4.3). In
contrast to this we will see that the set ∆ρ(H) is extremely restricted if the set of
classes containing prime divisors is very large.

_eorem 3.1
(i) Let H be a transfer Krull monoid over a ûnite subset G0. _en H has accepted

elasticity ρ(H) = ρ(G0) ≤ D(G0)/2 and equality holds if G0 = −G0.
(ii) For every ûnite set ∆ = {d1 , . . . , dn} ⊂ N there exists a ûnitely generated commu-

tative Krull monoid H with ûnite class group such that

{gcd{d i ∣ i ∈ I} ∣ ∅ /= I ⊂ [1, n]} = ∆∗ρ(H) = ∆ρ(H).

(iii) If H is a transfer Krull monoid over a subset G0 of a ûnite abelian group G with
ρ(H) = D(G)/2, then ⟨G0⟩ = G and ∆ρ(H) ⊂ ∆ρ(G).

Proof (i) By (3.1), we have L(H) = L(G0) and hence ρ(H) = ρ(G0). Since the
set G0 is ûnite, the monoid B(G0) is ûnitely generated whence the elasticity ρ(G0)
is accepted [17,_eorems 3.1.4 and 3.4.2]. _e statements on ρ(G0) follow from [17,
_eorem 3.4.11].

(ii) Let ∆ = {d1 , . . . , dn} ⊂ N be a ûnite set. We start with the following assertion.
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Claim For every i ∈ [1, n], there is a ûnite abelian group G i and a subset G′
i ⊂ G i

such that ∆ρ(G′
i) = ∆(G′

i) = {d i} and ρ(G′
i) = 2.

Proof of Claim We do the construction for a given d ∈ N and omit all indices. If
d = 1, then G = C8 = {0, g , . . . , 7g} and G′ = {g , 3g} have the required proper-
ties. Suppose that d ≥ 2. Consider a ûnite abelian group G, independent elements
e1 , . . . , ed−1 ∈ G with ord(e1) = ⋅ ⋅ ⋅ = ord(ed−1) = 2d, and set e0 = −(e1 + ⋅ ⋅ ⋅ + ed−1). It
is easy to check that G′ = {e0 , e1 , . . . , ed−1} satisûes ρ(G′) = 2 and ∆(G′) = {d} (for
details of amore general construction see [17, Proposition 4.1.2]).

We set G0 = ⊎
n
i=1 G′

i ⊂ G = G1 ⊕ ⋅ ⋅ ⋅ ⊕Gn and H = B(G0). _en H = B(G′
1)× ⋅ ⋅ ⋅ ×

B(G′
n) is a ûnitely generated commutative Krull monoid with ûnite class group. By

Lemma 2.6 (i), H has accepted elasticity ρ(H) = 2 and

{gcd{d i ∣I ⊂ [1, n]} ∣ ∅ /= I ⊂ [1, n]} = ∆∗ρ(H) = ∆ρ(H).

(iii) Let H be a transfer Krull monoid over G0 such that ρ(H) = D(G)/2. _en (i)
shows that D(G)/2 = ρ(H) ≤ D(G0)/2 ≤ D(G)/2. _us

D(G) = D(G0) ≤ D(⟨G0⟩) ≤ D(G),

and since proper subgroups of G have a strictly smaller Davenport constant [17, Pro-
position 5.1.11], it follows that ⟨G0⟩ = G.

Since ρ(H) = ρ(G0) and ρ(G) = D(G)/2 by (i), we obtain that ρ(G0) = ρ(G).
Since ∆ρ(H) = ∆ρ(G0) and B(G0) ⊂ B(G) is a divisor-closed submonoid, the as-
sertion follows from Lemma 2.4 (ii).

Let all notation be as in _eorem 3.1 (iii). Since ∆ρ(H) /= ∅ and ∆ρ(G) will turn
out to be small (Conjecture 3.20), we have ∆ρ(H) = ∆ρ(G) in many situations (as it
holds true in the case G0 = G).

In the remainder of this section we study ∆ρ(G) for ûnite abelian groups G. Sup-
pose that

(3.2) G ≅ Cn1 ⊕ ⋅ ⋅ ⋅ ⊕ Cnr and set D∗(G) = 1 +
r
∑
i=1

(n i − 1),

where 1 < n1 ∣ ⋅ ⋅ ⋅ ∣ nr , nr = exp(G) is the exponent of G, and r = r(G) is the rank of
G. _us r(G) = max{rp(G) ∣ p ∈ P} is the maximum of all p-ranks rp(G) over all
primes p ∈ P.

Lemma 3.2 reveals that the study of ∆ρ(G) needs information on the Davenport
constant D(G) as well as (at least some basic) information on the structure of mini-
mal zero-sum sequences having length D(G). Although studied since the 1960s, the
precise value of the Davenport constant is known only in a very limited number of
cases. Clearly, we have D∗(G) ≤ D(G) and since the 1960s it is known that equality
holds if r(G) ≤ 2 or if G is a p-group. Further classes of groups have been found
where equality holds and also where it does not hold, but a good understanding of
this phenomenon is still missing. Even less is known on the inverse problem, namely
on the structure ofminimal zero-sum sequences having length D(G). _e structure
of such sequences is clear for cyclic groups and for elementary 2-groups, and recently
the structurewas determined for rank two groups. For general groups, even harmless
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looking questions (such aswhether eachminimal zero-sum sequence of lengthD(G)
does contain an element of order exp(G)) are open. In this section we study ∆ρ(G)
for all classes of groups where at least some information on the inverse problem is
available.

Recall that ∆(G) = ∅ if and only if ∣G∣ ≤ 2, whence we will always assume that
∣G∣ ≥ 3.

Lemma 3.2 Let G be a ûnite abelian group with ∣G∣ ≥ 3.
(i) For A ∈ B(G) the following statements are equivalent.

(a) ρ(L(A)) = D(G)/2.
(b) _ere are k, ℓ ∈ N, and U1 , . . . ,Uk ,V1 , . . . ,Vℓ ∈ A(G) with ∣U1∣ = ⋅ ⋅ ⋅ =

∣Uk ∣ = D(G), ∣V1∣ = ⋅ ⋅ ⋅ = ∣Vℓ ∣ = 2 such that A = U1 ⋅ ⋅ ⋅Uk = V1 ⋅ ⋅ ⋅Vℓ .
(ii) For a subset G0 ⊂ G the following statements are equivalenṫ:

(a) G0 = supp(A) for some A ∈ B(G) with ρ(L(A)) = D(G)/2.
(b) G0 = −G0 and for every g ∈ G0 there is some A ∈ A(G0) with g ∣A and

∣A∣ = D(G).
(iii) ∆∗ρ(G) = {min∆(G0) ∣ G0 = supp(A) for some A ∈ B(G) with ρ(L(A)) =

D(G)/2}.

Remark If U1 , . . . ,Um ∈ A(G) with ∣U1∣ = ⋅ ⋅ ⋅ = ∣Um ∣ = D(G), then obviously we
obtain an equation of the form U1(−U1) ⋅ ⋅ ⋅Um(−Um) = V1 ⋅ ⋅ ⋅VmD(G) with ∣Vi ∣ = 2
for all i ∈ [1,mD(G)]. But there are also equations U1 ⋅ ⋅ ⋅Uk = V1 ⋅ ⋅ ⋅Vℓ with all
properties as in (i) (b) and with k odd [12].

Proof (i) (a)⇒(b). We set L = L(A) and suppose that ρ(L) = D(G)/2. If A = 0mC,
with m ∈ N0 and C ∈ B(G ∖ {0}), then

D(G)

2
=

max L
min L

=
m +maxL(C)
m +minL(C)

≤
maxL(C)
minL(C)

≤
D(G)

2
,

whence m = 0. Suppose that U1 ⋅ ⋅ ⋅Uk = A = V1 ⋅ ⋅ ⋅Vℓ with k = minL(A), ℓ =
maxL(A), and U1 , . . . ,Uk ,V1 , . . . ,Vℓ ∈ A(G). _en ρ(L) = ℓ/k = D(G)/2 and

2ℓ ≤
ℓ
∑
i=1

∣Vi ∣ = ∣A∣ =
k
∑
i=1

∣U i ∣ ≤ kD(G).

_is implies that ∣A∣ = 2ℓ = kD(G), ∣V1∣ = ⋅ ⋅ ⋅ = ∣Vℓ ∣ = 2, and ∣U1∣ = ⋅ ⋅ ⋅ = ∣Uk ∣ = D(G).
(b)⇒ (a). Suppose that A = U1 ⋅ ⋅ ⋅Uk = V1 ⋅ ⋅ ⋅Vℓ , where U1 , . . . ,Uk ,V1 , . . . ,Vℓ are

as in (b). _en we infer that minL(A)D(G) ≤ kD(G) = ∣A∣ = 2ℓ ≤ 2maxL(A) and
hence

D(G)

2
≤

maxL(A)
minL(A)

= ρ(L(A)) ≤
D(G)

2
.

(ii) (a)⇒ (b). _is follows from (i).
(b)⇒ (a). We set G0 = {g1 ,−g1 , . . . , gk ,−gk}. For every i ∈ [1, k], let A i ∈ A(G0)

with g i ∣A i and ∣A i ∣ = D(G), and set A = ∏
k
i=1(−A i)A i . _en supp(A) = G0 and

ρ(L(A)) = D(G)/2.
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(iii) Since for every A ∈ B(G) we have [[A]] = B(supp(A)), the assertion follows
from (2.4).

Corollary 3.3 Let G be a ûnite abelian group with ∣G∣ ≥ 3.
(i) ∆∗ρ(G) ⊂ ∆ρ(G) ⊂ {d ∈ N ∣ d divides some d′ ∈ ∆∗ρ(G)}.
(ii)

max∆ρ(G) = max∆∗ρ(G) = max{min∆(G0) ∣ G0

= supp ((−U)U) ,U ∈ A(G0) with ∣U ∣ = D(G)}.

Proof (i) SinceB(G) is ûnitely generated, this follows from Lemma 2.4.
(ii) _e ûrst equality follows from (i). _en Lemma 3.2 (iii) implies that

max∆∗ρ(G) = max{min∆(G0) ∣ G0 = supp(A)
for some A ∈ B(G) with ρ(L(A)) = D(G)/2}.

Let A ∈ B(G) with G0 = supp(A) and ρ(L(A)) = D(G)/2. _en, by Lemma 3.2,
G0 = −G0 and A = U1 ⋅ ⋅ ⋅Uk with U1 , . . . ,Uk ∈ A(G) and ∣U1∣ = ⋅ ⋅ ⋅ = ∣Uk ∣ = D(G).
_en G1 = supp((−U1)U1) ⊂ G0 and min∆(G0) ≤ min∆(G1). _us the assertion
follows.

Let G be a ûnite abelian group and let g ∈ G with ord(g) = n ≥ 2. For every
sequence S = (n1g) ⋅ ⋅ ⋅ (nℓ g) ∈ F(⟨g⟩), where ℓ ∈ N0 and n1 , . . . , nℓ ∈ [1, n], we
deûne its g-norm ∥S∥g =

n1+⋅⋅⋅+nℓ
n . Note that, σ(S) = 0 implies that n1 + ⋅ ⋅ ⋅ + nℓ ≡ 0

mod n whence ∥S∥g ∈ N0.

Lemma 3.4 Let G be a ûnite abelian group with ∣G∣ ≥ 3 and G0 ⊂ G be a subset.
(i) If −G0 = G0, then min∆(G0) divides gcd{∣U ∣ − 2 ∣ U ∈ A(G0)}.
(ii) If r ≥ 2, (e1 , . . . , er) independent, ord(e i) = n i for all i ∈ [1, r] where n1 ∣ ⋅ ⋅ ⋅ ∣ nr ,

nr > 2, e0 = e1 + ⋅ ⋅ ⋅ + er , and G0 = {e1 ,−e1 , . . . , er ,−er , e0 ,−e0}, then

min∆(G0) = 1.

(iii) If ⟨G0⟩ = ⟨g⟩ for some g ∈ G0 and ∆(G0) /= ∅, then

min∆(G0) = gcd{∥V∥g − 1 ∣ V ∈ A(G0)}.

Proof (i) If U = g1 ⋅ ⋅ ⋅ gℓ ∈ A(G0), then (−U)U = ∏
ℓ
i=1 ((−g i)g i) whence {2, ℓ} ⊂

L((−U)U) and so gcd ∆(G0) divides ℓ − 2.
(ii) Since e0 = e1 + ⋅ ⋅ ⋅ + er , we have ord(e0) = nr > 2. We distinguish two cases.

First, suppose that n1 > 2. _en W = enr−1
0 e1 ⋅ ⋅ ⋅ er−1(−er)nr−1 ∈ A(G0), and

W2 = enr
0 ⋅ (−er)nr ⋅ (enr−2

0 e21 ⋅ ⋅ ⋅ e2r−1(−er)nr−2)

is a product of three atoms, whencemin∆(G0) = 1.
Now we suppose that n1 = 2, and let t ∈ [1, r − 1] such that n1 = ⋅ ⋅ ⋅ = nt = 2 and

nt+1 > 2. _en

S1 = e0e1 ⋅ ⋅ ⋅ et(−et+1) ⋅ ⋅ ⋅ (−er) ∈ A(G0) and S2 = enr−1
0 e1 ⋅ ⋅ ⋅ er ∈ A(G0).
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So S2
1 = (e20(−et+1)

2 ⋅ ⋅ ⋅ (−er)2)e21 ⋅ ⋅ ⋅ e2t is a product of t + 1 atoms and

S2
2 = e

nr
0 ⋅ ( enr−2

0 e2t+1 ⋅ ⋅ ⋅ e2r ) ⋅ e21 ⋅ ⋅ ⋅ e2t

is a product of t+2 atoms. _usmin∆(G0) ∣ gcd(t+ 1−2, t+2−2) = 1,which implies
that min∆(G0) = 1.

(iii) See [17, Lemma 6.8.5].

_eorem 3.5 Let H be a transfer Krull monoid over a ûnite abelian group G with
∣G∣ ≥ 3. _en 1 ∈ ∆ρ(H) if and only if G is not cyclic of order 4, 6, or 10.

Proof By (3.1), it is suõcient to prove the assertion for B(G) instead of H. We
distinguish two cases.

Case 1: r(G) ≥ 2. By Corollary 3.3 (i), it is suõcient to prove that 1 ∈ ∆∗ρ(G). For each
prime p dividing ∣G∣, we denote by Gp the Sylow p-subgroup of G. Since r(G) ≥ 2,
there exists a Sylow-p subgroupGp such that r(Gp) ≥ 2. We distinguish two subcases.

Subcase 1.1: there exists a Sylow p-subgroupGp such that r(Gp) ≥ 2 and exp(Gp) ≥ 3.
_en there exists a subgroup H of G with p ∤ ∣H∣ such that G ≅ Gp ⊕ H (clearly,
we may have H = {0}). Let A be an atom of B(G) with length ∣A∣ = D(G). _us
for every g dividing A, there exists a unique pair ( fg , hg) with fg ∈ Gp and hg ∈ H
such that g = fg + hg . Since ⟨supp(A)⟩ = G, there must exist g ∈ supp(A) such
that ord( fg) = exp(Gp). _erefore we can ûnd e2 , . . . , er(Gp) such that Gp = ⟨ fg⟩ ⊕
⟨e2⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨er(Gp)⟩. _ere are group isomorphisms ϕ∶G → G given by ϕ( fg) =

fg + e2 , ϕ(e i) = e i for each i ∈ [2, r(Gp)] and ϕ(h) = h for each h ∈ H, and ψ∶G → G
given by ψ( fg) = fg − e2, ψ(e i) = e i for each i ∈ [2, r(Gp)] and ψ(h) = h for each
h ∈ H. It follows that ϕ(A) and ψ(A) are atoms of length D(G). We consider the set

G0 = supp ((−A)Aϕ((−A)A)ψ((−A)A)) .

Obviously, we have G0 = −G0 and for every a ∈ G0 there is some A′ ∈ A(G0) with
a ∣A′ and ∣A′∣ = D(G). _us, by Lemma 3.2, it is suõcient to prove min∆(G0) = 1.
Since {g ,−g , ϕ(g),ψ(g)} = {g ,−g , g + e2 , g − e2} ⊂ G0 and L(gord(g)(−g)ord(g)) =
{2, ord(g)} and L(gord(g)−2(g + e2)(g − e2)(−g)ord(g)) = {2, ord(g) − 1}, it follows
thatmin∆(G0) ∣ gcd{ord(g)−2, ord(g)−3}. Since ord(g) ≥ exp(Gp) ≥ 3,we obtain
that min∆(G0) = 1.

Subcase 1.2: there is no Sylow p-subgroup Gp such that r(Gp) ≥ 2 and exp(Gp) ≥ 3.
Let Gp be the Sylow p-subgroup with r(Gp) ≥ 2. _en p = 2, G2 is an elementary
2-group, and G ≅ Cr(G)

2 ⊕H, where H is a cyclic subgroup of odd order.
Let A be an atom of B(G) with length ∣A∣ = D(G). _ere exists an element g0 ∈

supp(A) such that ord(g0) is even and hence g0 = f0 + h0, where f0 ∈ G2 ∖ {0} and
h0 ∈ H. We can ûnd e2 , . . . , er(G) with ord(e i) = 2 for each i ∈ [2, r(G)] such that
G2 ≅ ⟨ f0⟩ ⊕ ⟨e2⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨er(G)⟩. _en we can construct two group isomorphisms
ϕ∶G → G by ϕ( f0) = e2, ϕ(e2) = f0, ϕ(e i) = e i for each i ∈ [3, r(G)], and ϕ(h) = h
for each h ∈ H, andψ∶G → G byψ( f0) = f0+e2, ψ(e i) = e i for each i ∈ [2, r(G)], and
ψ(h) = h for each h ∈ H. It follows that ϕ(A) and ψ(A) are atoms of length D(G).

https://doi.org/10.4153/CJM-2017-043-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-043-4


1298 A. Geroldinger and Q. Zhong

We consider the set

G0 = supp ((−A)Aϕ((−A)A)ψ((−A)A)) .

Obviously, we have G0 = −G0 and for every a ∈ G0 there is some A′ ∈ A(G0) with
a ∣A′ and ∣A′∣ = D(G). _us it is suõcient to provemin∆(G0) = 1.

Note that {g0 ,−g0 , ϕ(g0),ψ(g0)} = {g0 ,−g0 , e2+h0 , g0+e2} ⊂ G0. If ord(g0) = 2,
then h0 = 0 and L(g2

0e22(g0 + e2)2) = {2, 3} imply that min∆(G0) = 1. Suppose that
ord(g0) ≥ 4. Since

L(gord(g0)
0 (−g0)ord(g0)) = {2, ord(g0)},

L(gord(g0)−2
0 (g0 + e2)2(−g0)ord(g0)) = {2, ord(g0) − 1},

it follows that min∆(G0) divides gcd{ord(g0) − 2, ord(g0) − 3} = 1.

Case 2: r(G) = 1. Let ∣G∣ = n and g ∈ G with ord(g) = n. First, we suppose
that n is odd. _en gn and (2g)n are atoms of length D(G) = n, and we set G0 =
{g ,−g , 2g ,−2g}. _enG0 = −G0, and for every h ∈ G0 there is some A ∈ A(G0)with
h ∣A and ∣A∣ = D(G). It is suõcient to prove that min∆(G0) = 1. In fact, by Lemma
3.4 (i), we obtain that min∆(G0) divides gcd{∣gn ∣ − 2, ∣gn−2(2g)∣ − 2} = 1.

Now we suppose that n is even and we distinguish two subcases.

Subcase 2.1: n ∉ {4, 6, 10}. It is suõcient to show that 1 ∈ ∆∗ρ(G). We distinguish two
cases.
First, suppose that there exists an odd positive divisor m of n

2 + 1 such that m ≥ 5.
_en gcd(m, n) = 1. Let n = m(t + 1) − 2, where t ≥ 1. _en A1 = (mg)t gm−2,
A2 = (mg)gn−m , A3 = (mg)2t+1gm−4, and A4 = gn are atoms. Since A2

1A2 = A3A4,
we obtain that 1 ∈ ∆({g ,−g ,mg ,−mg}). By the deûnition of ∆∗ρ(G) and Lemma 3.2,
we have that 1 ∈ ∆∗ρ(G) ⊂ ∆ρ(G).

Second, suppose that for every odd positive divisor m of n
2 +1,we havem ≤ 3. _en

n
2 +1 = 2α or n

2 +1 = 3 ⋅2α−1,where α ∈ N. _us n+4 ∈ {2(2α+1), 2(3 ⋅2α−1+1)}. Since
n ∉ {4, 6, 10},we obtain that α ≥ 3. Let g ∈ G with ord(g) = n, and n+4 = 2k,where k
is oddwith k ≥ 9. It follows that gcd(k, n) = 1 and A5 = (kg)gn−k , A6 = (kg)3g2n−3k ,
A7 = gn are atoms. Since A3

5 = A6A7, we have that 1 ∈ ∆({g ,−g , kg ,−kg}).

Subcase 2.2: n ∈ {4, 6, 10}. We must show that 1 /∈ ∆ρ(G). If n ∈ {4, 6}, it is easy to
check ∆ρ(G) = {n − 2}. Suppose that n = 10. Let

G0 = ⋃
A∈A(G) with ∣A∣=n

supp(A) = ⋃
m∈[1,9]

gcd(m ,10)=1

{mg} = {g ,−g , 3g ,−3g}

_en Lemma 3.2 implies that min∆(G0) = min∆∗ρ(G).
By Lemma 2.4(i), we infer that min∆∗ρ(G) = min∆ρ(G). By Lemma 3.4 (iii),

min∆(G0) = gcd{∥V∥g − 1 ∣ V ∈ A(G0)} = 2, which implies that 1 ∉ ∆ρ(G).

Lemma 3.6 Let G = Cm ⊕Cmn with n ≥ 1 andm ≥ 2. A sequence S over G of length
D(G) = m + mn − 1 is a minimal zero-sum sequence if and only if it has one of the
following two forms.
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(i) S = eord(e1)−1
1 ∏

ord(e2)
i=1 (x i e1 + e2), where

(a) {e1 , e2} is a basis of G,
(b) x1 , . . . , xord(e2) ∈ [0, ord(e1) − 1] and x1 + ⋅ ⋅ ⋅ + xord(e2) ≡ 1 mod ord(e1).
In this case, we say that S is of type I(a) or I(b) according to whether ord(e2) = m
or ord(e2) = mn > m.

(ii) S = f sm−1
1 f (n−s)m+є

2 ∏
m−є
i=1 (−x i f1 + f2), where

(a) { f1 , f2} is a generating set for G with ord( f2) = mn and ord( f1) > m,
(b) є ∈ [1,m − 1] and s ∈ [1, n − 1],
(c) x1 , . . . , xm−є ∈ [1,m − 1] with x1 + ⋅ ⋅ ⋅ + xm−є = m − 1,
(d) either s = 1 or m f1 = m f2, with both holding when n = 2, and
(d) either є ≥ 2 or m f1 /= m f2.
In this case, we say that S is of type II.

Proof _e characterization ofminimal zero-sum sequences ofmaximal length over
groups of rank two was done in a series of papers by Gao, Geroldinger, Grynkiewicz,
Reiher, and Schmid. We refer to [16, Main Proposition 7] for the formulation used
above.

_eorem 3.7 Let H be a transferKrull monoid over a ûnite abelian group G. IfG has
rank two, then ∆ρ(H) = {1}.

Proof By (3.1), we may consider B(G) instead of H. Let G = Cm ⊕ Cmn with n ∈
N, m ≥ 2 and let S be a minimal zero-sum sequence of length D(G) over G. By
Corollary 3.3 (ii), it suõces to prove that 1 ∈ ∆(supp((−S)S)). We distinguish two
cases depending on Lemma 3.6.

Case 1: S = eord(e1)−1
1 ∏

ord(e2)
i=1 (x i e1 + e2) is of type I in Lemma 3.6, where (e1 , e2) is a

basis of G.
If x1 = ⋅ ⋅ ⋅ = xord(e2), then ord(e2)x1 ≡ 1 (mod ord(e1)) and hence

gcd(ord(e1), ord(e2)) = 1,

a contradiction. Suppose that ∣{x1 , . . . , xord(e2)}∣ ≥ 2. _en there exists a subsequence
Y = y1 ⋅ ⋅ ⋅ yord(e2) of X = x2

1 ⋅ ⋅ ⋅ x2
ord(e2) such that σ(Y) /≡ 1 (mod ord(e1)). Let

σ(Y) ≡ ord(e1) − a (mod ord(e1)), where a ∈ [0, ord(e1) − 2]. _en

T1 = ea1
ord(e2)
∏
i=1

(y i e1 + e2) and T2 = eord(e1)−2
1

ord(e2)
∏
i=1

(x i e1 + e2)2T−1
1

are two minimal zero-sum sequences with S2 = eord(e1)1 ⋅ T1 ⋅ T2 whence

1 ∈ ∆(supp((−S)S)).

Case 2: S = f sm−1
1 f (n−s)m+є

2 ∏
m−є
i=1 (−x i f1 + f2) is of type II in Lemma 3.6, where

( f ′1 , f2) is a basis with ord( f ′1 ) = m, ord( f2) = mn, and f1 = f ′1 + α f2, α ∈ [1,mn − 1].
Since sm − 1+ (n − s)m + є = nm + є − 1 ≥ nm, we have that 2((n − s)m + є) ≥ mn

or 2(sm − 1) ≥ mn. We distinguish two subcases.
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Subcase 2.1: 2((n − s)m + є) ≥ mn. _en

S2 = f nm
2 ⋅ f 2sm−2

1 f nm−2sm+2є
2

m−є
∏
i=1

(−x i f1 + f2)2 .

It suõces to prove that

W = f 2sm−2
1 f nm−2sm+2є

2

m−є
∏
i=1

(−x i f1 + f2)2

= ( f ′1 + α f2)2sm−2 f nm−2sm+2є
2

2m−2є
∏
i=1

(−y i f ′1 + (1 − αy i) f2),

where y1 ⋅ ⋅ ⋅ y2m−2є = x2
1 ⋅ ⋅ ⋅ x2

m−є is a product of two atoms since this implies that
1 ∈ ∆(supp((−S)S)). Note that ∑i∈[1,2m−2є] y i = 2(∑i∈[1,m−є] x i) = 2m − 2 and
∣W ∣ = mn + 2m − 2 > D(G), whenceW is not an atom.

Suppose that s = 1. _en

W = ( f ′1 + α f2)2m−2 ⋅
2m−2є
∏
i=1

(−y i f ′1 + (1 − αy i) f2) ⋅ f nm−2m+2є
2 .

Let T be an atom dividing W , say

T = ( f ′1 + α f2)r ⋅∏
i∈I

(−y i f ′1 + (1 − αy i) f2) ⋅ f r
′

2

where I ⊂ [1, 2m − 2є], r ≡ ∑i∈I y i (mod m), and α(r − ∑i∈I y i) + ∣I∣ + r′ ≡ 0
(mod nm). If r = ∑i∈I y i , then ∣I∣ + r′ ≥ mn, which implies that I = [1, 2m − 2є] and
r′ = nm − 2m + 2є. _ereforeWT−1 ∣ ( f ′1 + α f2)2m−2−r , a contradiction to ord( f1) =
ord( f ′1 + α f2) > m. _us ∣r −∑i∈I y i ∣ = m.

Now we assume to the contrary that there exist three atoms T1 , T2, and T3 such
that T1T2T3 ∣W , say

T1 = ( f ′1 + α f2)r1 ⋅∏
i∈I1

(−y i f ′1 + (1 − αy i) f2) ⋅ f
r′1
2 ,

T2 = ( f ′1 + α f2)r2 ⋅∏
i∈I2

(−y i f ′1 + (1 − αy i) f2) ⋅ f
r′2
2 ,

T3 = ( f ′1 + α f2)r3 ⋅∏
i∈I3

(−y i f ′1 + (1 − αy i) f2) ⋅ f
r′3
2 .

_en ∣r1−∑i∈I1 y i ∣ = ∣r2−∑i∈I2 y i ∣ = ∣r3−∑i∈I3 y i ∣ = m, a contradiction to r1+r2+r3 ≤
2m − 2 and∑i∈I1 y i +∑i∈I2 y i +∑i∈I3 y i ≤ 2m − 2.

Suppose that s ≥ 2. _en m f1 = m f2 whence αm ≡ m (mod mn). Let T be
an atom dividing W , say T = ( f ′1 + α f2)r ⋅∏i∈I(−y i f ′1 + (1 − αy i) f2) ⋅ f r

′
2 , where

I ⊂ [1, 2m − 2є],
r ≡∑

i∈I
y i (mod m), and α(r −∑

i∈I
y i) + ∣I∣ + r′ ≡ 0 (mod nm).

If r = ∑i∈I y i , then nm ≤ ∣I∣ + r′ ≤ 2m − 2є + nm − 2sm + 2є ≤ nm − 2sm + 2m which
implies that s = 1, a contradiction.

We claim that r −∑i∈I y i ∈ {(2s − 1)m,−m}. If r < ∑i∈I y i , then∑i∈I y i − r = m.
We assume that r > ∑i∈I y i . _en r −∑i∈I y i ∈ {m, . . . , (2s − 1)m}. Since ∣I∣ + r′ ≤
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2m−2є+nm−2sm+2є = nm−2sm+2m and αm ≡ m (mod mn),we have r−∑i∈I y i ∈
{(2s−2)m, (2s−1)m}. If r−∑i∈I y i = (2s−2)m, then ∣I∣+r′ = 2m−2є+nm−2sm+2є
whence T =W , a contradiction. _erefore r −∑i∈I y i ∈ {(2s − 1)m,−m}.

Now we assume to the contrary that there exist three atoms T1 , T2, and T3 such
that T1T2T3 ∣W , say

T1 = ( f ′1 + α f2)r1 ⋅∏
i∈I1

(−y i f ′1 + (1 − αy i) f2) ⋅ f
r′1
2 ,

T2 = ( f ′1 + α f2)r2 ⋅∏
i∈I2

(−y i f ′1 + (1 − αy i) f2) ⋅ f
r′2
2 ,

T3 = ( f ′1 + α f2)r3 ⋅∏
i∈I3

(−y i f ′1 + (1 − αy i) f2) ⋅ f
r′3
2 .

_en there exist two distinct i , j ∈ [1, 3], say i = 1, j = 2, such that r1 − ∑i∈I1 y i =
r2 −∑i∈I2 y i = (2s − 1)m. _us 2sm − 2 ≥ r1 + r2 ≥ 2(2s − 1)m, a contradiction.

Subcase 2.2: 2(sm − 1) ≥ mn. _en 2s ≥ n + 1. _erefore m f1 = m f2, which implies
that αm ≡ m (mod mn) and ord( f1) = mn. Since

S2 = f nm
1 ⋅ f 2sm−nm−2

1 f 2nm−2sm+2є
2

m−є
∏
i=1

(−x i f1 + f2)2 ,

it suõces to prove that

W = f 2sm−nm−2
1 f 2nm−2sm+2є

2

m−є
∏
i=1

(−x i f1 + f2)2

= ( f ′1 + α f2)2sm−nm−2 f 2nm−2sm+2є
2

2m−2є
∏
i=1

(−y i f ′1 + (1 − αy i) f2),

where y1 ⋅ ⋅ ⋅ y2m−2є = x2
1 ⋅ ⋅ ⋅ x2

m−є , is a product of two atoms since this implies that
1 ∈ ∆(supp((−S)S)). Note that

∑
i∈[1,2m−2є]

y i = 2( ∑
i∈[1,m−є]

x i) = 2m − 2,

2sm − nm − 2 < mn, and ∣W ∣ = mn + 2m − 2 > D(G) whenceW is not an atom.
Let T be an atom dividing W , say

T = ( f ′1 + α f2)r ⋅∏
i∈I

(−y i f ′1 + (1 − αy i) f2) ⋅ f r
′

2 ,

where I ⊂ [1, 2m − 2є],

r ≡∑
i∈I

y i (mod m) and α(r −∑
i∈I

y i) + ∣I∣ + r′ ≡ 0 (mod nm).

Suppose that 2s = n + 1. _en

W = ( f ′1 + α f2)m−2 f (n−1)m+2є
2

2m−2є
∏
i=1

(−y i f ′1 + (1 − αy i) f2),
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and we assume to the contrary that there exist three atoms T1 , T2, and T3 such that
T1T2T3 ∣W , say

T1 = ( f ′1 + α f2)r1 ⋅∏
i∈I1

(−y i f ′1 + (1 − αy i) f2) ⋅ f
r′1
2 ,

T2 = ( f ′1 + α f2)r2 ⋅∏
i∈I2

(−y i f ′1 + (1 − αy i) f2) ⋅ f
r′2
2 ,

T3 = ( f ′1 + α f2)r3 ⋅∏
i∈I3

(−y i f ′1 + (1 − αy i) f2) ⋅ f
r′3
2 .

_en there exist two distinct i , j ∈ [1, 3], say i = 1, j = 2, such that r1 − ∑i∈I1 y i =
r2 −∑i∈I2 y i = 0. _us 2nm ≤ ∣I1∣+ r′1 + ∣I2∣+ r′2 < (n − 1)m + 2є + 2m − 2є = nm +m,
a contradiction.

Suppose that 2s ≥ n + 2. Consider the atom T . If r = ∑i∈I y i , then nm ≤ ∣I∣ + r′ ≤
2m − 2є + 2nm − 2sm + 2є ≤ (2n − 2s + 2)m ≤ nm. _erefore I = [1, 2m − 2є] and
r′ = 2nm − 2sm + 2є, which implies that T =W , a contradiction.

We claim that r −∑i∈I y i ∈ {(2s − n − 1)m,−m}. If r < ∑i∈I y i , then∑i∈I y i − r =
m. We assume that r > ∑i∈I y i . _en r − ∑i∈I y i ∈ {m, . . . , (2s − n − 1)m}. Since
∣I∣ + r′ ≤ 2m − 2є + 2nm − 2sm + 2є ≤ (2n − 2s + 2)m and αm ≡ m (mod mn), we
have r −∑i∈I y i ∈ {(2s − n − 2)m, (2s − n − 1)m}. If r −∑i∈I y i = (2s − n − 2)m, then
I = [1, 2m − 2є] and r′ = 2nm − 2sm + 2є, which implies that T =W , a contradiction.
_erefore r −∑i∈I y i ∈ {(2s − n − 1)m,−m}.
Again assume to the contrary that there exist three atoms T1 , T2, and T3 such that

T1T2T3 ∣W , say

T1 = ( f ′1 + α f2)r1 ⋅∏
i∈I1

(−y i f ′1 + (1 − αy i) f2) ⋅ f
r′1
2 ,

T2 = ( f ′1 + α f2)r2 ⋅∏
i∈I2

(−y i f ′1 + (1 − αy i) f2) ⋅ f
r′2
2 ,

T3 = ( f ′1 + α f2)r3 ⋅∏
i∈I3

(−y i f ′1 + (1 − αy i) f2) ⋅ f
r′3
2 .

_en there exist two distinct i , j ∈ [1, 3], say i = 1, j = 2, such that r1 − ∑i∈I1 y i =
r2 −∑i∈I2 y i = (2s− n− 1)m. _us 2sm− nm− 2 ≥ r1 + r2 ≥ 2(2s− n− 1)m and hence
(n + 2)m − 2 ≥ 2sm ≥ (n + 2)m, a contradiction.

_e characterization of all minimal zero-sum sequences over groupsC2⊕C2⊕C2n ,
as given in the next lemma, is due to Schmid [33,_eorem 3.13].

Lemma 3.8 Let G = C2 ⊕ C2 ⊕ C2n with n ≥ 2. _en A ∈ F(G) is a minimal zero-
sum sequence of length D(G) if and only if there exists a basis ( f1 , f2 , f3) of G, where
ord( f1) = ord( f2) = 2 and ord( f3) = 2n, such that A is equal to one of the following
sequences:
(i) f v33 ( f3 + f2)v2( f3 + f1)v1(− f3 + f2 + f1) with v1 , v2 , v3 ∈ N odd, v3 ≥ v2 ≥ v1, and

v3 + v2 + v1 = 2n + 1.
(ii) f v33 ( f3+ f2)v2(a f3+ f1)(−a f3+ f2+ f1)with v2 , v3 ∈ N odd, v3 ≥ v2, v2+v3 = 2n,

and a ∈ [2, n − 1].
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(iii) f 2n−1
3 (a f3 + f2)(b f3 + f1)(c f3 + f2 + f1) with a + b + c = 2n + 1 where a ≤ b ≤ c
and a, b ∈ [2, n − 1], c ∈ [2, 2n − 3] ∖ {n, n + 1}.

(iv) f 2n−1−2v
3 ( f3 + f2)2v f2(a f3 + f1)((1 − a) f3 + f2 + f1) with v ∈ [0, n − 1] and
a ∈ [2, n − 1].

(v) f 2n−2
3 (a f3 + f2)((1 − a) f3 + f2)(b f3 + f1)((1 − b) f3 + f1) with a, b ∈ [2, n − 1]
and a ≥ b.

(vi) (∏
2n
i=1( f3 + d i)) f2 f1 where S =∏2n

i=1 d i ∈ F(⟨ f1 , f2⟩) with σ(S) = f1 + f2.

_eorem 3.9 Let H be a transfer Krull monoid over a group G, where G ≅
C2 ⊕ C2 ⊕ C2n with n ≥ 2. _en ∆ρ(H) = {1}.

Proof By (3.1), we may consider B(G) instead of H. Let S be a minimal zero-
sum sequence of length D(G) over G. By Corollary 3.3 (ii), it suõces to prove that
1 ∈ ∆(supp((−S)S)). We distinguish ûve cases induced by the structural description
given by Lemma 3.8, and use Lemma 3.4 (i) without further mention.

Case 1: S = f v33 ( f3 + f2)v2(a f3 + f1)(−a f3 + f2 + f1)with a ∈ [1, n− 1] as in Lemma 3.8
(i) or (ii).

Since

W = f 2n−1
3 ( f3 + f2)(a f3 + f1)(−a f3 + f2 + f1) ∈ A(supp((−S)S))

W2 = f 2n3 ⋅ f 2n−2
3 ( f3 + f2)2 ⋅ (a f3 + f1)2(−a f3 + f2 + f1)2 ,

we obtain that 1 ∈ ∆(supp((−S)S)).

Case 2: S = f 2n−1
3 (a f3 + f2)(b f3 + f1)(c f3 + f2 + f1) as in Lemma 3.8 (iii). Suppose

that c ≥ n + 2. _en S2 = f 2n3 ⋅ f 2n−2a
3 (a f3 + f2)2 ⋅ f 2a−2

3 (b f3 + f1)2(c f3 + f2 + f1)2,
where f 2n−2a

3 (a f3 + f2)2 and f 2a−2
3 (b f3 + f1)2(c f3 + f2 + f1)2 are atoms, and hence

1 ∈ ∆( supp((−S)S)) .
Suppose that c ≤ n − 1. _en

W1 = (− f3)2a(a f3 + f2)2 ,

W2 = (− f3)2b(b f3 + f1)2 ,

W3 = (− f3)2c(c f3 + f2 + f1)2 ,
W = (− f3)(a f3 + f2)(b f3 + f1)(c f3 + f2 + f1)

are atoms with W1W2W3 =W2 ⋅ ((− f3)2n)2 whence 1 ∈ ∆(supp((−S)S)).

Case 3: S = f 2n−1−2v
3 ( f3 + f2)2v f2(a f3 + f1)((1− a) f3 + f2 + f1) as in Lemma 3.8 (iv).

_en { f3 ,− f3 , f2 , a f3 + f1 , (1 − a) f3 + f2 + f1} ⊂ supp((−S)S). Since

W = (− f3) f2(a f3 + f1)((1 − a) f3 + f2 + f1)

is an atom of length 4, we have that min∆(supp((−S)S)) ∣ 2.
SettingW1 = (a f3 + f1)2(− f3)2a andW2 = ((1− a) f3 + f1 + f2)2 f 2a−2

3 , we observe
thatW1W2( f2)2 =W2( f3(− f3))2a−2. _ereforemin∆(supp((−S)S)) ∣ 2a− 3, which
implies that min∆(supp((−S)S)) = 1.
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Case 4: S = f 2n−2
3 (a f3+ f2)((1−a) f3+ f2)(b f3+ f1)((1−b) f3+ f1) as in Lemma 3.8 (v).

Since (− f3)(a f3 + f2)((1 − a) f3 + f2) is an atom of length 3 over supp((−S)S), we
have that 1 ∈ ∆(supp((−S)S)).

Case 5: S = (∏
2n
i=1( f3 + d i)) f2 f1 with T = ∏

2n
i=1 d i and σ(T) = f1 + f2 as in Lem-

ma 3.8 (vi). Since σ(T) /= 0, we have ∣ supp(T)∣ ≥ 2, say d1 /= d2. If d1 + d2 ∈ { f1 , f2},
then ( f3 + d1)(− f3 + d2)(d1 + d2) is an atom of length 3 over supp((−S)S), which
implies that 1 ∈ ∆(supp((−S)S)). If d1 + d2 = f1 + f2, then W1 = ( f3 + d1)(− f3 +
d2) f1 f2 and W2 = ( f3 + d1)

2(− f3 + d2)
2 are atoms with W2

1 = W ⋅ f 21 ⋅ f 22 whence
1 ∈ ∆(supp((−S)S)).

Lemma 3.10 Let G be a ûnite abelian group with rank r(G) ≥ 2 and exp(G) ≥ 3,
and let U ∈ A(G) with ∣U ∣ = D(G). If there exist independent elements e1 , . . . , et with
t ≥ 2 and an element g such that {e1 , . . . , et , g} ⊂ supp(U) and ag = k1e1 + ⋅ ⋅ ⋅ + ktet
for some a ∈ [1, ord(g) − 1] ∖ {

ord(g)
2 } and with k i ∈ [1, ord(e i) − 1] for all i ∈ [1, t],

then min∆(supp((−U)U)) = 1. In particular, if supp(U) contains a basis of G, then
min∆(supp((−U)U)) = 1.

Proof Let (e1 , . . . , et) be independent with t ≥ 2 and let g ∈ G be such that

{e1 , . . . , et , g} ⊂ supp(U)

and ag = k1e1 + ⋅ ⋅ ⋅ + ktet for some a ∈ [1, ord(g) − 1] ∖ {
ord(g)

2 } and with k i ∈
[1, ord(e i) − 1] for every i ∈ [1, t].

Now we assume that a ∈ [1, ord(g) − 1] ∖ {
ord(g)

2 } is minimal such that ag ∈

⟨e1 , . . . , et⟩, which implies that a ∣ ord(g) and hence a ∈ [1, ⌊ ord(g)
2 ⌋ − 1]. For every

i ∈ [1, t], we replace e i by −e i , if necessary, in order to obtain k i ≤ ord(e i)/2. _us
we obtain that {e1 , . . . , et} ⊂ supp((−U)U) such that ag = k1e1 + ⋅ ⋅ ⋅ + ktet with
k i ∈ [1, ⌊ord(e i)/2⌋] for every i ∈ [1, t]. Since a /=

ord(g)
2 , there exists i ∈ [1, t], say

i = 1, such that k1 /= ord(e1)/2. Now we distinguish two cases.

Case 1: For all i ∈ [1, t], we have k i /= ord(e i)/2. _en, by theminimality of a,

W1 = gaeord(e1)−k1
1 eord(e2)−k2

2 ∏
i∈[3,t]

(−e i)k i ,

W2 = g2aeord(e1)−2k1
1 eord(e2)−2k2

2 ∏
i∈[3,t]

(−e i)2k i

are atoms over supp((−U)U). Since W2
1 = W2 ⋅ eord(e1)1 ⋅ eord(e2)2 , we infer that 1 ∈

∆(supp((−U)U)), which implies that min∆(supp((−U)U)) = 1.

Case 2: _ere exists i ∈ [2, t] such that k i = ord(e i)/2. A�er renumbering, if nec-
essary, there exists t0 ∈ [1, t − 1] such that k i /= ord(e i)/2 for every i ∈ [1, t0] and
k i = ord(e i)/2 for every i ∈ [t0 + 1, t]. _en

V1 = ga ∏
i∈[1,t]

(−e i)k i and V2 = gaeord(e1)−k1
1 ∏

i∈[2,t]
(−e i)k i
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are atoms over supp((−U)U). Since

V 2
1 = g2a

∏
i∈[1,t0]

(−e i)2k i ⋅ ∏
i∈[t0+1,t]

(−e i)ord(e i) ,

V 2
2 = g2aeord(e1)−2k1

1 ∏
i∈[2,t0]

(−e i)2k i ⋅ ∏
i∈[t0+1,t]

(−e i)ord(e i) ⋅ eord(e1)1 ,

and g2a∏i∈[1,t0](−e i)
2k i , g2aeord(e1)−2k1

1 ∏i∈[2,t0](−e i)
2k i are atoms, we infer that

min∆(supp((−U)U)) ∣ gcd(1 + t − t0 − 2, 1 + t − t0 + 1 − 2)

whencemin∆( supp((−U)U)) = 1.
To show the in particular part, let {e1 , . . . , et} ⊂ supp(U) be a basis ofG, and note

that t ≥ r(G) by [17, Lemma A.6]. For each i ∈ [1, t], we set

I i = { g ∈ supp(U) ∣ g ∈ ⟨e i⟩}

and Ti =∏g∈I i g
vg(U). _enU = T1 ⋅ ⋅ ⋅TtT ,where 1 /= T =∏g∈supp(U)∖⋃i∈[1,t] I i g

vg(U).
_erefore for every g ∈ supp(T), there exists a subset J ⊂ [1, t] with ∣J∣ ≥ 2 such that
g = ∑ j∈J k je j , where k j ∈ [1, ord(e j) − 1] for each j ∈ J. If ord(g) /= 2 for some
g ∈ supp(T), then the assumptions of themain case hold whence

min∆(supp((−U)U)) = 1.

Now suppose that ord(g) = 2 for each g ∈ supp(T). _en σ(T1) ⋅ ⋅ ⋅ σ(Tt)σ(T) is
an atom, ord(σ(T)) = 2, and σ(Ti) ∈ ⟨e i⟩ for each i ∈ [1, t]. It follows that σ(Ti) =
ord(e i)

2 e i for each i ∈ [1, t], ∣T ∣ = 1, and σ(T) = ord(e1)
2 e1 + ⋅ ⋅ ⋅ + ord(e t)

2 et . Since
∣U ∣ = D(G) ≥ D∗(G) ≥ 1+∑t

j=1(ord(e j)− 1) by [17, Proposition 5.1.7], we have ∣Tj ∣ =

ord(e j)− 1 for each i ∈ [1, t]. Since exp(G) ≥ 3, wemay assume that ord(e1) ≥ 3 a�er
renumbering if necessary. Since e1 ∈ supp(T1) and T1 is a zero-sum free sequence over
⟨e1⟩ of length ord(e1) − 1, we obtain σ(T1) = −e1 = ord(e1)

2 e1 by [17,_eorem 5.1.10],
a contradiction to ord(e1) ≥ 3.

_eorem 3.11 Let H be a transfer Krull monoid over a group G where G = Cr
pk with

k, r ∈ N, r ≥ 2, and p ∈ P such that pk ≥ 3. _en ∆ρ(H) = {1}.

Proof By (3.1), it is suõcient to consider B(G) instead of H. By Corollary 3.3 (ii),
we only need to show that min∆(supp((−U)U)) = 1 for every atom U ∈ A(G)
of length D(G). Let U be an atom of length D(G). _en ⟨supp(U)⟩ = G by [17,
Proposition 5.1.4], and hence supp(U) contains a basis ofG by [17, Lemma A.7]. Now
Lemma 3.10 implies that min∆(supp((−U)U)) = 1.

If G is an elementary 2-group of rank r ≥ 3, then the hypothesis of Lemma 3.10
never holds true. _us elementary 2-groups need a diòerent approach.

Lemma 3.12 Let G be an elementary 2-group of rank r ≥ 3 and let U ,V ∈ A(G) be
distinct atoms of length D(G). _en 1 ∈ ∆(L(UV 2)).

Proof Since U and V are distinct, there exists an element g ∈ supp(U) ∖ supp(V),
and clearly supp(U) ∖ {g} is a basis of G. We set supp(U) ∖ {g} = {e1 , . . . , er},
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g = e0 = e1 + ⋅ ⋅ ⋅ + er , and then U = e0e1 ⋅ ⋅ ⋅ er . Since {e1 , . . . , er} is a basis of G, V
can be written in the form V = eI1 ⋅ ⋅ ⋅ eIr+1 , where ∅ /= I j ⊂ [1, r] and eI j = ∑i∈I j

e i for
every j ∈ [1, r + 1]. We continue with the following assertion.

Claim _ere exist two distinct k1 , k2 ∈ [1, r+1] such that Ik1 ∩ Ik2 /= ∅, Ik1 ∖ Ik2 /= ∅,
and Ik2 ∖ Ik1 /= ∅.

Proof of Claim First, we choose I, say I = I1, to be maximal in {I j ∣ j ∈ [1, r + 1]}.
Note that e0 /∈ supp(V) and hence I j /= [1, r] for every j ∈ [1, r + 1]. Since I1 ⊂

⋃ j∈[2,r+1] I j , we can choose K ⊂ [2, r + 1] to beminimal such that I1 ⊂ ⋃ j∈K I j . _en
I ∩ Ik /= ∅ and I ∖ Ik /= ∅ for all k ∈ K. If there exists k ∈ K such that Ik ∖ I1 /= ∅,
then we are done. Otherwise, Ik ⊂ I1 for all k ∈ K. By themaximality of I1, we know
that ∣K∣ ≥ 2 and by theminimality of K, we have that Ik1 ∖ Ik2 /= ∅ and Ik2 ∖ Ik1 /= ∅
for every two distinct k1 and k2. Assume to the contrary that Ik1 ∩ Ik2 = ∅ for every
distinct k1 and k2. _us eI1 ∏k∈K eIk is an atom, a contradiction to ∣V ∣ = D(G).

A�er renumbering if necessary, we suppose that I1 ∩ I2 /= ∅, I1 ∖ I2 /= ∅, and
I2 ∖ I1 /= ∅. We deûne

W1 = eI1 eI2 ∏
i∈(I1∪I2)∖(I1∩I2)

e i , W2 = e0eI1 eI2 ∏
i/∈(I1∪I2)∖(I1∩I2)

e i ,

and observe that W1 ,W2 are atoms. Since

UV 2 = U ⋅ e2I1 ⋅ e
2
I2 ⋅ ∏

j∈[3,r+1]
e2I j

=W1 ⋅W2 ⋅ ∏
j∈[3,r+1]

e2I j
,

we obtain that 1 ∈ ∆(L(UV 2)).

_eorem 3.13 Let H be a transfer Krull monoid over an elementary 2-group G of
rank r ≥ 2. _en ∆∗ρ(H) = ∆ρ(H) = {1, r − 1}.

Proof By (3.1), it is suõcient to consider B(G) instead of H. Let (e1 , . . . , er) be a
basis of G and S = e0e1 ⋅ ⋅ ⋅ er ∈ A(G), where e0 = e1 + ⋅ ⋅ ⋅ + er . _en

∆(supp(S)) = {r − 1}

and hence r − 1 ∈ ∆∗ρ(G). By _eorem 3.5, we have that ∆ρ(G) ⊃ ∆∗ρ(G) ⊃ {1, r − 1}.
_us it remains to prove that ∆ρ(G) ⊂ {1, r − 1}.

Sincemax∆ρ(G) ≤ max∆(G) = r − 1 by [17,_eorem 6.7.1], wemay suppose that
r ≥ 4. Assume to the contrary that there exists d ∈ ∆ρ(G) ∖ {1, r − 1}. _en for every
k ∈ N there is a Bk ∈ B(G) such that ρ(L(Bk)) = D(G)/2 and L(Bk) is an AAP
with diòerence d and length ℓ ≥ k. Lemma 3.2 (i) implies that Bk is a product of
atoms having length D(G). We ûx k = ∣{A ∈ A(G) ∣ ∣A∣ = D(G)}∣ + 1. If Bk = U t

with t ∈ N for some U ∈ A(G) with ∣U ∣ = D(G), then r − 1 = min∆(supp(U)) =
min∆(supp(Bk)) ∣ d, a contradiction. Otherwise, the choice of k implies that there
are distinct atoms U ,V ∈ A(G) with ∣U ∣ = ∣V ∣ = D(G) such that U2V ∣Bk . By Lem-
ma 3.12, 1 ∈ ∆(L(U2V)) ⊂ ∆(L(Bk)) and hence d ∣ 1, a contradiction.
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_eorem 3.14 Let H be a transfer Krull monoid over a ûnite cyclic group G of order
n ≥ 3. _en n − 2 ∈ ∆∗ρ(H) = ∆ρ(H).

Proof By (3.1), it is suõcient to considerB(G) instead of H. Since n − 2 ∈ ∆∗ρ(G) ⊂

∆ρ(G), it remains to verify that ∆ρ(G) ⊂ ∆∗ρ(G).
Let d ∈ ∆ρ(G). _en for every k ∈ N there is a Bk ∈ B(G) such that ρ(L(Bk)) =

D(G)/2 and L(Bk) is an AAP with diòerence d and length ℓ ≥ k. _us

gcd ∆(L(Bk)) = d .
We set k = n(n − 1) + 1, G0 = supp(Bk), and claim that min∆(G0) = gcd ∆(L(Bk)),
which implies that d = min∆(G0) ∈ ∆∗ρ(G).
Clearly,min∆(G0) ∣ d, and hence it remains to prove that d ∣ min∆(G0). By Lem-

ma 3.2, Bk is a product of atoms having length D(G) = n. Note that ∣ supp(U)∣ = 1
for all atoms of length n and ∣{U ∈ A(G) ∣ ∣U ∣ = n}∣ ≤ n − 1. _us k = n(n − 1) + 1
implies that Bk is a product of the form Bk = Un+1

1 U2 ⋅ ⋅ ⋅Ur , where r ∈ N, U1 , . . . ,Ur
are atoms of length n, and U1 = gn , where g ∈ G with ord(g) = n.

_en for every atom V ∈ A(G0), we have V ∣ U1 ⋅ ⋅ ⋅Ur and

{n + 1, ∥V∥g + n} ⊂ L(Un
1 V).

_erefore d ∣ ∥V∥g − 1 for all V ∈ A(G0) whence d divides
gcd{∥V∥g − 1 ∣ V ∈ A(G0)}.

Sincemin∆(G0) = gcd{∥V∥g − 1 ∣ V ∈ A(G0)} by Lemma 3.4 (iii), the claim follows.

Corollary 3.15 We have ∆ρ(C4) = {2}, ∆ρ(C5) = {1, 3}, ∆ρ(C6) = {4}, ∆ρ(C7) =
{1, 5}, ∆ρ(C8) = {1, 6}, ∆ρ(C9) = {1, 7}, ∆ρ(C10) = {2, 8}, ∆ρ(C11) = {1, 9},
∆ρ(C12) = {1, 10}.

Proof Let G be a cyclic group of order ∣G∣ = n ∈ [4, 12]. By _eorem 3.14, we infer
that n − 2 ∈ ∆∗ρ(G) = ∆ρ(G). By _eorem 3.5, we have 1 ∈ ∆ρ(G) if and only if
n ∉ {4, 6, 10}. Lemma 3.2 shows that

∆∗ρ(G) = {min∆(G0) ∣ G0 = −G0 and ord(g) = n for every g ∈ G0} .

Nowwe use Lemma 3.4 (iii). If n ∈ {4, 6}, then for some g ∈ G with ord(g) = nwe get
∆∗ρ(G) = {min∆({g ,−g}) = {n−2} . If n = 10, then for some g ∈ G with ord(g) = n
we get

∆∗ρ(G) = {min∆({g ,−g}),min∆({3g ,−3g}),min∆({g ,−g , 3g ,−3g})} = {2, 8}.

Suppose that n ∈ [4, 12] ∖ {4, 6, 10]. Let G0 ⊂ G be a subset consisting of elements
of order n and with G0 = −G0. If ∣G0∣ = 2, then min∆(G0) = n − 2. Suppose that
∣G0∣ > 2. _en there is some g ∈ G0 and some k ∈ N with gcd(k, n) = 1 such that
{g ,−g , kg ,−kg} ⊂ G0. _en min∆(G0) divides min∆({g ,−g , kg ,−kg}) and, by
going through all cases and using Lemma 3.4 (iii), we obtain that

min∆({g ,−g , kg ,−kg}) = 1.

_us the assertion follows.
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In the next lemma we need some basics from the theory of continued fractions
(see [29] for some background; in particular, we use [29,_eorems 2.1.3, 2.1.7]).

Lemma 3.16 Let G be a cyclic group with order n > 3, g ∈ G with ord(g) = n, and
a ∈ [2, n − 2] with gcd(a, n) = 1. Let [a0 , . . . , am] be the continued fraction expansion
of n/a with odd length, i.e., m is even.
(i) min∆({g , ag}) = gcd(a1 , a3 , . . . , am−1) < n−2 andmin∆({g ,−g , ag ,−ag}) ∈

∆∗ρ(G).
(ii) If a < n/2, then min∆({g , ag ,−ag ,−g}) = gcd(a0 − 1, a1 , . . . , am−1 , am − 1).

Note that this also holds for the continued fraction expansion of n/a with even
length and hence this holds for the regular continued fraction expansion of n/a,
i.e., am > 1.

Proof (i) For the ûrst part, see [7, _eorem 2.1] or [14, _eorem 1]. For the second
part, since gn and (ag)n are two atoms of length D(G), we obtain

ρ(L(gn(−g)n(ag)n(−ag)n)) = D(G)/2,

which implies min∆({g ,−g , ag ,−ag}) ∈ ∆∗ρ(G) by Lemma 3.2 (iii).
(ii) Suppose that a < n/2. By Lemma 3.4 (iii), we have

min∆({g , ag ,−ag ,−g}) = gcd{∥V∥g − 1 ∣ V ∈ A({g , ag ,−ag ,−g})}

= gcd{∥V∥g − 1 ∣ V ∈ A({g , ag}) ∪A({g ,−ag})
∪A({−g , ag}) ∪A({−g ,−ag})}

= gcd{∥V∥g − 1 ∣ V ∈ A({g , ag}) ∪A({g ,−ag})}

= gcd{min∆({g , ag}),min∆({g ,−ag})} .

Since the continued fraction of n
n−a with odd length is

⎧⎪⎪
⎨
⎪⎪⎩

[1, a0 − 1, a1 , . . . , am − 1, 1] if am > 1,
[1, a0 − 1, a1 , . . . , am−1 + 1] if am = 1,

(i) implies that min∆({g , ag}) = gcd(a1 , a3 , . . . , am−1) and

min∆({g ,−ag}) =
⎧⎪⎪
⎨
⎪⎪⎩

gcd(a0 − 1, a2 , a4 , . . . , am − 1) if am > 1,
gcd(a0 − 1, a2 , a4 , . . . , am−2) if am = 1.

_erefore, we obtain

min∆({g , ag ,−ag ,−g}) = gcd(min∆({g ,−ag}),
min∆({g , ag})) = gcd(a0 − 1, a1 , . . . , am−1 , am − 1).

_eorem 3.17 Let H be a transfer Krull monoid over a ûnite cyclic group G of order
n ≥ 3. _en the following statements are equivalent.
(i) ∆∗ρ(H) ∖ {1, n − 2} /= ∅.
(ii) _ere is an a ∈ [2, ⌊n/2⌋] with gcd(n, a) = 1 such that

gcd(a0 − 1, a1 , . . . , am−1 , am − 1) > 1,
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where [a0 , a1 , . . . , am] is the regular continued fraction expansion of n/a, i.e.,
am > 1.

Proof By (3.1), it is suõcient to prove the equivalence for B(G) instead of H.
(i)⇒ (ii). Note that for any distinct atoms U ,V of length n with U /= −V , we have

min∆( supp((−U)U(−V)V)) < n − 2

by Lemma 3.16 (i). Since ∆∗ρ(H) ∖ {1, n − 2} /= ∅, there must exist distinct atoms
U ,V of length n such that min∆( supp((−U)U(−V)V)) ∈ ∆∗ρ(G) ∖ {1, n − 2}. Let
U = gn and V = (ag)n , where g ∈ G and a ∈ [2, n − 2] with gcd(n, a) = 1. _en
let G0 = {g , ag ,−g ,−ag}. If a ≥ n

2 , then n − a ≤ n
2 . _us we assume that a ≤ n

2 .
_erefore Lemma 3.16 (ii) implies that gcd(a0 − 1, a1 , . . . , am−1 , am − 1) > 1, where
[a0 , a1 , . . . , am] is the regular continued fraction expansion of n/a.

(ii) ⇒ (i). We set G0 = {g , ag ,−g ,−ag}, where g ∈ G with ord(g) = n. _en
min∆(G0) < n − 2, and Lemma 3.16 (ii) implies that min∆(G0) > 1. It follows that
∆∗ρ(H) ∖ {1, n − 2} /= ∅.

Corollary 3.18 Let G be a cyclic group of order n > 4, and let g ∈ G with ord(g) = n.
(i) If n is even and n − 1 is not a prime, then there is an even d ∈ ∆∗ρ(G)∖ {1, n − 2}.
(ii) If n is even, 3 ∤ n, and n − 3 is not a prime, then there is an even d ∈ ∆∗ρ(G) ∖

{1, n − 2}.
(iii) If n is even and n ≡ 2q (mod q2) for some odd prime q with q2 + 2q ≤ n, then

there is an even d ∈ ∆∗ρ(G) ∖ {1, n − 2}.
(iv) If n is even and n ≡ q (mod 2q + 1) for some odd q with 5q + 2 ≤ n, then there is

an even d ∈ ∆∗ρ(G) ∖ {1, n − 2}.
(v) If n is even with n ∈ [8, 109], then ∆∗ρ(G) = {1, n − 2} if and only if

n ∈ {8, 12, 14, 18, 20, 30, 32, 44, 48, 54, 62, 72, 74, 84, 90,
102, 138, 182, 230, 252, 270, 450, 462, 2844} .

(vi) If n > 5 is odd and n − 1 is a square, then there is an odd d ∈ ∆∗ρ(G) ∖ {1, n − 2}.

Proof Note that if a ∈ [2, n− 2] with gcd(a, n) = 1, then min∆({g , ag ,−g ,−ag}) ∈
∆∗ρ(G) andmin∆({g , ag ,−g ,−ag}) < n − 2 by Lemma 3.16 (i).

(i) Let n = mt + 1 be even with m ∈ [2, n − 2], and set G0 = {g ,mg ,−mg ,−g}.
_en m, t are odd, gcd(m, n) = 1, and m < n/2. Since [t,m] is the regular contin-
ued fraction of n/m, we have that min∆(G0) = gcd(m − 1, t − 1) is even and hence
min∆(G0) ∈ ∆∗ρ(G) ∖ {1, n − 2}.

(ii) If n ≡ 1 (mod 3), then n − 1 is not a prime and hence (i) implies the assertion.
Suppose n ≡ 2 (mod 3) and let n − 3 = m1m2 with 1 < m1 < n − 3. _en there exists
i ∈ [1, 2], say i = 1, such that m1 ≡ 1 (mod 3). SetG0 = {g ,m1g ,−m1g ,−g}. Since n is
even,we obtain that m1 ,m2 are odd and hence ⌊m1

3 ⌋ is even. Since [m2 , ⌊m1
3 ⌋, 3] is the

regular continued fraction of n/m,we have thatmin∆(G0) = gcd(m2−1, ⌊m1
3 ⌋, 2) = 2

by Lemma 3.16 (i) and hencemin∆(G0) ∈ ∆∗ρ(G) ∖ {1, n − 2}.
(iii) Let n = q2 t + 2q be even with m = qt + 1, and set G0 = {g ,mg ,−mg ,−g}.

_en n = qm + q and t ≥ 1 is even. Since [q, t, q] is the regular continued fraction
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of n/m, we have that min∆(G0) = gcd(q − 1, t, q − 1) is even by Lemma 3.16 (i) and
hencemin∆(G0) ∈ ∆∗ρ(G) ∖ {1, n − 2}.

(iv) Let n = (2q + 1)t + q be even with t odd, and set

G0 = {g , (2q + 1)g ,−(2q + 1)g ,−g}.

_en gcd(2q + 1, n) = 1 and 5q + 2 ≤ n implies that 2q + 1 < n/2. Since [t, 2, q] is the
regular continued fraction of n/(2q+1),we have thatmin∆(G0) = gcd(t−1, 2, q−1) =
2 by Lemma 3.16 (i) and hencemin∆(G0) ∈ ∆∗ρ(G) ∖ {1, n − 2}.

(v) _is was done by a computer program.
(vi) Let n = m2 + 1 be odd, and set G0 = {g ,mg ,−mg ,−g}. _en m is even.

Since [m,m] is the regular continued fraction of n/m, we have that min∆(G0) =
gcd(m − 1,m − 1) = m − 1 > 1 is odd by Lemma 3.16 (i) and hence min∆(G0) ∈
∆∗ρ(G) ∖ {1, n − 2}.

Next we discuss an application of _eorem 3.17 to the so-called Characterization
Problem that is at the center of all arithmetical investigations of transfer Krull mo-
noids. It asks whether two ûnite abelian groups G with D(G) ≥ 4 and G′, whose
systems of sets of lengths L(G) and L(G′) coincide, have to be isomorphic (see [15,
§6] for an overview on this topic). It is well known that for every n ≥ 4, the systems
L(Cn) and L(Cn−1

2 ) are distinct and that L(Cn−1
2 ) /⊂ L(Cn) ([21, _eorem 3.5]). If

n ∈ [4, 5], then L(Cn) ⊂ L(Cn−1
2 ) ([21, §4]), but for n ≥ 6 there is no information

available so far. _e results of the present section yield the following corollary.

Corollary 3.19 Let G be a cyclic group of order n ≥ 6. If the equivalent statements in
_eorem 3.17 hold, then L(Cn) /⊂ L(Cn−1

2 ).

Remark Note that Corollary 3.18 shows that the equivalent statements in _eo-
rem 3.17 hold true for inûnitely many n ∈ N.

Proof Assume to the contrary that L(Cn) ⊂ L(Cn−1
2 ). _en ∆ρ(Cn) ⊂ ∆ρ(Cn−1

2 ).
Since ∆ρ(Cn−1

2 ) = {1, n − 2} by _eorem 3.13, we obtain a contradiction to _eo-
rem 3.17.

We end this sectionwith the following conjecture (note, ifG is cyclic of order three
or isomorphic to C2 ⊕ C2, then ∆ρ(G) = {1}).

Conjecture 3.20 Let H be a transfer Krull monoid over a ûnite abelian group G with
∣G∣ > 4. _en ∆ρ(H) = {1} if and only if G is neither cyclic nor an elementary 2-group.

We summarize what follows so far from the results of the present section. Clearly,
one implication of Conjecture 3.20 holds true. Indeed, if G is cyclic or an elementary
2-group with ∣G∣ > 4, then ∆ρ(H) /= {1} by _eorems 3.13 and 3.14. Conversely, for
groups of rank two, and for groups isomorphic either to C2 ⊕ C2 ⊕ C2n or to Cr

pk ,
where n, r ≥ 2, k ≥ 1, and p is a prime with pk ≥ 3, the conjecture holds true by
_eorems 3.7, 3.9, and 3.11 (consequently, the conjecture holds true for all groups G
with ∣G∣ ∈ [5, 47]). In view of our discussion preceding Lemma 3.2 on the state of
the art of the Davenport constant, Conjecture 3.20 might seem to be quite bold, but
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it is consistent with all that we know on the Davenport constant so far. Indeed, let
U ∈ A(G) with ∣U ∣ = D(G). _e goal is to show that min∆( supp((−U)U)) = 1.
By [17, Proposition 5.1.11], supp(U) contains a generating set of G. If it contains a
basis, then we are done by Lemma 3.10. Suppose G is as in (3.2) withD(G) = D∗(G),
r(G) = r > 1, and (e1 , . . . , er) is a basis with ord(e i) = n i for all i ∈ [1, r]. _en

U = en1−1
1 ⋅ ⋅ ⋅ enr−1

r (e1 + ⋅ ⋅ ⋅ + er)
is the canonical example of a minimal zero-sum sequence of length D∗(G). Clearly,
there are minimal zero-sum sequences of diòerent form (as Lemma 3.6 shows for
r = 2) but their support can only be greater than or equal to r(G) + 1 (recall that
r(G) = min{∣G0∣ ∣ G0 ⊂ G is a generating set} by [17, Lemma A.6]). Furthermore,
for subsets G0 ⊂ G1 of G, we have min∆(G1) ≤ min∆(G0). _e combination of
these two facts provides strong support for the above conjecture.

4 Weakly Krull Monoids

_emain goal in this section is to study the set ∆ρ( ⋅ ) for v-noetherian weakly Krull
monoids and for their monoids of v-invertible v-ideals. Our main result is given by
_eorem 4.4.

We start with the local case, namely with ûnitely primary monoids. A monoid
H is said to be ûnitely primary if there are s, α ∈ N and a factorial monoid F =
F××F({p1 , . . . , ps}) such that H ⊂ F with

(4.1) H ∖H× ⊂ p1 ⋅ ⋅ ⋅ psF and (p1 ⋅ ⋅ ⋅ ps)
αF ⊂ H.

In this case s is called the rank of H and α is called an exponent of H. It is well known
[17,_eorems 2.9.2, 3.1.5] that F is the complete integral closure of H, that
(4.2) H has ûnite elasticity if and only if s = 1,

and that

(4.3) H/H× is ûnitely generated if and only if s = 1 and (F× ∶H×) <∞.

To provide some examples of ûnitely primary monoids, we ûrst recall that every
numerical monoid H ⊊ (N0 ,+) is ûnitely generated and ûnitely primary of rank one
with accepted elasticity ρ(H) > 1. Furthermore, if R is a one-dimensional local Mori
domain, R̂ its complete integral closure, and (R ∶ R̂) /= {0}, then its multiplicative
monoid of non-zero elements is ûnitely primary [17, §2.9, 2.10, 3.1]. Note that a ûnitely
primarymonoidH with ρ(H) > 1 is not a transferKrull monoid by [21,_eorem 5.5].

_e following lemma is known for numerical monoids [9,_eorem 2.1], [6, Propo-
sition 2.9].

Lemma 4.1 Let H ⊂ F = F× × F({p}) be a ûnitely primary monoid of rank one
and exponent α, and let v = vp ∶H → N0 denote the homomorphism onto the value
semigroup ofH. Suppose that {v(a) ∣ a ∈ A(H)} = {n1 , . . . , ns}with 1 ≤ n1 < ⋅ ⋅ ⋅ < ns .
_en v(H) ⊂ N0 is a numerical monoid, and we have the following.
(i) ρ(H) = ns/n1, and if F×/H× is a torsion group, then the elasticity is accepted.
(ii) Let d = gcd{n i − n i−1 ∣ i ∈ [2, s]}. _en d ∣ gcd ∆(H) and if ∣F×/H×∣ = 1, then

d = gcd ∆(H).
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Proof If a ∈ A(H), then pαF ⊂ H (see (4.1)) implies v(a) ≤ 2α − 1, and hence
ns ≤ 2α − 1. Since N≥α ⊂ v(H), it follows that v(H) ⊂ N0 is a numerical monoid.

(i) To show that ρ(H) ≤ ns/n1, let a ∈ H be given and suppose that a = u1 ⋅ ⋅ ⋅uk =
v1 ⋅ ⋅ ⋅ vℓ where k, ℓ ∈ N and u1 , . . . , uk , v1 , . . . , vℓ ∈ A(H). _en

ℓn1 ≤
ℓ
∑
i=1

v(v i) = v(a) =
k
∑
i=1

v(u i) ≤ kns ,

whence ℓ/k ≤ ns/n1 and thus ρ(L(a)) ≤ ns/n1.
To show that ρ(H) = ns/n1, let u1 = є1pn1 , u2 = є2pns ∈ A(H)with є1 , є2 ∈ F×, and

let s ∈ N0 such that sn1ns ≥ α. _en for every k > s we have

ukn1
2 = єkn1

2 pkn1ns = (єkn1
2 є−(k−s)ns

1 psn1ns)(є1pn1)(k−s)ns

= (єkn1
2 є−(k−s)ns

1 psn1ns)u(k−s)ns
1 .

_us ρ(L(ukn1
2 )) =

max L(ukn1
2 )

min L(ukn1
2 )

≥ 1+(k−s)ns
kn1

tends to ns/n1 as k tends to inûnity.

Now suppose that F×/H× is a torsion group, and let u1 , u2 be as above. _en there
is a k0 ∈ N such that (єn1

2 є−ns
1 )k0 ∈ H×. _en the above calculation with k = k0 and

s = 0 shows that ρ(L(uk0n1
2 )) = ns/n1.

(ii) For every i ∈ [1, s] there are t i ∈ N0 such that n i = n1 + t id. Since pαF ⊂ H, it
follows that gcd(n1 , d) = 1. Let a ∈ H and consider two factorizations

a =
s
∏
i=1

k i

∏
j=1

u i , j =
s
∏
i=1

ℓ i

∏
j=1

v i , j ,

where all u i , j , v i , j are (not necessarily distinct) atoms with v(u i , j) = n i = v(v i , j) for
all i ∈ [1, s]. _en v(a) = ∑s

i=1 k in i = ∑
s
i=1 ℓ in i = ∑

s
i=1 ℓ i(n1 + t id), whence

n1

s
∑
i=1

(ℓ i − k i) = d
s
∑
i=1

(k i − ℓ i)t i ,

and this implies that d divides∑s
i=1(ℓ i − k i). _us d divides gcd ∆(H) = min∆(H).

Now suppose that F× = H×. We show that gcd ∆(H) divides n i − n i−1 for every
i ∈ [2, s], which implies that gcd ∆(H) divides d and equality follows. Let i ∈ [2, s].
_en there are atoms u i−1 = є i−1pn i−1 and u i = є i pn i with є i−1 , є i ∈ F× = H×. _en

un i−1
i = (є i pn i)

n i−1
= (є i−1pn i−1)

n i
(єn i−1

i є−n i
i−1 ) = un i

i−1η,

where η = єn i−1
i є−n i

i−1 ∈ H×. _us gcd ∆(H) divides n i − n i−1.

We continuewith simple examples showing that the elasticity need not be accepted
if F×/H× fails to be a torsion group, and that d need not be equal to min∆(H).

Example 4.2
(1) Let H ⊂ F be a ûnitely primary monoid as in (4.1), and generated by

{є1p2 , є2p4 , єp3 ∣ є ∈ F×},

where є1 , є2 ∈ F× with ord(є1) = ∞ and ord(є2) < ∞. We assert that ρ(H) is not
accepted.
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First, we observe that A(H) = {є1p2 , є2p4 , єp3 ∣ є ∈ F×}. _us Lemma 4.1 (i)
implies that ρ(H) = 2. For every b ∈ H, we have v(b) ≤ 4minL(b) and v(b) ≥
2maxL(b),which imply that ρ(L(b)) ≤ 2. Assume to the contrary that ρ(L(b)) = 2.
_en v(b) = 4minL(b) = 2maxL(b), which implies that b = (є2p4)min L(b) =

(є1p2)max L(b). It follows that єmin L(b)
2 = є2 min L(b)

1 , a contradiction to our assump-
tion on ord(є1) and ord(є2). _erefore ρ(L(b)) < 2 for all b ∈ H, whence ρ(H) is
not accepted.

(2) Let F× = {є} with є2 = 1, and H = ⟨єp3 , p5⟩ ⊂ F = F× ×F({p}). _en
min∆(H) = 4 > 2 = d, where d as in Lemma 4.1 (ii).

Lemma 4.3 (i) LetH be a ûnitely primarymonoidwith accepted elasticity ρ(H) >
1. _en ∆∗ρ(H) = ∆ρ(H) = ∆1(H) = {min∆(H)}.

(ii) Let H = H1 × ⋅ ⋅ ⋅ ×Hn , where n ∈ N and H i is a ûnitely primary monoid with ac-
cepted elasticity andmin∆(H i) = d i for all i ∈ [1, n]. Suppose that ρ(H1) = ⋅ ⋅ ⋅ =
ρ(Hs) = ρ(H) > ρ(H i) for all i ∈ [s + 1, n]. _en min∆ρ(H) = min∆∗ρ(H) =

gcd(d1 , . . . , ds),max∆ρ(H) = max∆∗ρ(H), and

{gcd{d i ∣ i ∈ I} ∣ ∅ /= I ⊂ [1, s]}

= ∆∗ρ(H) ⊂ ∆ρ(H) ⊂ {d ∈ N ∣ d divides some d′ ∈ ∆∗ρ(H)} .

Proof (i) By Lemmas 2.2 and 2.4, we have

{min∆([[a]]) ∣ a ∈ H with ρ(L(a)) = ρ(H)} = ∆∗ρ(H) ⊂ ∆ρ(H) ⊂ ∆1(H).

If a ∈ H with ρ(L(a)) = ρ(H) > 1, then a ∈ H ∖ H× and hence [[a]] = H. _us it
remains to show that ∆1(H) = {min∆(H)}, which follows from [17,_eorem 4.3.6].

(ii) Without restriction we may suppose that H is reduced. _en also H1 , . . . ,Hn
are reduced. We use Lemma 2.6. Note that H1 , . . . ,Hn need not be ûnitely generated,
whence Lemma 2.4 (iii) cannot be applied to the present setting.

Let a = a1 ⋅ ⋅ ⋅ an ∈ H with a i ∈ H i for all i ∈ [1, n]. If ρ(L(a)) = ρ(H), then as+1 =
⋅ ⋅ ⋅ = an = 1 and [[a]] = ∏i∈[1,s],a i /=1 H i . For every i ∈ [1, s], (i) implies that ∆ρ(H i) =

{d i}. If ∅ /= I ⊂ [1, s], then [17, Proposition 1.4.5] implies that gcd ∆(∏i∈I H i) =
gcd⋃i∈I ∆(H i), and clearly

gcd ⋃
i∈I
∆(H i) = gcd{gcd ∆(H i) ∣ i ∈ I} = gcd{d i ∣ i ∈ I}.

_us we obtain that (the ûrst equality follows from Lemma 2.2 (ii))

∆∗ρ(H) = {gcd ∆([[a]]) ∣ a ∈ H with ρ(L(a)) = ρ(H)}

= {gcd ∆(∏
i∈I

H i) ∣ ∅ /= I ⊂ [1, s]}

= {gcd{d i ∣ i ∈ I} ∣ ∅ /= I ⊂ [1, s]} .

Since ∆ρ(H) = ∆ρ(H1 × ⋅ ⋅ ⋅ × Hs), min∆(H1 × ⋅ ⋅ ⋅ × Hs) = gcd(d1 , . . . , ds), and
min∆∗ρ(H) = gcd(d1 , . . . , ds), it follows that min∆ρ(H) = gcd(d1 , . . . , ds).

Lemma 2.4 (i) implies that ∆∗ρ(H) ⊂ ∆ρ(H), and it remains to show that ∆ρ(H) ⊂

{d ∈ N ∣ d divides some d′ ∈ ∆∗ρ(H)}. If this holds, then we immediately get that
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max∆ρ(H) = max∆∗ρ(H). Now let d ∈ ∆ρ(H) be given. We claim that d divides
some element from ∆∗ρ(H).
For every k ∈ N there is some a(k) ∈ H such that L(a(k)) is anAAPwith diòerence

d, length at least k, and with ρ(L(a(k))) = ρ(H). Let k ∈ N. _en a(k) = a(k)1 ⋅ ⋅ ⋅ a(k)s

with a(k)i ∈ H i and ρ(L(a(k)i )) = ρ(H i) = ρ(H) for all i ∈ [1, s]. _en there is a
subsequence b(ℓ) = a(kℓ) of a(k), a nonempty subset I ⊂ [1, s], say I = [1, r], and a
constant M such that the following holds for every k ∈ N.
● For every i ∈ [1, r], L(b(k)i ) is anAAPwith diòerence d i , length at least k, andwith

ρ(L(B(k)
i )) = ρ(H).

● For every i ∈ [r + 1, s], ∣L(b(k)i )∣ ≤ M.

_us L(b(k)1 ⋅ ⋅ ⋅ b(k)r ) = L(b(k)1 ) + ⋅ ⋅ ⋅ + L(b(k)r ) is an AAP with diòerence

gcd(d1 , . . . , dr) ∈ ∆∗ρ(H)

and length growing with k. Since L(b(k)) is an AAP with diòerence d, it follows that
d divides gcd(d1 , . . . , dr).

For our discussion of weakly Krull monoids we put together some notation and
gather their main properties. For any undeûned notion we refer to [17, 28]. In the
remainder of this sections all monoids are commutative and cancellative and by a
domain we always mean a commutative integral domain. If R is a domain, then its
semigroup R● = R ∖ {0} of non-zero elements is amonoid.

Let H be amonoid. _en q(H) denotes its quotient group,

Ĥ = {x ∈ q(H) ∣ there is a c ∈ H such that cxn ∈ H for all n ∈ N} ⊂ q(H),

its complete integral closure, and (H ∶ Ĥ) = {x ∈ q(H) ∣ xĤ ⊂ H} the conductor
of H. Furthermore, Hred = {aH× ∣ a ∈ H} is the associated reduced monoid of
H and X(H) is the set of minimal non-empty prime s-ideals of H. Let I∗v (H) de-
note themonoid of v-invertible v-ideals of H (together with v-multiplication). _en
Fv(H)× = q(I∗v (H)) is the quotient group of fractional v-invertible v-ideals, and
Cv(H) = Fv(H)×/{xH ∣ x ∈ q(H)} is the v-class group of H.

_emonoidH is said to beweaklyKrull [28, Corollary 22.5] ifH = ⋂p∈X(H) Hp and
{p ∈ X(H) ∣ a ∈ p} is ûnite for all a ∈ H. If H is v-noetherian, then H is weakly Krull
if and only if v-max(H) = X(H) ([28,_eorem 24.5]). A domain R is weakly Krull if
R● is a weakly Krull monoid. Weakly Krull domains were introduced by Anderson,
Anderson,Mott, and Zafrullah [1,2], andweaklyKrull monoids byHalter-Koch [26].
_emonoid H is Krull if and only if H is weakly Krull and Hp is a discrete valuation
monoid for each p ∈ X(H).
Every saturated submonoid H of a monoid D = F(P) × D1 ⋅ ⋅ ⋅ × Dn , where P is a

set of primes and D1 , . . . ,Dn are primary monoids, is weakly Krull if the class group
q(D)/(D×q(H)) is a torsion group [19, Lemma 5.2]. Wemention a few key examples
of v-noetherian weakly Krull monoids and domains and refer to [19, Examples 5.7]
for a detailed discussion. Suppose that H is as in _eorem 4.4. _en, by the previous
remark, its monoid of v-invertible v-ideals I∗v (H) is aweakly Krull monoid. Further-
more, all one-dimensional noetherian domains are v-noetherianweakly Krull. If R is
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a v-noetherian weakly Krull domain with non-zero conductor (R ∶ R̂) and p ∈ X(R),
then R●p is ûnitely primary, and thus the assumption made in _eorem 4.4 holds. Or-
ders in algebraic number ûelds are one-dimensional noetherian and hence they are v-
noetherianweaklyKrulldomains. IfR is anorder, then its v-class groupCv(R) (which
coincideswith thePicard group) aswell as the index of the unit groups (R̂× ∶R×) are û-
nite and every class contains aminimal prime ideal p ∈ P. _us all assumptions made
in _eorem 4.4 (iv) are satisûed. It was ûrst proved by Halter-Koch [27, Corollary 4]
that the elasticity of orders in number ûelds is accepted whenever it is ûnite.

_eorem 4.4 Let H be a v-noetherian weakly Krull monoid with conductor ∅ /= f =

(H ∶ Ĥ) ⊊ H such that Hp is ûnitely primary for each p ∈ X(H). Let

P∗ = {p ∈ X(H) ∣ p ⊃ f},

P = X(H)∖P∗, and let π∶X(Ĥ)→ X(H) be the natural map deûned by π(P) =P∩H
for all P ∈ X(Ĥ).
(i) I∗v (H) has ûnite elasticity if and only if π is bijective.
(ii) If π is bijective and Ĥ×

p/H×
p are torsion groups for all p ∈ P∗, then I∗v (H) has

accepted elasticity.
(iii) Suppose that I∗v (H) has accepted elasticity, and let p1 , . . . , ps ∈ P

∗ be theminimal
prime idealswith ρ(Hpi) = ρ(I∗v (H)) for all i ∈ [1, s], and set d i = min∆(Hpi ).
_en

{gcd{d i ∣ i ∈ I} ∣ ∅ /= I ⊂ [1, s]} = ∆∗ρ(I
∗
v (H)) ⊂ ∆ρ(I

∗
v (H))

⊂ {d ∈ N ∣ d divides some d′ ∈ ∆∗ρ(I∗v (H))} .

(iv) Let GP ⊂ Cv(H) denote the set of classes containing a minimal prime ideal from
P. Suppose that π is bijective, and that Cv(H) and Ĥ×/H× are both ûnite. _en
H has accepted elasticity and if ρ(H) = ρ(GP), then ∆ρ(GP) ⊂ ∆ρ(H).

Proof By [19, §5]), we infer that Ĥ is Krull, P∗ is ûnite, and that

(4.4) I∗v (H)
∼
Ð→ F(P)×T , where T = ∏

p∈P∗
(Hp)red .

(i) _is follows from (4.2), from (4.4), and from Lemma 2.6 (i).
(ii) _is follows from Lemma 2.6 (i) and from Lemma 4.1 (i).
(iii) _is follows from (4.4) and from Lemma 4.3 (ii).
(iv) _ere is a transfer homomorphism β∶H → B(H),whereB(H)↪ F(GP)×T

is the T-block monoid of H and the inclusion is saturated and coûnal [17, Deûni-
tion 3.4.9]. _usL(B(H)) = L(H), whence it suõces to prove all the statements for
B(H) instead of proving them for H.

Since Cv(H) and Ĥ×/H× are ûnite, the exact sequence [19, Proposition 5.4]

1Ð→ Ĥ×/H× Ð→ ∐
p∈X(H)

Ĥ×
p/H×

p Ð→ Cv(H)Ð→ Cv(Ĥ)→ 0,

implies that (Ĥ×
p ∶H×

p) < ∞ for all p ∈ P∗. _us, by (4.3), all factors of T are ûnitely
generated and hence T is ûnitely generated. _erefore B(H) is ûnitely generated (as
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a saturated submonoid of a ûnitely generatedmonoid) and henceB(H) has accepted
elasticity [17,_eorem 3.1.4].

Since B(GP) ⊂ B(H) is a divisor-closed submonoid, the remaining statement
follows from Lemma 2.4 (ii).

Remarks 4.5 (1) Let H be as in _eorem 4.4. If π is bijective and H is seminor-
mal, then I∗v (H) is half-factorial [19,_eorem 5.8.1.(a)] and hence ∆(I∗v (H)) = ∅.

(2) Let R be a noetherian weakly Krull domain such that its integral closure R is a
ûnitely generated R-module. _en, for p ∈ P∗, the index (R×p ∶R×p) is ûnite if and only
if R/p is ûnite [30,_eorem 2.1].

(3) Lemma 4.1 shows that the elasticity of a ûnitely primarymonoid of rank one is
completely determined by its value semigroup. _e interplay of algebraic and arith-
metical properties of one-dimensional local Mori domains with properties of their
value semigroup has received wide attention in the literature [4, 5, 10].

(4) For every d ∈ N, there is a v-noetherian ûnitely primary monoid H with
min∆(H) = d. However, even for orders R in algebraic number ûelds the precise
value of min∆(Rp), p ∈ P∗, is known only for some explicit examples (as discussed
in [17, Examples 3.7.3]).

To consider the global case, let H be as in _eorem 4.4 with ûnite v-class group
Cv(H), and suppose further that every class contains aminimal prime ideal from P.
If H is seminormal or ∣G∣ ≥ 3, then min∆(H) = 1 ([23,_eorem 1.1]).

It is a central but still open problem in factorization theory to characterize when a
weaklyKrull monoidH andwhen itsmonoid I∗v (H) of v-invertible v-ideals are trans-
fer Krull monoids, respectively, transfer Krull monoids of ûnite type. To begin with
the local case, ûnitely primarymonoids are not transfer Krull and the same is true for
ûnite direct products of ûnitely primarymonoids [21,_eorem 5.6]. _ese are one of
the spare results available thus far that indicate that weakly Krull monoids (with the
properties of_eorem 4.4) are transfer Krull only in exceptional cases. Clearly, com-
bining results from Section 3 with _eorem 4.4 (iii), we obtain examples of when the
system of sets of lengths of I∗v (H) does not coincide with L(G) for any, respectively,
some, ûnite abelian groups G. Clearly, if L(I∗v (H)) /= L(G) for an abelian group G,
then I∗v (H) is not transfer Krull over G.

We formulate one such result (others would be possible) as a corollary. But, of
course,we are far from a characterization ofwhenH and themonoid I∗v (H) are trans-
ferKrull, respectively, ofwhenL(H) orL(I∗v (H)) coincidewithL(G) for some ûnite
abelian group G [21, §5, Problem 5.9].

Corollary 4.6 Let H be a v-noetherian weakly Krull monoid with conductor ∅ /= f =

(H ∶ Ĥ) ⊊ H such that Hp is ûnitely primary for each p ∈ X(H) and I∗v (H) has accepted
elasticity. Let p1 , . . . , ps be theminimal prime ideals with ρ(Hpi ) = ρ(I∗v (H)) > 1.
(i) If gcd(min∆(Hp1), . . . ,min∆(Hps)) > 1 and G is a ûnite abelian group with

L(I∗v (H)) = L(G), then G is cyclic of order 4, 6, or 10.
(ii) If there is an i ∈ [1, s] with min∆(Hpi ) > 1 and G is a ûnite abelian group with

L(I∗v (H)) = L(G), then G does not have rank two and is not of the form Cr
pk
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with k, r ∈ N, r ≥ 2, and p prime with pk ≥ 3. Moreover, if Conjecture 3.20 holds
true, then G is either cyclic or isomorphic to C1+min ∆(Hpi )

2 .

Proof (i) We set d = gcd(min∆(Hp1), . . . ,min∆(Hps)). _en _eorem 4.4 (iii)
and Lemma 4.3 (ii) imply that min∆ρ(I

∗
v (H)) = d. _us the assertion follows from

_eorem 3.5.
(ii) We set p = pi , min∆(Hp) = d, and let G be a ûnite abelian group such

that L(G) = L(I∗v (H)). _en _eorem 4.4 (iii) implies that d ∈ ∆∗ρ(I
∗
v (H)) ⊂

∆ρ(I
∗
v (H)) = ∆ρ(G). _us the assertion follows from _eorems 3.7, 3.11, 3.13, and

Conjecture 3.20.
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