On Deformations of the Complex Structure on the Moduli Space of Spatial Polygons

Yasuhiko Kamiyama and Shuichi Tsukuda

Abstract

For an integer $n \geq 3$, let M_{n} be the moduli space of spatial polygons with n edges. We consider the case of odd n. Then M_{n} is a Fano manifold of complex dimension $n-3$. Let $\Theta_{M_{n}}$ be the sheaf of germs of holomorphic sections of the tangent bundle $T M_{n}$. In this paper, we prove $H^{q}\left(M_{n}, \Theta_{M_{n}}\right)=0$ for all $q \geq 0$ and all odd n. In particular, we see that the moduli space of deformations of the complex structure on M_{n} consists of a point. Thus the complex structure on M_{n} is locally rigid.

1 Introduction

For an integer $n \geq 3$, let M_{n} be the moduli space of spatial polygons $P=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ whose edges are vectors $a_{i} \in \mathbf{R}^{3}$ of length $\left|a_{i}\right|=1(1 \leq i \leq n)$. Two polygons are identified if they differ only by motions in \mathbf{R}^{3}. The sum of the vectors is assumed to be zero. Thus:

$$
\begin{equation*}
M_{n}=\left\{P=\left(a_{1}, \ldots, a_{n}\right) \in\left(S^{2}\right)^{n}: a_{1}+\cdots+a_{n}=0\right\} / \mathrm{SO}(3) \tag{1.1}
\end{equation*}
$$

For odd n or $n=4, M_{n}$ has no singular points. In fact, this is a Fano manifold (i.e. the anticanonical bundle is ample) of complex dimension $n-3$ [8]. On the other hand, for even $n \geq 6, M_{n}$ has cone-like singular points [5].

In this paper, we assume n to be odd. Since $M_{3}=$ \{point \}, we assume that $n \geq 5$. Then many topological properties of M_{n} are already known. For example, the cohomology ring $H^{*}\left(M_{n}, \mathbf{R}\right)$ is known in [1], [3], [7], and the intersection pairings $\int_{M_{n}} \alpha \cdot \beta\left(\alpha, \beta \in H^{*}\left(M_{n}, \mathbf{R}\right)\right)$ are known in [4].

We consider the following problem: Is it possible to deform the complex structure on M_{n} ? Let V be a complex manifold and let Θ_{V} be the sheaf of germs of holomorphic sections of the tangent bundle $T V$. Then it is well-known that deformations of the complex structure on V are parametrized by a subspace of the cohomology group $H^{1}\left(V, \Theta_{V}\right)$ (see [9]). In particular if $H^{1}\left(V, \Theta_{V}\right)=0$, then the moduli space of deformations of the complex structure on V consists of a point. Thus we cannot deform the complex structure on V. We shall prove that the cohomology $H^{*}\left(V, \Theta_{V}\right)$ is special when $V=M_{n}$. Let $\Theta_{M_{n}}$ be the sheaf of germs of holomorphic sections of the tangent bundle $T M_{n}$. Then our main result is the following theorem.
Theorem A For all $q \geq 0$ and all odd n, we have

$$
H^{q}\left(M_{n}, \Theta_{M_{n}}\right)=0 .
$$

[^0]In particular, the fact $H^{1}\left(M_{n}, \Theta_{M_{n}}\right)=0$ tells us the following:
Theorem B For all odd n, the moduli space of deformations of the complex structure on M_{n} consists of a point. Thus the complex structure on M_{n} is locally rigid.

Remark 1.2 When $n=5$, Theorem A is already known. (See Section 3 for detail.)
This paper is organized as follows. In Section 2, we prove Theorem A except the cases $(n, q)=(5,0),(5,1)$ or $(7,1)$. In Section 3, we study these cases.

2 Proof of Theorem A for General Cases

In this section, we prove the following:

Theorem 2.1

(i) For all odd $n \geq 7$, we have $H^{0}\left(M_{n}, \Theta_{M_{n}}\right)=0$.
(ii) For all odd $n \geq 9$, we have $H^{1}\left(M_{n}, \Theta_{M_{n}}\right)=0$.
(iii) For all $q \geq 2$ and all odd $n \geq 5$, we have $H^{q}\left(M_{n}, \Theta_{M_{n}}\right)=0$.

First we prove Theorem 2.1(iii). Recall that M_{n} is a Fano manifold [8]. That is, the anticanonical bundle $K^{*}=\Lambda^{n-3} T M_{n}$ is ample, where we write the canonical bundle by K. Since $H^{q}\left(M_{n}, \Theta_{M_{n}}\right) \cong H^{q}\left(M_{n}, \Omega^{n-4} K^{*}\right)$, we have the result by the Kodaira-Nakano vanishing theorem [2].

In order to prove Theorem 2.1(i) and (ii), we identify M_{n} with the moduli space of stable points on $\mathbf{C} P^{1}$. In what follows, we fix odd n and set $n=2 m+1$. Let $X=\left(\mathbf{C} P^{1}\right)^{n}$ and $G=\operatorname{PSL}(2, \mathbf{C})$. Then the group G acts diagonally on X. A n-tuple $\left(x_{1}, \ldots, x_{n}\right) \in X$ is called stable if it contains no point of $\mathbf{C} P^{1}$ with multiplicity $>m$. Let X^{s} be the open subset of X consisting of all stable points. Then X^{s} is G-stable, the quotient $p: X^{s} \rightarrow Y$ exists and is a principal G-bundle, and Y is biholomorphic to M_{n}. In particular, p is an affine morphism and satisfies $p_{*}^{G} \mathcal{O}_{X^{s}}=\mathcal{O}_{Y}$, where p_{*}^{G} denotes the invariant direct image.

Let \mathfrak{g} be the Lie algebra of G; let $T X$ (resp. $T Y$) be the tangent bundle of X (resp. Y), and let Θ_{X} (resp. Θ_{Y}) be its sheaf of germs of holomorphic sections. As p is a principal G-bundle, the differential $d p: T X^{s} \rightarrow p^{*} T Y$ fits into an exact sequence of vector bundles over X^{s} :

$$
\begin{equation*}
0 \rightarrow \underline{\mathfrak{g}} \rightarrow T X^{s} \rightarrow p^{*} T Y \rightarrow 0 \tag{2.2}
\end{equation*}
$$

where \mathfrak{g} denotes the trivial bundle $X^{s} \times \mathfrak{g}$ over X^{s}.
The long exact sequence of cohomology defined by (2.2) begins with

$$
\begin{gathered}
0 \rightarrow H^{0}\left(X^{s}, \mathcal{O}_{X^{s}}\right) \otimes \mathfrak{g} \rightarrow H^{0}\left(X^{s}, \Theta_{X^{s}}\right) \rightarrow H^{0}\left(X^{s}, p^{*} \Theta_{Y}\right) \rightarrow \\
\rightarrow H^{1}\left(X^{s}, \mathcal{O}_{X^{s}}\right) \otimes \mathfrak{g} \rightarrow H^{1}\left(X^{s}, \Theta_{X^{s}}\right) \rightarrow H^{1}\left(X^{s}, p^{*} \Theta_{Y}\right) \rightarrow H^{2}\left(X^{s}, \mathcal{O}_{X^{s}}\right) \otimes \mathfrak{g} .
\end{gathered}
$$

Take G-invariants in this exact sequence. Since p is affine and $p_{*}^{G} \mathcal{O}_{X^{s}}=\mathcal{O}_{Y}$, we have $H^{q}\left(X^{s}, p^{*} \Theta_{Y}\right)^{G}=H^{q}\left(Y, \Theta_{Y}\right)$ for all q. Thus, we have an exact sequence

$$
\begin{align*}
& \text { 2.3) } \quad 0 \rightarrow\left(H^{0}\left(X^{s}, \mathcal{O}_{X^{s}}\right) \otimes \mathfrak{g}\right)^{G} \rightarrow H^{0}\left(X^{s}, \Theta_{X^{s}}\right)^{G} \rightarrow H^{0}\left(Y, \Theta_{Y}\right) \rightarrow \tag{2.3}\\
& \rightarrow\left(H^{1}\left(X^{s}, \mathcal{O}_{X^{s}}\right) \otimes \mathfrak{g}\right)^{G} \rightarrow H^{1}\left(X^{s}, \Theta_{X^{s}}\right)^{G} \rightarrow H^{1}\left(Y, \Theta_{Y}\right) \rightarrow\left(H^{2}\left(X^{s}, \mathcal{O}_{X^{s}}\right) \otimes \mathfrak{g}\right)^{G} .
\end{align*}
$$

Proposition 2.4 The restriction maps $H^{q}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{q}\left(X^{s}, \mathcal{O}_{X^{s}}\right)$ and $H^{q}\left(X, \Theta_{X}\right) \rightarrow$ $H^{q}\left(X^{s}, \Theta_{X^{s}}\right)$ are isomorphisms for $q \leq m-2$.

Proof We use $(\mathrm{b}) \Rightarrow(\mathrm{d})$ of $[10, \mathrm{p} .36$, Theorem (1.14)]. For X, A and q in the theorem, we take $X=\left(\mathbf{C} P^{1}\right)^{n}, A=X-X^{s}$ and $q=m-1$. (Recall that we set $n=2 m+1$.) Let \mathcal{F} be a locally free sheaf on X and we consider (b) of the theorem. In [10, p. 26], a subvariety of X is defined by $S_{m+k}(\mathcal{F})=\left\{x \in X: \operatorname{codh}_{\mathcal{O}_{x}} \mathcal{F}_{x} \leq\right.$ $m+k\}$. Here $\operatorname{codh}_{\mathcal{O}_{x}} \mathcal{F}_{x}$ denotes the homological codimension of \mathcal{F}_{x} over \mathcal{O}_{x} (see [10, p. 22]). Now it is easy to see that $S_{m+k}(\mathcal{F})=\left\{\begin{array}{ll}\varnothing & 0 \leq k \leq m \\ X & k \geq m+1 .\end{array}\right.$ Hence we have $\operatorname{dim}\left(A \cap S_{m+k}(\mathcal{F})\right) \leq k$ for all k. Thus (b) is satisfied in our situation. Then (d) of the theorem holds. Thus the restriction maps $H^{q}(X, \mathcal{F}) \rightarrow H^{q}\left(X^{s}, \mathcal{F}\right)$ are bijective for $q \leq m-2$ and injective for $q=m-1$. This completes the proof of Proposition 2.4.

Now we apply Proposition 2.4 to (2.3). Since $H^{0}\left(X, \mathcal{O}_{X}\right)=\mathbf{C}, H^{0}\left(X, \Theta_{X}\right)=\mathfrak{g}^{n}$ and $H^{q}\left(X, \mathcal{O}_{X}\right)=0=H^{q}\left(X, \Theta_{X}\right)$ if $q \geq 1$, we obtain for $m \geq 3$:

$$
0 \rightarrow \mathfrak{g}^{G} \rightarrow\left(\mathfrak{g}^{n}\right)^{G} \rightarrow H^{0}\left(Y, \Theta_{Y}\right) \rightarrow 0 \quad \text { and } \quad H^{1}\left(Y, \Theta_{Y}\right) \subseteq\left(H^{2}\left(X^{s}, \mathcal{O}_{X^{s}}\right) \otimes \mathfrak{g}\right)^{G}
$$

Since $\mathfrak{g}^{G}=\left(\mathfrak{g}^{n}\right)^{G}=0$, we have $H^{0}\left(Y, \Theta_{Y}\right)=0$. Hence Theorem 2.1(i) holds.
Similarly, one obtains $H^{1}\left(Y, \Theta_{Y}\right)=0$ for $m \geq 4$. Hence Theorem 2.1(ii) holds.

3 Proof of Theorem A For $n=5$ and 7

By Theorem 2.1, it suffices to study $H^{q}\left(M_{n}, \Theta_{M_{n}}\right)$ with $(n, q)=(5,0),(5,1)$ or $(7,1)$ in order to complete the proof of Theorem A. First we study the case $n=5$. For $r \leq 6$, let S_{r} be the surface obtained from $\mathbf{C} P^{2}$ by blowing up r points in general position (the so called Del Pezzo surface of degree $9-r$). Then M_{5} is biholomorphic to S_{4}. (See [8, p. 74].) The cohomology $H^{*}\left(S_{r}, \Theta_{S_{r}}\right)$ was determined in [9, p. 225-226] as follows. $\operatorname{dim} H^{0}\left(S_{r}, \Theta_{S_{r}}\right)=\left\{\begin{array}{ll}8-2 r & r \leq 3 \\ 0 & r \geq 4,\end{array} \operatorname{dim} H^{1}\left(S_{r}, \Theta_{S_{r}}\right)= \begin{cases}0 & r \leq 4 \\ 2 r-8 & r \geq 5,\end{cases}\right.$ and $\operatorname{dim} H^{2}\left(S_{r}, \Theta_{S_{r}}\right)=0$. In particular, $H^{*}\left(S_{r}, \Theta_{S_{r}}\right)=0$ if and only if $r=4$.

Now the remaining case is $H^{1}\left(M_{7}, \Theta_{M_{7}}\right)$. By Theorem 2.1(i) and (iii), it suffices to prove $\chi\left(M_{7}, \Theta_{M_{7}}\right)=0$. We shall prove this in more general form.
Theorem 3.1 For all odd n, we have

$$
\chi\left(M_{n}, \Theta_{M_{n}}\right)=0 .
$$

In what follows, we prove this theorem using the Hirzebruch-Riemann-Roch formula. As in Section 2, we fix odd n and set $n=2 m+1$. First we recall the structure of $H^{*}\left(M_{n}, \mathbf{R}\right)$. For $i \in\{1, \ldots, n\}$, we define $A_{n, i} \subset\left(\mathbf{R}^{3}\right)^{n}$ by

$$
A_{n, i}=\left\{P=\left(a_{1}, \ldots, a_{n}\right) \in\left(S^{2}\right)^{n}: a_{1}+\cdots+a_{n}=0 \text { and } a_{i}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$

Let $\mathrm{SO}(2)$ act on \mathbf{R}^{3} by rotation about the z-axis. Then for odd n, the diagonal $\mathrm{SO}(2)$-action on $\left(\mathbf{R}^{3}\right)^{n}$ is free on $A_{n, i}$ and we have $M_{n}=A_{n, i} / \mathrm{SO}(2)$. (See (1.1).) Therefore, $A_{n, i} \rightarrow M_{n}$ is a principal SO(2)-bundle. Let $\xi_{i} \rightarrow M_{n}$ be the holomorphic line bundle associated to $A_{n, i} \rightarrow M_{n}: \xi_{i}=\left(A_{n, i} \times \mathbf{C}\right) / S^{1}$, where we identify $\mathrm{SO}(2)$ with S^{1} and let S^{1} act on $A_{n, i} \times \mathbf{C}$ by $(P, \alpha) \cdot g=(P g, \alpha g)\left((P, \alpha) \in A_{n, i} \times \mathbf{C}, g \in S^{1}\right)$. We define $z_{i} \in H^{2}\left(M_{n}, \mathbf{R}\right)$ to be the first Chern class of the line bundle $\xi_{i}: z_{i}=c_{1}\left(\xi_{i}\right)$ $(1 \leq i \leq n)$. Now we have the following theorem.
Theorem 3.2 ([1], [3], [7]) When $n=2 m+1$, the algebra $H^{*}\left(M_{n}, \mathbf{R}\right)$ is generated by z_{1}, \ldots, z_{n} with the relations:
(i) $z_{1}^{2}=\cdots=z_{n}^{2}$.
(ii) $\prod_{j \in J}\left(z_{i}+z_{j}\right)=0$, for all $i \in\{1, \ldots, n\}$ and $J \subseteq\{1, \ldots, n\}$ such that $i \notin J$
and $|J|=m$, where $|J|$ denotes the cardinal number.
Next we study the intersection pairings. For a sequence $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers with $\sum_{i=1}^{n} d_{i}=n-3$, we set $\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle=\int_{M_{n}} z_{1}^{d_{1}} \cdots z_{n}^{d_{n}}$. In particular for $0 \leq k \leq m-1$, we set $\left\langle\rho_{n, 2 k}\right\rangle=\int_{M_{n}} z_{1}^{2 k} z_{2} \cdots z_{n-2 k-2}$. By Theorem 3.2(i) and the action of the symmetric group Σ_{n} on M_{n}, it suffices to determine $\left\langle\rho_{n, 2 k}\right\rangle$ for $0 \leq k \leq m-1$ in order to determine $\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle$ for all sequences. Concerning this, we have the following:
Theorem 3.3 ([4]) When $n=2 m+1$, the numbers $\left\langle\rho_{n, 2 k}\right\rangle(0 \leq k \leq m-1)$ are given as follows.

$$
\left\langle\rho_{n, 2 k}\right\rangle=(-1)^{k} \frac{\binom{m-1}{k}\binom{2 m-1}{m}}{\binom{2 m-1}{2 k+1}}
$$

Finally we recall the description of the total Chern class $c\left(T M_{n}\right)$.
Theorem 3.4 ([3]) We have

$$
c\left(T M_{n}\right)=\left(1-z_{1}^{2}\right)^{-1} \prod_{i=1}^{n}\left(1+z_{i}\right)
$$

Recall that we have holomorphic line bundles $\xi_{i} \rightarrow M_{n}(1 \leq i \leq n)$. Using the Hirzebruch-Riemann-Roch formula [2], it is easy to prove the following proposition from Theorems 3.3 and 3.4.
Proposition 3.5 For $1 \leq i \leq n$, we have
(i) $\chi\left(M_{n}, \xi_{i}\right)=0$.
(ii) $\chi\left(M_{n}, \xi_{i}^{*}\right)=-1$.

Now we prove Theorem 3.1. By Theorem 3.4, we have $\operatorname{ch}\left(T M_{n}\right)=-1-e^{z_{1}}-e^{-z_{1}}+$ $\sum_{i=1}^{n} e^{z_{i}}$. Using the Hirzebruch-Riemann-Roch formula, we have $\chi\left(M_{n}, \Theta_{M_{n}}\right)=$ $-\chi\left(M_{n}, \mathcal{O}_{M_{n}}\right)-\chi\left(M_{n}, \xi_{1}\right)-\chi\left(M_{n}, \xi_{1}^{*}\right)+\sum_{i=1}^{n} \chi\left(M_{n}, \xi_{i}\right)$. By [6], [8], we have $\chi\left(M_{n}, \mathcal{O}_{M_{n}}\right)=1$. Then we see by Proposition 3.5 that $\chi\left(M_{n}, \Theta_{M_{n}}\right)=-1-0-$ $(-1)+n \cdot 0=0$. This completes the proof of Theorem 3.1.

Acknowledgments The authors wish to thank John Millson for many useful comments.

References

[1] M. Brion, Cohomologie équivariante des points semi-stables. J. Reine Angew. Math. 421(1991), 125-140.
[2] P. Griffiths and J. Harris, Principles of algebraic geometry. Wiley-Interscience, New York, 1978.
[3] J-C. Hausmann and A. Knutson, The cohomology ring of polygon spaces. Ann. Inst. Fourier (Grenoble) 48(1998), 281-321.
[4] Y. Kamiyama and M. Tezuka, Symplectic volume of the moduli space of spatial polygons. J. Math. Kyoto Univ. 39(1999), 557-575.
[5] M. Kapovich and J. Millson, The symplectic geometry of polygons in Euclidean space. J. Differential Geom. 44(1996), 479-513.
[6] F. Kirwan, Cohomology of quotients in symplectic and algebraic geometry. Mathematical Notes 31, Princeton University Press, Princeton, 1984.
[7] , The cohomology rings of moduli spaces of bundles over Riemann surfaces. J. Amer. Math. Soc. 5(1992), 853-906.
[8] A. Klyachko, Spatial polygons and stable configurations of points in the projective line. In: Algebraic geometry and its applications, Yaroslavl', 1992, 67-84, Aspects Math. E25, Vieweg, Braunschweig, 1994.
[9] K. Kodaira, Complex manifolds and deformation of complex structures. Grundlehren der Mathematischen Wissenschaften 283, Springer-Verlag, 1986.
[10] Y.-T. Siu and G. Trautmann, Gap-sheaves and extension of coherent analytic subsheaves. Lecture Notes in Mathematics 172, Springer-Verlag, 1971.

Department of Mathematics
University of the Ryukyus
Nishihara-Cho
Okinawa 903-0213
Japan
e-mail: kamiyama@sci.u-ryukyu.ac.jp
e-mail: tsukuda@math.u-ryukyu.ac.jp

[^0]: Received by the editors January 1, 2000; revised April 1, 2000.
 AMS subject classification: Primary: 14D20; secondary: 32C35.
 Keywords: polygon space, complex structure.
 (C)Canadian Mathematical Society 2002.

