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1. Introduction. Let p denote a prime and n a positive in

teger >_ 2. Let N (p) denote the number of polynomials x + x + a, 

a = 1,2,. .,,p-l, which are irreducible (mod p). Chowla [5] has made 

the following two conjectures: 

CONJECTURE 1. There is a prime p (n), depending only on n, 

such that for all primes p > p (n) 

(1.1) Nn(p) > 1. 

(p (n) denotes the least such prime.) 

CONJECTURE 2. 

(1.2) N (p) ~ •*- , n fixed, p -**>. 

Clearly the truth of conjecture 2 implies the truth of conjecture 

1. 

Let us begin by noting that both conjectures are true for n = 2 

and n = 3. When n = 2 we have 

(1.3) N2(p) 
[1 , P = 2 , 

ll(p-l) , p > 3 , 
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so that we can take p (2) = 2. When n = 3 we have [6] 

(1.4) N_(p) = J 

1 , p = 2 , 

0 , p = 3 , 

vJ Cp - ( T ) D ' p - 5 ' 
so that p (3) = 5. 

In this paper I begin by proving that conjecture 2 (and so con

jecture 1) is true when n = 4, i.e., N
4(p) ~ 4 > as p -*°°. In fact I 

prove more, namely, 

(1.5) |N4(p) - £| < i| p* + 12 , p > 3 . 

This is of course a trivial inequality for small values of p, but it 

does show that N (p) > 1 for p > 457, so that p (4) < 457. It is 

very unlikely that there is a simple formula for N.(p) (not involving 

character sums) as there is for N^(p) and N (p). In proving (1.5) 

I use some results of Skolem [9] on the factorization of quartics (mod p) 

and deep estimates of Perel' muter [8] for certain character sums. The 

method is not applicable for the estimation of N (p) for n >_ 5. 

It is of interest to estimate the least value of a (1 <_ a <, p-1) 

which makes x + x + a irreducible (mod p). We denote this least va

lue by a (p). a?(p) exists for all p , a„(p) exists for all p ï 3 

and a.(p) exists for all p > 457 (and for other smaller values of p). 

The existence of a (p), for all n and all sufficiently large p, would 

follow from the truth of conjecture 1. 

I conjecture that for each positive integer n there is an infini

ty of primes p for which x + x + 1 is irreducible (mod p). This 
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is equivalent to 

CONJECTURE 3. For all n > 2 

(1.6) liminf a (p) = 1. 
p -x» 

This is easily seen to be true when n = 2 (Theorem 3.1) and I also 

prove that it is true when n = 3 (Theorem 3.2). The proof of Theorem 

3.2 involves the prime ideal theorem. As regards upper bounds for a *(p), 
i 

it is shown that a?(p) = 0(p
4 log p) (Theorem 4.1) follows from a re-

i 

suit of Burgess [3], that a_(p) = 0(p2) (Theorem 4.2) using a method 

i , 

of Tietavainen [10], and that a4(p) = 0(p
2 e) (Theorem 4.3) using 

Skolem's results [9] on quartics. Probably the true order of magnitude 

of these is much smaller, perhaps even 0(p ), for all e > 0. 

Finally I conjecture Chowla's conjecture 2 in the stronger form: 

CONJECTURE 4. Let_ e > 0 and let h denote an integer satis

fying 

(1.7) p 2 + £ + l < h p < p , 

Let N (h ) denote the number of polynomials x + x + a, a = 1,2,..., 

h -1, which are irreducible (mod p). Then 

(1.8) N (h ) ~ h ,11, n fixed, p -*». 
n p p/ 

Conjecture 2 is the special case h = p. I prove conjecture 4 

when n = 2,3 and 4. 

2. Estimation of N.(p). As I am only interested in estimating 
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NL(p) for large values of p, I assume throughout that p > 3. The 

4 
factorization of x + x + a (mod p), for p > 3, depends upon that 

3 

of y - 4 ay - 1 (mod p). These two polynomials have the same discri

minant, namely, 

(2.1) D(a) = 256a - 27 

D(a) E 0 (mod p) is a necessary and sufficient condition for both 

4 3 
x + x + a and y - 4 ay - 1 to have squared factors (mod p), Let 

n denote the number of integers a, 0 < a -< p-1, such that D(a) = 0 

(mod p). We have 

(2.2) np = 

0 , if p E 1 (mod 3), 2 ( P" 1 ) / 3 £ 1 (mod p) , 

1 , if p E 2 (mod 3), 

3 , if p E 1 (mod 3), 2(p"i:)/3 = 1 (mod p) . 

Let M(p) denote the number of integers a with 1 < a < p-1 

4 
and D(a) i 0 (mod p) such that x + x + a - 0 (mod p) has exactly 

two distinct solutions, and L(p) the number of integers a with 

3 
1 ̂  a <_ p-1 and D(a) i 0 (mod p) such that y - 4 ay - 1 E 0 (mod p) 

has exactly one root. By results of Skolem [9] we have 

(2.3) N4(p) + M(p) = L(p) 

LEMMA 2.1. 

|L(p) - i(p-l)| <f2 + 1 

Proof. It is well-known that y - 4 ay - 1 E 0 (mod p) has 

exactly one unrepeated solution y if and only if ( "^"J ] = -1. Hence M 
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™ -1 Ï {> - m) a=l 
D(a) t 0 

_P-' ' P : 1 1 1 Y /D(a)V l/-3\ 1 
--2 J 0 (—/

+2lp-)-2 np • 2 -a=0 

Now the monic cubic polynomial 2 D(a) is square free (mod p) so 

(see for example lemma 1 in [2]) we have 

p- i / 
• - l 2 p

2 

3yVD(a)\ 

giving 

LEMMA 2 . 2 . 

|L(p) - |CP-D | I P 5 + 1 

|M(P) -\\ ±TVl + T 

Proof. x + x + a ~ 0 (mod p) has exactly two unrepeated 

3 
distinct solutions (mod p.) if and only if y - 4ay - 1 E 0 (mod p) 

Xl 1 ,, „ 3 has exactly one solution, y- say, such that — I = +1 . Now y~ 

4ay - 1 E 0 (mod p) has exactly one unrepeated root if and only if 

fchzi] z -i . Hence if (^) = -1 then 

3 
1, if the unique root of y -4ay-l = 0 

is a quadratic-residue, 
3 

0, if the unique root of y -4ay-l E 0 
is a quadratic non-residue. 

Hence 
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l K1 K1 I (y\\ M(P) --{I I \ 1+5 
a=l y=l I » P / J 

-1 y -4ay- l = 0 

a= (y° - l ) / 4y 

D(a) ^ 0 

i Y [i-/Alixii)Zlzlmi + (?) 

D((y 3 - l ) /4y ) t 0 

i^M1*^!'-!?)} +A 

p - 1 . 
where |A| <_ 8 . Now as '£ { £ 1 = 0 , 

p-1 

MM^^lHlh-vs, • y 

where 

(2.4) s . = Y ( r 4 + W - i ) / 4 n ) t i = 0>1| 
1 y=o\ P ' 

(2.5) 

Suppose t ha t 

M(p) = 4(p-So-S1)+A 
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2"2yV(y3-l)/4y) E (y9-3y6-2"2.15y3-l)y = |f (y)J 2 g(y) (mod p) , 

where f (y) is a polynomial of degree d (0 <_ d _< 5) and g(y) i 

square-free polynomial of degree e (0 £ e <_ 10). Clearly 2d + e 

As y|(f(y))2g(y), y2|{f (y)} 2 g(y) we have y \ f(y) , y|g(y) 

so that e * 0. Hence e = 2,4,6,8 or 10. 

Now 

0 y=0 \ ? / 

j»-ï m 
p - i 

y; y= 
f(y) ^ 0 

Clearly 

p-1 

I if1) 
f(y) E 0 

< d < 4 

and by P e r e l ' muter ' s r e s u l t s [8] 

%m <_ ( e -2)p z + 1 <_ 8p2 + 1 

Hence 

(2 .6) 

Simi la r ly 

(2.7) 

|SJ <.8p2 + 5 

|S11 £ 7p2 + 5 
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Putting (2.5), (2.6) and (2.7) together we obtain 

|M(P) - P/4| 1-jM + ^ • 

From (2.3) and lemmas 2.1 and 2.2 we have 

n 1 9 -
THEOREM 2.3. |N4(p) - || < ^ p 2 + 12 . 

3. Calculation of liminf a (p) for n = 2 and 3. 
p -x» 

THEOREM 3.1. liminf a2(p) = 1 . 
p -*» 

2 
Proof. x + x + 1 is irreducible (mod p) if and only if 

(? -1 , that is, for all primes p E 2(mod 3) . 

THEOREM 3.2. liminf a (p) = 1 

Proof. We suppose that liminf a„(p) ± 1 . Hence 

3 
there are only a finite number of primes such that x + x + 1 is 

irreducible (mod p). Thus there is a prime p such that for all 

3 
primes p > p , x + x + 1 is reducible (mod p). The discriminant 

3 3 
of x + x + 1 is -31, so x + x + 1 has a squared factor (mod p) 

3 
if and only if p = 31. Hence for all p > p1 = max(p ,31), x + x + 1 

is reducible (mod p) into distinct factors. Let v(p) denote the 

3 
number of incongruent solutions x (mod p) of x + x + 1 E 0 (mod p). 

Then 

(3.1) v(p) = 1 or 3 for all p > p . 
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Let 

(3.2) Pi(x) = jp | p2 < p < x , v(p) = ij (i = 1 or 3) 

so that 

Px(x) n P3(x) = 0 

and 

P^x) U P3(x) = jp | Pl < p <_ xj . 

Let n (P.(x)) (i = 1 or 3) denote the number of primes in P.(x) so 

(3.3) n (P^x)) + n (P3(x)) = TT(X) - TT(PI) , 

where ir(t) denotes the number of primes <_ t. Hence 

(3.4) lim i!Lï (n (P^x)) + n (P3(x))) = 1 
x -*» 

by the prime number theorem. Now 

I v(p) = I v(p) + I v(p) 
P 1 < P £ X P i < P £ X P i < P £ X 

v(p) = 1 v(p) = 3 

= n (Px(x)) + 3n (P3(x)) 

so that 

(3.5) lim Ï2-2 fn fP^x)) + 3n (P3(x))] 
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lim T~~" ^ v(p) 

x -*» p < p j< x 

i • In x v , 

= lim - 7 — Z V(P) 
X -*eo p ^ X 

= 1 , 

3 
by the prime ideal theorem, as x + x + 1 is irreducible over the 

integers. Hence from (3.4) and (3.5) we have 

(3.6) lim ^ n (P (x)) = 1 . 
x -**> 

Now x + x + 1 = 0 (mod p) has exactly one distinct root if and only 

if |^J\ = -1 so W) 
n(P,(x)) = I 1 

1 
2 

Pi < P 1 

+ 2 \% M - ,(P l)} + \ l te) 
** J p 1 < p < x \ r / 

g i v i n g 

l im — n(P ( x ) ) = - , 
x ->°° 
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I ('-~] = o(x/lnx) 
Pi < P JÎ X 

(3.6) and (3.7) give the required contradiction. 

4. Upper bounds for a (p), n = 2,3,4 . 

We now obtain upper bounds for a~(p), a (p) and a.(p). 

i 

THEOREM 4.1. a (p) = 0(p4ln p) . 

2 
Proof, x + x + a is irreducible (mod p) if and only if 

I J = -1. Hence, as a?(p) is the least such positive a, ( ) = 

+ 1 , for a = 1,2,..., a?(p) - 1 , except if smallest positive solu

tion b of 4b E 1 (mod p) satisfies 1 <_ b < a?(p), in which case 

the Legendre symbol corresponding to a = b is zero. We consider two 

cases, according as b >_ a~(p) or 1 _<_ b < a?(p). If b ^ a?(p) 

fA ., /-b + a, /-I\/b-a£\ /-I\ /4b-4a\ /-l\/l-4a\ f - l \ 

for a = 1,2,..., a (p) - 1 so that 

(4.2) £-b + 1, -b + 2,..., -b + a2(p) -lj 

is a sequence of a?(p) - 1 consecutive quadratic residues (mod p) 

if p = 1 (mod 4) and a sequence of a?(p) - 1 quadratic non-residues 

if p = 3 (mod 4). Burgess [3] has proved that the maximum number 
l 

of consecutive quadratic residues or non-residues (mod p) is 0(p4ln p). 
i i 

Hence a?(p) - 1 = 0(p
4ln p ) , that is, a?(p) = 0(p

4ln p ) , as required. 
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th 

If 1 <_ b < a (p), we consider in place of (4.2) the longer of 

e two sequences -b+1, -b+2,...,-l and 1,2,...,-b+a (p)-l ; 

a2(p) 
it contains at least — = — -1 terms. 

THEOREM 4.2. a (p) = 0(p2) . 

Proof. Let N(a) denote the number of solutions x of the con

gruence 

3 
x + x + a E 0 (mod p) . 

Clearly N(a) = 0,1,2 or 3. Set 

(4.3) cHa) = J {l - N(a)]{3 - N(a)j 

r 
2 

Now N(a) = 2 if and only if -4-27a E 0 (mod p) hence 

1 , if x + x + a is irreducible (mod p) , 

(4.4) c|>(a) = \ 0 , if x3 + x + a is reducible (mod p) , -4-27a2 f 0, 

1 3 2 
-= , if x + x + a is reducible (mod p ) , -4-27a E 0. 

Let h denote an integer such that 1 <_ h <_ = (p+1), so that 

0 <_ h-1 <_ ï (p-1). Set H = {0,1,2,. . . ,h-l} and write H ( a ) , ( a = 0 , 

1,2,...,p-l), for the number of solutions of 

x + y E a (mod p) , x e H , y e H . 

We set 

p-1 

(4.5) A(p) = I cKa)H(a) . 
a=0 

-4-27a2^0 
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Now 

(4 .6) 
p-1 p-1 p-1 

pH(a) - I I I e{t(x+y-a)} 
t=0 x=0 y=0 

where e(v) = exp(2ïï iv/p). Hence 

(4 .7) 
p-1 ( p - 1 <) h - 1 l 2 

pA(p) = 1 1 < j , ( a )e ( -a t ) ( J e ( t x ) Z 

t=0 I a=0 J1 x=0 J 

-\-2l2Ti 0 

which gives, on picking out the term with t = 0 

(4.8) 
2 P ; 1 

pA(p) - hZ I *(a) 
a=0 

-4-27a2^ 0 

p-1 / p-1 Wh-1 
I I <f,(a)e(-at) \ e(tx) 
t=l I a=0 /' x=0 

p - 1 
1 I 

t= l 

-4-27a t 0 

p-1 
I 

a=0 

-4-27a2^ 0 

)(a)e(-at) 
h-1 
I e(tx) 
x=0 

We note that from (4.4) and (1.4) we have 

(4.9) Y *(a) =N3CP) =s{p-(^)} 

-4-27a2^ 0 

Now 
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p - 1 

I (Ha)e(-at) 
a=0 

-4-27a2^ 0 

p-1 p-1 
I <|>(a)e(-at) - I * ( a ) e ( - a t ) 

a=0 a=0 

-4-27a2= 0 

P - 1 

2 cj)(a)e(-at) 
a=0 

For t = 1 , 2 , . . . , p-1 

I (Ka)e( -a t ) = I 5 f 1-N(a)){3-N(a)) e ( - a t 
a=0 a=0 l ' l ; 

p-1 . p-1 iP"-^ 
I e ( - a t ) - ? £ N(a)e(-at)+± J /N(a 
-n ° o-n a-n^ a=0 a=0 a=0v 

1 P ~ l ( > O i p " l 
± I N(a) e ( - a t ) - | J N(a )e ( -a t ) 

a=0 

P : 1 

as J e ( - a t ) = 0 , when t t 0 (mod p ) . Now 
a=0 

P ; 1 

£ N(a)e ( -a t ) 
a=0 

p-1 / p -1 
Ï U P î e(u(x3+x+a))) 
= 0 l p x,u = 0 J 

e(-at) 

p-1 p-1 
I e(u(x +x)J| J e ( a ( u - t ) ) 

x,u = 0 a=0 

P-1 , 
I e(t(x3

+x)) 
x=0 

2 p ' > 
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by a result of Carlitz and Uchiyama [4]. Similarly 

p-i 
I (N(a)}< e(-at) 
a=0 

I e(tiy^y)) 
x,y = 0 

3 3 
x +x-y -y E 0 

P-l , 
I e(t(x3fx)) 

x=0 

P-l , 
I e(t(y3

+y)) 
x,y=0 

x t y 
2 2 

x +xy+y + 1 E 0 

<_ 2p2 + 
P;1 3 
I e(t(y3+y)) 

x,y=0 

x2+xy+y2+l E 0 

P;1 3 
Ï e(t(y3+y)) 

y=0 

3y2+l E 0 

By a result of Bombieri and Davenport [1] the middle term is less than 
1 

or equal to 18p2 + 9 and the last t3rm is clearly less than or equal 

to 2. Putting these estimates together we have 

Pl.1 
I <|>(a)e(-at) 

a=0 

-4-27a2^ 0 

<_ J(28p2 + 13) 

Hence from (4.8) and (4.9) we have 

pA(p) - {L(p-(-3/p)) 

i i P-l 
£ =(28p2 + 13) I 

t=l 

h-1 
I e(tx) 

x=0 

(28p2 + 13)h(p-h) 
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giving 

pA(p) i ^ - fp-(~)) " \(2ZV
l + 13)h(p-h) 

- 3 

2 

-g* " 1 4 h P 

f { h - 8 4 p l ] . 

Choose h = [84p2] + 1, so tha t A(p) > 0 i . e . , 

p-1 
I * (a )H(a ) > 0 . 

a=0 

-4-27a2^ 0 

Hence there exists a, 0 <_ a £ p-1, for which 

-4-27a2 t 0 , <j>(a) > 0 , H(a) > 0 , 

3 
i.e., for which x +x+a is irreducible (mod p) and moreover 

a = x+y , x,y f H , 

so that 

0 <_ a <_ 2(h-l) = 2[84p2] 

Hence 

a (p) <_ 168p2 

as required. 
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(5.1) 

l + P 
THEOREM 5.1. If p4 < h < p 

1 
N2(h ) ~ i hp , as p ôo . 

Proof. x +x+a is irreducible (mod p) if and only if 

l-4a\ _ 

Hence 

h -1 

N2(h ) = \ 1 
* a=l 

IT 5 ) = -' 
h -1 

1 ? ii - (1^)1 - -1 P * 

where 

Z„ = 
1, if there exists a such that 1 _S a £ h -1» 4a E 1 (mod p), 

0, otherwise. 

Thus 
h -1 

h < 2 W + V ~ l I I y (1-4a\l 
" Rp a=0 \ ? / 

As h > p 4 £, by a result of Burgess [2], for any 6 > 0 there 

exists p (<5,e) such that for all p > p we have ro — o 

h -1 
1 ? (l-4a\ 

K Jn\ P/ < 6 , p a=0 

giving 
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THEOREM 4.3. a (p) = 0(p^ + e) 

Proof. Let M(h ) denote the number of integers a with 

i + e 

1 1 a .1 n "^ where p2 _<_ h £ p and D(a) £ 0 (mod p), such that 

x +x+a E 0 (mod p) has exactly two distinct solutions; let L(h ) the 

number of integers a with 1 <_ a _< h -1 and D(a) f 0 (mod p) such 

3 
that y -4ay-l = 0 (mod p) has exactly one root. We have [9] 

(4.10) N4(hp) + M(h ) = L(h ) . 

Similarly to lemmas 2.1 and 2.2, using incomplete character sums in 

place of complete ones, we can show that 

(4.11) L(hp) = \ hp + OCphn p) 

and 

(4.12) M(h ) = \ hp + 0(p
5ln p) . 

(The method is illustrated in [7]). Hence 

(4.13) N4(hp) = \ hp + 0(phn p) . 

1 + £ 
As h >_ p2 , for some e > 0, the term h /4 in (4.13) dominates 

i 
the error term 0(p2ln p) for p >_ p (e) . Hence for p >_ p (e) , 

N.(h ) > 0 i.e., N.(h ) > 1, and so 
4 p 4 p — 

a4(p) £ P i + E . 

5. Asymptotic es t imates for N.(h ) ( i = 2 ,3 ,4) 
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l im ; (2N 2(h ) + l ) -- 1 
p -X» p r r 

4 + e 
As i - 0 o r 1 and h > p we have 

l im rJ? = 0 , 
h 

1 -
2vy h 

P ^oo p 

= 1 , 

establishing (5.1). 

fying 

then 

THEOREM 5.2. Let e > 0 and let h denote an integer satis-p & 

P 1 h p 1 P 5 

(5.2) N3(hp) ~ J 

and 

(5.3) N4(hp) - ^ , as p ^ . 

Proof. (5.2) is established in my paper [6], as I showed there 

(in different notation) that 

N (h ) = h /3 + 0 ( p h n p) . 
o p P 

(5.3) i s contained in the proof of theorem 4 . 3 . 
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ADDENDUM: After this paper was written,- Professor Philip A. Leonard 

of Arizona State University kindly informed me that he had proved my 

P \ 
theorem 2.3 in the form N (p) = - + 0 (p^) , in Norske Vid. Selsk. 

Forh. 40 (1967), 96-97. His paper on factoring quartics (mod p), 

J. Number Theory 1 (1969), 113-115 contains a simple, proof of the results 

of Skolem [9] which I use in this paper. 
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