```
ON TWO CONJECTURES OF CHOWLA
    Kenneth S. Williams
(received February 7, 1968)
```

1. Introduction. Let p denote a prime and n a positive integer ≥ 2. Let $N_{n}(p)$ denote the number of polynomials $x^{n}+x+a$, $\mathrm{a}=1,2, \ldots, \mathrm{p}-1$, which are irreducible $(\bmod p)$. Chowla $[5]$ has made the following two conjectures:

CONJECTURE 1. There is a prime $p_{0}(n)$, depending only on n, such that for all primes $p \geq p_{o}(n)$

$$
\begin{equation*}
N_{n}(p) \geq 1 \tag{1.1}
\end{equation*}
$$

($p_{o}(n)$ denotes the least such prime.)

CONJECTURE 2.

$$
\begin{equation*}
N_{n}(p) \sim \frac{p}{n}, n \xrightarrow[\text { fixed, }]{ } \quad p \rightarrow \infty \tag{1.2}
\end{equation*}
$$

Clearly the truth of conjecture 2 implies the truth of conjecture 1.

Let us begin by noting that both conjectures are true for $n=2$ and $n=3$. When $n=2$ we have

$$
N_{2}(p)= \begin{cases}1 & , \quad p=2, \tag{1.3}\\ \frac{1}{2}(p-1) & p \geq 3,\end{cases}
$$

Canad. Math. Bull. vol. 12, no. 5, 1969
so that we can take $p_{0}(2)=2$. When $n=3$ we have [6]

$$
N_{3}(p)= \begin{cases}1 & , \quad p=2 \tag{1.4}\\ 0 & , \quad p=3 \\ \frac{1}{3}\left(p-\left(\frac{-3}{p}\right)\right. & , p \geq 5\end{cases}
$$

so that $p_{0}(3)=5$.
In this paper I begin by proving that conjecture 2 (and so conjecture 1) is true when $n=4$, i.e., $N_{4}(p) \sim \frac{p}{4}$, as $p \rightarrow \infty$. In fact I prove more, namely,

$$
\begin{equation*}
\left|N_{4}(p)-\frac{p}{4}\right| \leq \frac{19}{4} p^{\frac{1}{2}}+12, \quad p>3 \tag{1.5}
\end{equation*}
$$

This is of course a trivial inequality for small values of p, but it does show that $N_{4}(p) \geq 1$ for $p \geq 457$, so that $p_{0}(4) \leq 457$. It is very unlikely that there is a simple formula for $N_{4}(p)$ (not involving character sums) as there is for $N_{2}(p)$ and $N_{3}(p)$. In proving (1.5) I use some results of Skolem [9] on the factorization of quartics (mod p) and deep estimates of Perel' muter [8] for certain character sums. The method is not applicable for the estimation of $N_{n}(p)$ for $n \geq 5$.

It is of interest to estimate the least value of $a(1 \leq a \leq p-1)$ which makes $x^{n}+x+a$ irreducible $(\bmod p)$. We denote this least value by $a_{n}(p)$. $a_{2}(p)$ exists for all $p, a_{3}(p)$ exists for all $p \neq 3$ and $a_{4}(p)$ exists for $a l l \quad p \geq 457$ (and for other smaller values of p). The existence of $a_{n}(p)$, for all n and all sufficiently large p, would follow from the truth of conjecture 1 .

I conjecture that for each positive integer n there is an infinity of primes p for which $x^{n}+x+1$ is irreducible (mod p). This

CONJECTURE 3. For all $n \geq 2$

$$
\begin{equation*}
\liminf _{p \rightarrow \infty} \quad a_{n}(p)=1 \tag{1.6}
\end{equation*}
$$

This is easily seen to be true when $n=2$ (Theorem 3.1) and I also prove that it is true when $n=3$ (Theorem 3.2). The proof of Theorem 3.2 involves the prime ideal theorem. As regards upper bounds for $a_{n}(p)$, it is shown that $a_{2}(p)=0\left(p^{\frac{1}{4}} \log p\right)$ (Theorem 4.1) follows from a result of Burgess [3], that $a_{3}(p)=0\left(p^{\frac{1}{2}}\right)$ (Theorem 4.2) using a method of Tietäväinen [10], and that $a_{4}(p)=0\left(p^{\frac{1}{2}+\varepsilon}\right) \quad$ (Theorem 4.3) using Skolem's results [9] on quartics. Probably the true order of magnitude of these is much smaller, perhaps even $0\left(p^{\varepsilon}\right)$, for all $\varepsilon>0$.

Finally I conjecture Chowla's conjecture 2 in the stronger form:

CONJECTURE 4. Let $\varepsilon>0$ and let h_{p} denote an integer satisfying

$$
\begin{equation*}
p^{\frac{1}{2}+\varepsilon}+1 \leq h_{p} \leq p . \tag{1.7}
\end{equation*}
$$

Let $N_{n}\left(h_{p}\right)$ denote the number of polynomials $x^{n}+x+a, a=1,2, \ldots$, $h_{p}-1$, which are irreducible $(\bmod p)$. Then

$$
\begin{equation*}
N_{n}\left(h_{p}\right) \sim h_{p /} n, \quad n \text { fixed, } \quad p \rightarrow \infty \tag{1.8}
\end{equation*}
$$

Conjecture 2 is the special case $h_{p}=p$. I prove conjecture 4 when $n=2,3$ and 4 .
2. Estimation of $N_{4}(p)$. As I am only interested in estimating
$N_{4}(p)$ for large values of p, I assume throughout that $p>3$. The factorization of $x^{4}+x+a(\bmod p)$, for $p>3$, depends upon that of $y^{3}-4$ ay $-1 \quad(\bmod p)$. These two polynomials have the same discriminant, namely,

$$
\begin{equation*}
D(a)=256 a^{3}-27 . \tag{2.1}
\end{equation*}
$$

$D(a) \equiv 0(\bmod p)$ is a necessary and sufficient condition for both $x^{4}+x+a$ and $y^{3}-4$ ay -1 to have squared factors (mod p). Let n_{p} denote the number of integers $a, 0 \leq a \leq p-1$, such that $D(a) \equiv 0$ $(\bmod p)$. We have
(2.2) $\quad n_{p}=\left\{\begin{array}{lll}0 & , & \text { if } p \equiv 1(\bmod 3), 2^{(p-1) / 3} \not \equiv 1(\bmod p), \\ 1 & , & \text { if } p \equiv 2(\bmod 3), \\ 3 & , & \text { if } p \equiv 1(\bmod 3), 2^{(p-1) / 3} \equiv 1(\bmod p) .\end{array}\right.$

Let $M(p)$ denote the number of integers a with $1 \leq a \leq p-1$ and $D(a) \not \equiv 0(\bmod p)$ such that $x^{4}+x+a \equiv 0(\bmod p)$ has exactly two distinct solutions, and $L(p)$ the number of integers a with $1 \leq \mathrm{a} \leq \mathrm{p}-1$ and $\mathrm{D}(\mathrm{a}) \not \equiv 0(\bmod \mathrm{p})$ such that $\mathrm{y}^{3}-4$ ay $-1 \equiv 0(\bmod \mathrm{p})$ has exactly one root. By results of Skolem [9] we have

$$
\begin{equation*}
N_{4}(p)+M(p)=L(p) \tag{2.3}
\end{equation*}
$$

LEMMA 2.1.

$$
\left|L(p)-\frac{1}{2}(p-1)\right| \leq p^{\frac{1}{2}}+1
$$

Proof. It is well-known that $y^{3}-4$ ay $-1 \equiv 0(\bmod p)$ has exactly one unrepeated solution y if and only if $\left(\frac{D(a)}{p}\right)=-1$. Hence

$$
\begin{aligned}
& L(p)=\frac{1}{2} \sum_{a=1}^{p-1}\left\{1-\left(\frac{D(a)}{p}\right)\right\} \\
& D(a) \neq 0 \\
&=\frac{p-1}{2}-\frac{1}{2} \sum_{a=0}^{p-1}\left(\frac{D(a)}{p}\right)+\frac{1}{2}\left(\frac{-3}{p}\right)-\frac{1}{2} n_{p} .
\end{aligned}
$$

Now the monic cubic polynomial $2^{-8} \mathrm{D}(\mathrm{a})$ is square free (mod p) so (see for example lemma 1 in [2]) we have

$$
\left|\sum_{a=0}^{p-1}\left(\frac{D(a)}{p}\right)\right| \leq 2 p^{\frac{1}{2}}
$$

giving

$$
\left|L(p)-\frac{1}{2}(p-1)\right| \leq p^{\frac{1}{2}}+1
$$

LEMMA 2. 2.

$$
\left|M(p)-\frac{p}{4}\right| \leq \frac{15}{4} p^{\frac{1}{2}}+\frac{21}{2}
$$

Proof. $x^{4}+x+a \equiv 0(\bmod p)$ has exactly two unrepeated distinct solutions (mod p) if and only if $y^{3}-4 a y-1 \equiv 0(\bmod p)$ has exactly one solution, y_{1} say, such that $\left(\frac{y_{1}}{p}\right)=+1$. Now $y^{3}-$ 4ay $-1 \equiv 0(\bmod p)$ has exactly one unrepeated root if and only if $\left(\frac{D(a)}{p}\right)=-1$. Hence if $\left(\frac{D(a)}{p}\right)=-1$ then

$$
\begin{aligned}
& \frac{1}{2} \sum_{y=1}^{p-1}\left\{1+\left(\frac{y}{p}\right)\right\}= \begin{cases}1, & \text { if the unique root of } y^{3}-4 a y-1 \equiv 0 \\
\text { is a quadratic residue }\end{cases} \\
& 0, \\
& y^{3}-4 a y-1 \equiv 0
\end{aligned} \quad \begin{aligned}
& \text { if the unique root of } y^{3}-4 a y-1 \equiv 0
\end{aligned}
$$

Hence

$$
\begin{aligned}
& M(p)= \frac{1}{2} \sum_{a=1}^{p-1} \sum_{y=1}^{p-1}\left\{1+\left(\frac{y}{p}\right)\right\} \\
&\left(\frac{D(a)}{p}\right)=-1 y^{3}-4 a y-1 \equiv 0 \\
&= \frac{1}{4} \sum_{y=1}^{p-1} \sum_{a=1}^{p-1}\left\{1-\left(\frac{D(a)}{p}\right)\right\}\left\{1+\left(\frac{y}{p}\right)\right\} \\
& a \equiv\left(y^{3}-1\right) / 4 y \\
& D(a) \neq 0 \\
&= \frac{1}{4} \sum_{y=1}^{p-1}\left\{1-\left(\frac{y^{4} D\left(\left(y^{3}-1\right) / 4 y\right)}{p}\right)\right)\left\{1+\left(\frac{y}{p}\right)\right\} \\
& y^{3} \neq 1 \\
& D\left(\left(y^{3}-1\right) / 4 y\right) \neq 0 \\
&= \frac{1}{4} \sum_{y=0}^{p-1}\left\{1-\left(\frac{y^{4} D\left(\left(y^{3}-1\right) / 4 y\right)}{p}\right)\left\{1+\left(\frac{y}{p}\right)\right\}+A,\right.
\end{aligned}
$$

where $|\mathrm{A}| \leq 8$. Now as $\sum_{y=0}^{p-1}\left(\frac{y}{p}\right)=0$,
$\sum_{y=0}^{p-1}\left\{1-\left(\frac{y^{4} D\left(\left(y^{3}-1\right) / 4 y\right)}{p}\right)\right\}\left\{1+\left(\frac{y}{p}\right)\right\}=p-S_{0}-S_{1} \quad$,
where

$$
\begin{equation*}
S_{i}=\sum_{y=0}^{p-1}\left(\frac{y^{4+i} D\left(\left(y^{3}-1\right) / 4 y\right)}{p}\right), i=0,1, \tag{2.4}
\end{equation*}
$$

so

$$
\begin{equation*}
M(p)=\frac{1}{4}\left(p-S_{0}-S_{1}\right)+A . \tag{2.5}
\end{equation*}
$$

Suppose that
$2^{-2} y^{4} D\left(\left(y^{3}-1\right) / 4 y\right) \equiv\left(y^{9}-3 y^{6}-2^{-2} \cdot 15 y^{3}-1\right) y \equiv\{f(y)\}^{2} g(y)(\bmod p)$,
where $f(y)$ is a polynomial of degree $d \quad(0 \leq d \leq 5)$ and $g(y)$ is a square-free polynomial of degree $e(0 \leq e \leq 10)$. Clearly $2 \mathrm{~d}+\mathrm{e}=10$. As $y \mid\{f(y)\}^{2} g(y), y^{2} \nmid\{f(y)\}^{2} g(y)$ we have $y \nmid f(y), y \mid g(y)$ so that $e \neq 0$. Hence $e=2,4,6,8$ or 10 .

Now

$$
\begin{aligned}
& S_{0}=\sum_{y=0}^{p-1}\left(\frac{\{f(y)\}^{2} g(y)}{p}\right) \\
&=\sum_{y=0}^{p-1}\left(\frac{g(y)}{p}\right)-\sum_{\substack{y=0}}^{p-1}\left(\frac{g(y)}{p}\right) . \\
& f(y) \equiv 0
\end{aligned}
$$

Clearly

$$
\left|\sum_{\substack{y=0 \\ f(y) \equiv 0}}^{p-1}\left(\frac{g(y)}{p}\right)\right| \leq d \leq 4
$$

and by Perel' muter's results [8]

$$
\left|\sum_{y=0}^{p-1}\left(\frac{g(y)}{p}\right)\right| \leq(e-2) p^{\frac{1}{2}}+1 \leq 8 p^{\frac{1}{2}}+1
$$

Hence

$$
\begin{equation*}
\left|S_{o}\right| \leq 8 p^{\frac{1}{2}}+5 \tag{2.6}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left|S_{1}\right| \leq 7 p^{\frac{1}{2}}+5 \tag{2.7}
\end{equation*}
$$

Putting (2.5), (2.6) and (2.7) together we obtain

$$
|M(p)-p / 4| \leq \frac{15}{4} p^{\frac{1}{2}}+\frac{21}{2} .
$$

From (2.3) and lemmas 2.1 and 2.2 we have

THEOREM 2.3. $\left|N_{4}(p)-\frac{p}{4}\right|<\frac{19}{4} p^{\frac{1}{2}}+12$.
3. Calculation of $\liminf _{p \rightarrow \infty} a_{n}(p)$ for $n=2$ and 3 .

THEOREM 3.1.

$$
\liminf _{p \rightarrow \infty} a_{2}(p)=1
$$

Proof. $x^{2}+x+1$ is irreducible $(\bmod p)$ if and only if $\left(\frac{-3}{p}\right)=-1$, that is, for all primes $p \equiv 2(\bmod 3)$.

THEOREM 3.2 .

$$
\liminf _{p \rightarrow \infty} a_{3}(p)=1
$$

Proof. We suppose that $\liminf a_{3}(p) \neq 1$. Hence there are only a finite number of primes such that $x^{3}+x+1$ is irreducible $(\bmod p)$. Thus there is a prime p_{o} such that for all primes $p>p_{o}, x^{3}+x+1$ is reducible $(\bmod p)$. The discriminant of $x^{3}+x+1$ is -31 , so $x^{3}+x+1$ has a squared factor $(\bmod p)$ if and only if $p=31$. Hence for all $p>p_{1}=\max \left(p_{0}, 31\right), x^{3}+x+1$ is reducible $(\bmod p)$ into distinct factors. Let $v(p)$ denote the number of incongruent solutions $x(\bmod p)$ of $x^{3}+x+1 \equiv 0(\bmod p)$. Then

$$
\begin{equation*}
v(p)=1 \text { or } 3 \text { for all } p>p_{1} \tag{3.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
P_{i}(x)=\left\{p \mid p_{1}<p \leq x, v(p)=i\right\} \quad(i=1 \quad \text { or } 3) \tag{3.2}
\end{equation*}
$$

so that

$$
P_{1}(x) \cap P_{3}(x)=\emptyset
$$

and

$$
P_{1}(x) \cup P_{3}(x)=\left\{p \mid p_{1}<p \leq x\right\}
$$

Let $n\left(P_{i}(x)\right)(i=1$ or 3$)$ denote the number of primes in $P_{i}(x)$ so

$$
\begin{equation*}
\mathrm{n}\left(\mathrm{P}_{1}(\mathrm{x})\right)+\mathrm{n}\left(\mathrm{P}_{3}(\mathrm{x})\right)=\pi(\mathrm{x})-\pi\left(\mathrm{p}_{1}\right) \tag{3.3}
\end{equation*}
$$

where $\pi(t)$ denotes the number of primes $\leq t$. Hence

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\ln x}{x}\left(n_{1}\left(P_{1}(x)\right)+n\left(P_{3}(x)\right)\right)=1 \tag{3.4}
\end{equation*}
$$

by the prime number theorem. Now

$$
\begin{aligned}
\sum_{1}<p \leq(p) & =\sum_{1} \sum_{1} v(p)+p^{\sum} \leq x<p_{1}<p \leq x(p) \\
& v(p)=1 \quad v(p)=3 \\
= & n\left(P_{1}(x)\right)+3 n\left(P_{3}(x)\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\ln x}{x}\left\{n\left(P_{1}(x)\right)+3 n\left(P_{3}(x)\right)\right\} \tag{3.5}
\end{equation*}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\ln x}{x} p_{1} \sum_{p \leq x} v(p) \\
& =\lim _{x \rightarrow \infty} \frac{\ln x}{x} \sum_{p \leq x} v(p) \\
& =1
\end{aligned}
$$

by the prime ideal theorem, as $x^{3}+x+1$ is irreducible over the integers. Hence from (3.4) and (3.5) we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\ln x}{x} n\left(P_{1}(x)\right)=1 \tag{3.6}
\end{equation*}
$$

Now $x^{3}+x+1 \equiv 0(\bmod p)$ has exactly one distinct root if and only if $\left(\frac{-31}{p}\right)=-1$ so

$$
\begin{aligned}
n\left(p_{1}(x)\right)= & p_{1}<p_{p} \\
& \left(\frac{-31}{p}\right)=-1 \\
= & \frac{1}{2} p_{1}<\sum_{p \leq x}\left\{1+\left(\frac{-31}{p}\right)\right\} \\
& +\frac{1}{2}\left\{\pi(x)-\pi\left(p_{1}\right)\right\}+\frac{1}{2} p_{1}<\sum_{p \leq x}\left(\frac{-31}{p}\right)
\end{aligned}
$$

giving

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\ln x}{x} n\left(P_{1}(x)\right)=\frac{1}{2} \tag{3.7}
\end{equation*}
$$

$$
p_{1}<\sum_{p \leq x}\left(\frac{-31}{p}\right)=o(x / \ln x) .
$$

(3.6) and (3.7) give the required contradiction.
4. Upper bounds for $a_{n}(p), n=2,3,4$.

We now obtain upper bounds for $a_{2}(p), a_{3}(p)$ and $a_{4}(p)$.
THEOREM 4.1. $\quad a_{2}(p)=0\left(p^{\frac{1}{4}} \ln p\right)$.
Proof. $x^{2}+x+a$ is irreducible (mod p) if and only if
$\left(\frac{1-4 a}{p}\right)=-1$. Hence, as $a_{2}(p)$ is the least such positive $a,\left(\frac{1-4 a}{p}\right)=$ +1 , for $a=1,2, \ldots, a_{2}(p)-1$, except if smallest positive solution b of $4 b \equiv 1(\bmod p)$ satisfies $1 \leq b<a_{2}(p)$, in which case the Legendre symbol corresponding to $a=b$ is zero. We consider two cases, according as $b \geq a_{2}(p)$ or $1 \leq b<a_{2}(p)$. If $b \geq a_{2}(p)$

$$
\begin{equation*}
\left(\frac{-b+a}{p}\right)=\left(\frac{-I}{p}\right)\left(\frac{b-a}{p}\right)=\left(\frac{-I}{p}\right)\left(\frac{4 b-4 a}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{1-4 a}{p}\right)=\left(\frac{-1}{p}\right) \tag{4.1}
\end{equation*}
$$

for $a=1,2, \ldots, a_{2}(p)-1$ so that

$$
\begin{equation*}
\left\{-b+1,-b+2, \ldots,-b+a_{2}(p)-1\right\} \tag{4.2}
\end{equation*}
$$

is a sequence of $a_{2}(p)-1$ consecutive quadratic residues (mod p) if $p \equiv 1(\bmod 4)$ and a sequence of $a_{2}(p)-1$ quadratic non-residues if $p \equiv 3(\bmod 4)$. Burgess [3] has proved that the maximum number of consecutive quadratic residues or non-residues (mod p) is $0\left(p^{\frac{1}{4}} \ln p\right)$. Hence $a_{2}(p)-1=0\left(p^{\frac{1}{4}} \ln p\right)$, that is, $a_{2}(p)=0\left(p^{\frac{1}{4}} \ln p\right)$, as required.

If $1 \leq b<a_{2}(p)$, we consider in place of (4.2) the longer of the two sequences $-b+1,-b+2, \ldots,-1$ and $1,2, \ldots,-b+a_{2}(p)-1$; it contains at least $\frac{a_{2}(p)}{2}-1$ terms.

THEOREM 4.2. $\quad a_{3}(p)=0\left(p^{\frac{1}{2}}\right)$.

Proof. Let $N(a)$ denote the number of solutions x of the congruence

$$
x^{3}+x+a \equiv 0(\bmod p)
$$

Clearly $N(a)=0,1,2$ or 3. Set

$$
\begin{equation*}
\phi(a)=\frac{1}{3}\{1-N(a)\}\{3-N(a)\} . \tag{4.3}
\end{equation*}
$$

Now $N(a)=2$ if and only if $-4-27 a^{2} \equiv 0(\bmod p)$ hence
(4.4) $\phi(a)=\left\{\begin{aligned} 1, & \text { if } x^{3}+x+a \text { is irreducible }(\bmod p), \\ 0, & \text { if } x^{3}+x+a \text { is reducible }(\bmod p),-4-27 a^{2} \neq 0, \\ -\frac{1}{3}, & \text { if } x^{3}+x+a \text { is reducible }(\bmod p),-4-27 a^{2} \equiv 0 .\end{aligned}\right.$

Let h denote an integer such that $1 \leq h \leq \frac{1}{2}(p+1)$, so that $0 \leq h-1 \leq \frac{1}{2}(p-1)$. Set $H=\{0,1,2, \ldots, h-1\}$ and write $H(a),(a=0$, $1,2, \ldots, p-1)$, for the number of solutions of

$$
x+y \equiv a(\bmod p) \quad, \quad x \varepsilon H, y \varepsilon H .
$$

We set

$$
\begin{equation*}
A(p)=\sum_{a=0}^{p-1} \phi(a) H(a) . \tag{4.5}
\end{equation*}
$$

Now

$$
\begin{equation*}
p H(a)=\sum_{t=0}^{p-1} \sum_{x=0}^{p-1} \sum_{y=0}^{p-1} e\{t(x+y-a)\} \tag{4.6}
\end{equation*}
$$

where $e(\nu)=\exp (2 \pi i v / p)$. Hence
(4.7)

$$
\begin{aligned}
& p A(p)=\left.\sum_{t=0}^{p-1}\left\{\sum_{a=0}^{p-1} \phi(a) e(-a t)\right) \int_{\mid}^{h-1} \sum_{x=0}^{h} e(t x)\right\}^{2}, \\
&-4-27 a^{2} \neq 0
\end{aligned}
$$

which gives, on picking out the term with $t=0$,
(4.8)

$$
\begin{aligned}
& \left|p A(p)-h^{2} \sum_{a=0}^{p-1} \phi(a)\right| \\
& =\left|\sum_{t=1}^{p-1}\left\{\sum_{a=0}^{p-1} \phi(a) e(-a t)\right\}\left\{\sum_{x=0}^{h-1} e(t x)\right\}^{2}\right| \\
& -4-27 a^{2} \not \equiv 0 \\
& \leq \sum_{t=1}^{p-1}\left|\sum_{a=0}^{p-1} \quad \phi(a) e(-a t)\right|\left|\sum_{x=0}^{h-1} e(t x)\right|^{2} .
\end{aligned}
$$

We note that from (4.4) and (1.4) we have

$$
\begin{equation*}
\sum_{a=0}^{p-1} \phi(a)=N_{3}(p)=\frac{1}{3}\left\{p-\left(\frac{-3}{p}\right)\right\} . \tag{4.9}
\end{equation*}
$$

Now
$\left|\begin{array}{ll}\sum_{a=0}^{p-1} & \phi(a) e(-a t) \\ -4-27 a^{2} \equiv 0\end{array}\right|=\left|\begin{array}{ll}p-1 & \sum_{a=0}^{p-1} \phi(a) e(-a t) \\ \sum_{a=0} & \phi(a) e(-a t) \\ -4-27 a^{2} \equiv 0\end{array}\right|$

$$
\leq\left|\sum_{a=0}^{p-1} \phi(a) e(-a t)\right|+\frac{2}{3}
$$

For $t=1,2, \ldots, p-1$

$$
\begin{aligned}
\sum_{a=0}^{p-1} \phi(a) e(-a t) & =\sum_{a=0}^{p-1} \frac{1}{3}\{1-N(a)\}\{3-N(a)\} e(-a t) \\
& =\sum_{a=0}^{p-1} e(-a t)-\frac{4}{3} \sum_{a=0}^{p-1} N(a) e(-a t)+\frac{1}{3} \sum_{a=0}^{p-1}\{N(a)\}^{2} e(-a t) \\
& =\frac{1}{3} \sum_{a=0}^{p-1}\{N(a)\}^{2} e(-a t)-\frac{4}{3} \sum_{a=0}^{p-1} N(a) e(-a t),
\end{aligned}
$$

as $\sum_{a=0}^{p-1} e(-a t)=0$, when $t \not \equiv 0(\bmod p)$. Now

$$
\begin{aligned}
\left|\sum_{a=0}^{p-1} N(a) e(-a t)\right| & =\left|\sum_{a=0}^{p-1}\left\{\frac{1}{p} \sum_{x, u=0}^{p-1} e\left(u\left(x^{3}+x+a\right)\right)\right\} e(-a t)\right| \\
& =\left\lvert\, \frac{1}{p} \sum_{x, u=0}^{p-1} e\left(u\left(x^{3}+x\right)\left|\sum_{a=0}^{p-1} e(a(u-t))\right|\right.\right. \\
& =\mid \sum_{x=0}^{p-1} e\left(t\left(x^{3}+x\right) \mid\right. \\
& \leq 2 p^{\frac{1}{2}}
\end{aligned}
$$

by a result of Carlitz and Uchiyama [4]. Similarly

$$
\begin{aligned}
& \left|\sum_{a=0}^{p-1}\{N(a)\}^{2} e(-a t)\right|=\left|\begin{array}{c}
p-1 \\
\sum_{x, y}=0 \\
x^{3}+x-y^{3}-y \equiv 0
\end{array} \quad e\left(t\left(y^{3}+y\right)\right)\right| \\
& \leq\left|\sum_{x=0}^{p-1} e\left(t\left(x^{3}+x\right)\right)\right|+\left|\sum_{\substack{p, y=0 \\
x \neq y}}^{p-1} e\left(t\left(y^{3}+y\right)\right)\right| \\
& x^{2}+x y+y^{2}+1 \equiv 0 \\
& \leq 2 p^{\frac{1}{2}}+\left|\begin{array}{c}
\sum_{x, y=0}^{p-1} e\left(t\left(y^{3}+y\right)\right) \\
x^{2}+x y+y^{2}+1 \equiv 0
\end{array}\right|+\left|\begin{array}{c}
\sum_{y=0}^{p-1} e\left(t\left(y^{3}+y\right)\right) \\
3 y^{2}+1 \equiv 0
\end{array}\right|
\end{aligned}
$$

By a result of Bombieri and Davenport [1] the middle term is less than or equal to $18 p^{\frac{1}{2}}+9$ and the last $t a r m$ is clearly less than or equal to 2. Putting these estimates together we have

$$
\left|\begin{array}{l}
\sum_{a=0}^{p-1} \phi(a) e(-a t) \\
-4-27 a^{2} \neq 0
\end{array}\right| \leq \frac{1}{3}\left(28 p^{\frac{1}{2}}+13\right) .
$$

Hence from (4.8) and (4.9) we have

$$
\begin{aligned}
& \left|p A(p)-\frac{h^{2}}{3}(p-(-3 / p))\right| \\
& \leq \frac{1}{3}\left(28 p^{\frac{1}{2}}+13\right) \sum_{t=1}^{p-1}\left|\sum_{x=0}^{h-1} e(t x)\right|^{2} \\
& =\frac{1}{3}\left(28 p^{\frac{1}{2}}+13\right) h(p-h)
\end{aligned}
$$

giving

$$
\begin{aligned}
p A(p) & \geq \frac{h^{2}}{3}\left(p-\left(\frac{-3}{p}\right)\right)-\frac{1}{3}\left(28 p^{\frac{1}{2}}+13\right) h(p-h) \\
& \geq \frac{h^{2} p}{6}-14 h p^{3 / 2} \\
& =\frac{p h}{6}\left\{h-84 p^{\frac{1}{2}}\right\}
\end{aligned}
$$

Choose $h=\left[84 p^{\frac{1}{2}}\right]+1$, so that $A(p)>0$ i.e.,

$$
\sum_{a=0}^{p-1} \phi(a) H(a)>0 .
$$

Hence there exists $a, 0 \leq a \leq p-1$, for which

$$
-4-27 \mathrm{a}^{2} \not \equiv 0, \quad \phi(\mathrm{a})>0, \quad \mathrm{H}(\mathrm{a})>0
$$

i.e., for which $x^{3}+x+a$ is irreducible (mod p) and moreover

$$
a=x+y, \quad x, y \in H
$$

so that

$$
0 \leq a \leq 2(h-1)=2\left[84 p^{\frac{1}{2}}\right]
$$

Hence

$$
a_{3}(p) \leq 168 p^{\frac{1}{2}}
$$

as required.

THEOREM 5.1. If $\mathrm{p}^{\frac{1}{4}+\varepsilon}<\mathrm{h}_{\mathrm{p}} \leq \mathrm{p}$,

$$
\begin{equation*}
N_{2}\left(h_{p}\right) \sim \frac{1}{2} h_{p} \quad, \quad \text { as } p \rightarrow \infty \tag{5.1}
\end{equation*}
$$

Proof. $x^{2}+x+a$ is irreducible (mod p) if and only if

$$
\left(\frac{1-4 a}{p}\right)=-1
$$

Hence

$$
\begin{gathered}
N_{2}\left(h_{p}\right)=\sum_{a=1}^{h_{p}^{-1}} 1 \\
\left(\frac{1-4 a}{p}\right)=-1 \\
=\frac{1}{2} \sum_{a=0}^{h_{p}^{-1}}\left\{1-\left(\frac{1-4 a}{p}\right)\right\}-\frac{1}{2} \ell_{p},
\end{gathered}
$$

where

$$
\ell_{p}= \begin{cases}1, & \text { if there exists a such that } 1 \leq a \leq h_{p}-1,4 a \equiv 1(\bmod p), \\ 0, & \text { otherwise. }\end{cases}
$$

Thus

$$
\left|\frac{1}{\bar{h}_{p}}\left(2 N_{2}\left(h_{p}\right)+\ell_{p}\right)-1\right|=\frac{1}{h_{p}}\left|\sum_{a=0}^{h^{-1}}\left(\frac{1-4 a}{p}\right)\right|
$$

As $h_{p}>p^{\frac{1}{4}+\varepsilon}$, by a result of Burgess [2], for any $\delta>0$ there exists $p_{o}(\delta, \varepsilon)$ such that for all $p \geq p_{o}$ we have

$$
\left|\frac{1}{\bar{h}} \sum_{p} \sum_{a=0}^{h_{p}^{-1}}\left(\frac{1-4 a}{p}\right)\right|<\delta
$$

giving

THEOREM 4.3.

$$
a_{4}(p)=0\left(\underline{p}^{\frac{1}{2}+\varepsilon}\right)
$$

Proof. Let $M\left(h_{p}\right)$ denote the number of integers a with $1 \leq a \leq h_{p}-1$, where $p^{\frac{1}{2}+\varepsilon} \leq h_{p} \leq p$ and $D(a) \neq 0(\bmod p)$, such that $x^{4}+x+a \equiv 0(\bmod p)$ has exactly two distinct solutions; let $L\left(h_{p}\right)$ the number of integers a with $1 \leq a \leq h_{p}-1$ and $D(a) \not \equiv 0(\bmod p)$ such that $y^{3}-4 a y-1 \equiv 0(\bmod p)$ has exactly one root. We have [9]

$$
\begin{equation*}
N_{4}\left(h_{p}\right)+M\left(h_{p}\right)=L\left(h_{p}\right) \tag{4.10}
\end{equation*}
$$

Similarly to lemmas 2.1 and 2.2 , using incomplete character sums in place of complete ones, we can show that

$$
\begin{equation*}
L\left(h_{p}\right)=\frac{1}{2} h_{p}+0\left(p^{\frac{1}{2}} 1 n p\right) \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left(h_{p}\right)=\frac{1}{4} h_{p}+0\left(p^{\frac{1}{2}} \ln p\right) . \tag{4.12}
\end{equation*}
$$

(The method is illustrated in [7]). Hence

$$
\begin{equation*}
N_{4}\left(h_{p}\right)=\frac{1}{4} h_{p}+0\left(p^{\frac{1}{2}} 1 n p\right) . \tag{4.13}
\end{equation*}
$$

As $h_{p} \geq p^{\frac{1}{2}+\varepsilon}$, for some $\varepsilon>0$, the term $h_{p} / 4$ in (4.13) dominates the error term $0\left(p^{\frac{1}{2}} \ln p\right)$ for $p \geq p_{0}(\varepsilon)$. Hence for $p \geq p_{o}(\varepsilon)$, $N_{4}\left(h_{p}\right)>0$ i.e., $N_{4}\left(h_{p}\right) \geq 1$, and so

$$
a_{4}(p) \leq p^{\frac{1}{2}+\varepsilon} .
$$

5. Asymptotic estimates for $N_{i}\left(h_{p}\right)(i=2,3,4)$

$$
\lim _{p \rightarrow \infty}{\underset{h}{p}}^{1}\left(2 N_{2}\left(h_{p}\right)+\ell_{p}\right)=1
$$

As $\ell_{p}=0$ or 1 and $h_{p}>p^{\frac{1}{4}+e}$ we have

$$
\lim _{p \rightarrow \infty} \frac{\ell_{p}}{h_{p}}=0
$$

so

$$
\lim _{p \rightarrow \infty} \frac{2 N_{2}\left(h_{p}\right)}{h_{p}}=1
$$

establishing (5.1).

THEOREM 5.2. Let $\varepsilon>0$ and let h_{p} denote an integer satisfying

$$
\mathrm{p}^{\frac{1}{2}+\varepsilon} \leq \mathrm{h}_{\mathrm{p}} \leq \mathrm{p}
$$

then

$$
\begin{equation*}
N_{3}\left(h_{p}\right) \sim \frac{h_{p}}{3} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{4}\left(h_{p}\right) \sim \frac{h_{p}}{4} \quad, \quad \text { as } \quad p \rightarrow \infty \tag{5.3}
\end{equation*}
$$

Proof. (5.2) is established in my paper [6], as I showed there (in different notation) that

$$
N_{3}\left(h_{p}\right)=h_{p} / 3+0\left(p^{\frac{1}{2}} \ln p\right)
$$

(5.3) is contained in the proof of theorem 4.3.

REFERENCES

1. E. Bombieri and H. Davenport, On two problems of Mordell. Amer. J. Math. 88 (1966) 61-70.
2. D.A. Burgess, The distribution of quadratic residues and nonresidues. Mathematika 4 (1957) 106-112.
3. D.A. Burgess, A note on the distribution of residues and nonresidues. Jour. Lond. Math. Soc. 38 (1963) 253-256.
4. L. Carlitz and S. Uchiyama, Bounds for exponential sums. Duke Math. J. 24 (1957) 37-41.
5. S. Chowla, A note on the construction of finite Galois fields $G F\left(p^{n}\right)$. Jour. Math. Anal. Appl. 15 (1966) 53-54.
6. K. McCann and K.S. Williams, On the residues of a cubic polynomial (mod p). Canad. Math. Bull. 10 (1967) 29-38.
7. K. McCann and K. S. Williams, The distribution of the residues of a quartic polynomial. Glasgow Math. J. 8 (1967) 67-88.
8. G.I. Perel'muter, On certain sums of characters. Uspehi Mat. Nauk. 18 (1963) 145-149.
9. Th. Skolem, The general congruence of $4^{\text {th }}$ degree modulo p, p prime. Norske Mat. Tidsskr. 34 (1952) 73-80.
10. A. Tietäväinen, On non-residues of a polynomial. Ann. Univ. Turku. Ser A 194 (1966) 3-6.

Carleton University
Ottawa

ADDENDUM: After this paper was written, Professor Philip A. Leonard of Arizona State University kindly informed me that he had proved my theorem 2.3 in the form $N_{4}(p)=\frac{p}{4}+0\left(p^{\frac{1}{2}}\right)$, in Norske Vid. Selsk. Forh. 40 (1967), 96-97. His paper on factoring quartics (mod p), J. Number Theory 1 (1969), 113-115 contains a simple proof of the results of Skolem [9] which I use in this paper.

