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CORES OF POTENTIAL OPERATORS FOR
PROCESSES WITH STATIONARY
INDEPENDENT INCREMENTS

KEN-IΊΊ SATO

1. Introduction.

Let Xt((o) be a stochastic process with stationary independent in-
crements on the iV-dimensional Euclidean space RN, right continuous in
t >̂ 0 and starting at the origin. Let C0(RN) be the Banach space of
real-valued continuous functions on RN vanishing at infinity with norm
11/11 = sup I/(#)(. The process induces a transition semigroup of oper-
ators Tt on C0(RN):

TJ(x) = Ef(x + Xt) .

The semigroup is strongly continuous. Let A be the infinitesimal gener-
ator of the semigroup, and /;, λ > 0, be the resolvent. The potential
operator V in Yosida's sense [7] is defined by Vf — lim JJ (limit in the
strong topology) if and only if the set of / for which the limit exists
is dense. If V is defined, then A is one-to-one, V = —A"1, and hence
V is a closed operator (see [7] or [4]). It is proved in [4] that the semi-
group Tt admits a potential operator except if Xt = 0 with probability
one. A subset SK of ®(7) is called a core of V, if for each /eS)(V)
there is a sequence {fn} in -3JI such that fn —> / and Vfn -* Vf strongly.
The purpose of this paper is to describe cores of the potential operator V.
An importance of finding cores of V lies in the fact that the operator V
considered only on a core is enough to determine the semigroup. That
is, if two strongly continuous semigroups Γβ

(1) and Tf* have potential
operators Va) and F(2), respectively, and if Vω and V(2) coincide on a
common core, then T^ and Tl2) are identical.

Let Σ be the collection of points x such that for each open neigh-
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130 KEN-ITI SATO

borhood B of x there is a t > 0 satisfying P(Xt e δ ) > 0 . Let © be the

smallest closed subgroup which includes Σ. Let M be the collection of

measures μ on the Borel sets in RN such that μ is finite for compact sets

and is invariant under translation by every x e ©. Let Cκ = CK(RN)

denote the set of continuous functions on RN with compact supports.

We will prove the following (Theorem 4.1): // the process is transient,

then the set of functions feCκ such that

(1.1) f(x)μ(dx) = 0 for every μeM

is a core of the potential operator 7 . Under the conditions © = RN and

E\Xt\
a < oo, we will make refinement of the above result (Theorem 5.1).

Namely, we will prove that certain smaller sets are cores of V. We will

further obtain similar results in recurrent non-singular case (Theorems

6.1 and 6.2), using results of Port and Stone [2]. If a moment of higher

order exists, we can choose a smaller set as a core. This is not un-

natural considering the following fact obtained from Port and Stone [2]:

Suppose N = 1 and © = RN. Then ©(7) Π Cκ is related with the ex-

istence of the first or second order moment. More precisely, let SK0 be

the set of functions / e Cκ{Rι) such that f(x)dx = 0, and Wι be the set

of feCxiR1) such that /(#)<£# = /(#)#(ϊ# = 0. In transient case,

] C ^ if

c
and in recurrent non-singular case,

SR, if EXt

2 < oo ,
c' = m, a EX,'= oo.

The following notations are used throughout this paper: d is the dimen-

sion of © m is a Haar measure of © v is the Levy measure (see Theo-

rem 2.1); CK = Cχ(RN) is the set of C°° functions on RN with compact

s u p p o r t s x = (x19 - 9 x N ) a n d \x\ = (xf + + xNψ2 B a = {y:\y\< a],

the open ball in RN with radius a and center at the origin; especially

Bγ is the open unit ball Bc

a is the complement of Ba χB is the indicator

function of a set B B + x is the set {y + x: y e B} B — x — B + (—x)

B + C = {y + z:yeB and zeC}; and B\C is the intersection of B and

the complement of C.
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CORES OF POTENTIAL OPERATORS 131

2. Infinitesimal generators.

An explicit expression of Au for nice functions u has been known

essentially from 1930s. We need the following result.

THEOREM 2.1. Let A be the infinitesimal generator in CQ(RN) of the

transition semigroup of a right continuous process with stationary inde-

pendent increments. Then, C% c 2)(A) and C% is a core of A. For each

u e CK, AU is of the form

N Άhi N Άn
Au{x) = Σ aij-^~(x) + Σ b^(x)

dd d

Σ

where atj and bt are constants, (αίy) is a symmetric nonnegative definite

matrix, and v is a measure on RN\{0} satisfying

< ί \y\2v{dy) < oo .
J B{\{0}

The constants aίj9 bt and the measure v are uniquely determined by A.

Conversely, for every choice of such aij9 bt and v, we can find a corre-

sponding A.

The measure v is called Levy measure. A proof of the above theo-

rem is given in [3]. Another proof is as follows: Let C^ be the set of

C°° functions whose derivatives of all orders belong to C0(RN). By Theo-

rems 1 and 2 of Courrege [1], CQ is included in ®(A) and, for each

ue Co, Au(x) is of the form (2.1). Since Cj3 is dense and mapped by Tt

into itself, Cj° is a core of A by Lemma 2.2 of Shinzo Watanabe [6].

For each ueC^, it is easy to find a sequence un e Cζ such that un -> u,

dUn/dXi-^du/dXi and d2un/dXiXj -> d2u/dXidXj strongly for all i and j . It

follows from (2.1) that Aun -* Au strongly. Hence Cj is a core of A.

The converse part is obtained from Theorem 4 of [1].

As we pointed out in Introduction, a potential operator V is associ-

ated with A, unless Xt = 0 with probability one, that is, unless A is the

zero operator. Since V = —A~\ the following result is immediate.

COROLLARY 2.1. The set {Au:ueC%} is a core of V.
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132 KEN-ITI SATO

3. General lemmas.

In this section Xt(ω) is the process described in Introduction and no
further conditions are imposed. We will give lemmas which we need in
the following sections.

LEMMA 3.1. // μeM9 feC0(RN), and f is μ-integrable, then Jλf is
μ-integrable and

(3.1) λjjj(x)μ(dx) = ̂ f(x)μ(dx) .

Hence every μe M is an invariant measure for the process.

Proof. It suffices to prove (3.1) for / ^ 0. Let κx be a probability
measure defined by

Kλ{B) = λΓe~λtP(XteB)dt .
Jo

Then κλ is supported in Σ, and

λJJ(x) =

It follows from μe M that

(3.2) jf(x + y)μ(dx) = jf(x)μ(dx) for y e ® .

Hence we have (3.1) by Fubini's theorem.

LEMMA 3.2. Let μeMand %eS(A). If u and Au are μ-integrable,
then Au has μ-ίntegral null.

Proof. We have

AwC*0μ(cZa;) = λ\JxAu(x)μ{dx) = λ2\Jλu(x)μ(dx) — λ \u(x)μ(dx) = 0

by Lemma 3.1.

LEMMA 3.3. The Levy measure v is supported in Σ.

Proof. The set Σ obviously contains the origin. Suppose that x° is
a point ^0 in the support of v. Given ε such that 0 < ε < \x\ let v(1)

be the restriction of v to x° + Be, and let
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CORES OF POTENTIAL OPERATORS 133

Aωu(x) = Unix + V) - u(x))v(l\dy) , A{2)u(x) = Au(x) - Aωu(x)

for w e C£. We can assume Xt = Z<x) + Z f , where Z,(1) and Z<2) are in-

dependent processes generated by Aω and A(2), respectively. Let /3 be

the total mass of i/υ : β = v(#° + JB6) > 0. The process X^ is a compound

Poisson with jumping measure /3~Vυ, that is, Z ^ = Σζ^Zn, where {Zn}

are independent identically distributed random variables, each Zn has

distribution /3~Vυ, and Yt is a Poisson process with mean EYt = /3£, in-

dependent of {Zw}. We have

P(\Xt - x°\ < 2e) ^ P ( | Z ^ - X«\ < ε)P(|Zf)| < e) ,

- x°\ < ε) ^ P(Yt = 1)P(\ZX - ^ ° | < ε) > 0 ,

and also P(|Z t

( 2 ) | < ε) > 0 for small t > 0. Hence a;oe2 and the lemma

is proved.

LEMMA 3.4. // u is in Cκ(RN) with support in Ba, then

(3.3) Au(x) = 0 for xe% + Ba

(3.4) \Au(x)\ ^ \\u\\v(Ba - x) for x e Ba ,

and

ί |a; + ^ | α | A ^ + y)\μ(dy)
(3.5) J u + 2 " - δ

f (α + |^|)αv(^) sup

for an arbitrary measure μ on RN, x e RN, b > α, and a ^ 0.

Proo/. The assertion (3.3) follows from (3.4) by Lemma 3.3. We

have from Theorem 2.1

(3.6) Au(x) = \u(x + y)v(dy) for a ;gβ f t ,

which implies (3.4). Let us prove (3.5). We may assume x = 0, because

for a general # we need only consider μx defined by μx{B) = /i(J5 — aj)

instead of μ. We have

f \y\"\Au(y)\μ(dy)^\\u\\\ \y\«v(Ba -

(3.7) J * g

 Λ Λ

 J £ g

y\aXBa(v + z)μ(&y)
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134 KEN-ITI SATO

by using (3.4), Lemma 3.3 and Fubini's theorem. If y + z e Ba and y e Bc

b,

then \z\ > b — a and \y\ < \z\ + a. Hence the last member in (3.7) is

not larger than

||tt||f
JΣΓ\BS

(\z\ + a)«μ(Ba - zMdz) ,

from which follows (3.5) for x = 0. The proof is complete.

LEMMA 3.5. // ueC% and μeM, then An is μ-integrable and has

μ-integral null.

Proof. Suppose that u has support in Ba. We use the estimate (3.5)

with x = 0 and a — 0. Since

sup (Ba + y) = μ(Ba) < oo ,

the right-hand side of (3.5) is finite. Hence Au is μ-integrable. The

^-integral vanishes by Lemma 3.2.

LEMMA 3.6. Let feCκ(RN). Then, (1.1) holds if and only if

(3.8) ί fix + y)m(dy) = 0 for every xeRN .

Proof. Since for every x e RN a measure mx defined by mx(B) =

m((B — x) Π @5) is a member of M, (1.1) implies (3.8). Let us prove the

converse. We can find a Borel set H such that every z e RN is uniquely

represented as z = x + y, x e ©, y e H. Let μeM. Fix a Borel set B°

in © such that 0 < m(B°) < oo and define a measure μ! on H by

μ\C) = miBT'μiB0 + C) for C c H .

For Borel sets 1? c © and C a H, we have

O = m(B)μf{C) .

In fact, since μ(β + 7/ + O = μ(# + O f o r ί/ e ©, we have μ{B + C) =

const m(β) for a fixed C. The constant is no other than μ'(C). There-

fore, we have

I g(z)μ(dz) = I I g(x + y)m{dx)μr{dy)

for every nonnegative measurable g. Hence, if (3.8) holds, then / has

^-integral null by Fubini's theorem. The proof is complete.
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CORES OF POTENTIAL OPERATORS 135

Let h(ξ) be a continuous function on [0, oo) such that h(ξ) is 1 for
O ^ f ^ l , 0 for f ^ 4 , and 0 < h(ξ) < 1 for 1 < ξ < 4. Let hn(x) =
h(\xf/n2) for n^l.

LEMMA 3.7. Given u e Cκ(RN) and f = Au, define

(3.9) gn(x) = - I f{x + i/)fen(ί» + y)m(dy)\\ hn(x + y)m(dy) ,

(3.10) /n(s) = (/(«) + gn(x))K(x) ,

where we understand gn(x) = 0 wfcen the denominator in (3.9) vanishes.

Then, fn e CK(RN), fn has μ-integral null for every μe M, and

(3.11) sup|^w(x)| = o(n~d) as n-+ oo ,
XGRX

(3.12) | | / w _ / | | _ ^ o α s n - > o o .

Proof. The function gn(x)hn(x) vanishes if \x\ > 2n. If |x| = 2n and

a;' -> x9 then Λn(a?) = 0 and gn(x')hn(xf) -+ 0 since \gn(x')\ ^ | |/ | | . If |«| < 2w,

then the denominator in (3.9) is positive and gn(x) is continuous at x.

Hence fn^Cκ. We have

I /«(« + y)m(dy) = \ f(x + y)hn{x + y)m(dy)
J@ J©

+ ^n(«) I ft»(a + y)m(dy) = 0

for x e RN, since gn(x + y) — gn{x) for y e ©. It follows that fn has

//-integral null for μeM by Lemma 3.6. Suppose that % has support in

Ba. Let Z)α = © + Ba. If x g Dα, then x + ^ J ) α for 7/ e © and #π(#) = 0

by (3.3) in Lemma 3.4. Let xeDa and let us give estimation of gn(x).

We have x ~ x° + x1 with x° e © and | x1 \ < a, and hence

^(# + y)m(dy) ^ m{2/ e ©: \x + τ/| ^ ή]

= m{τ/ e ©: I&1 + 2/1 ̂  ^} ^ {̂̂ / e ©: \y\ ^ n — α} ^ c(π — α)d

with a positive constant c. Noting that / satisfies (3.8) by Lemma 3.5,

we observe that

I ί fix + y)K(x + y)m{dy) = ί fix + y)(l - hn(x + y))m{dy)
IJ© J©

^ \f(χ + y)\m(dy) ^ ||w||^(β^_α)m(βα — #)
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136 KEN-ITI SATO

by using Lemma 3.4. The last member tends to zero as n —> oo uniformly
in xeDa. Thus we get (3.11). The assertion (3.12) follows from (3.11)
and / e Co, since

||/n - f\\ ^ sup |/G*0| + sup \gn(x)\ .
\x\>n RN

LEMMA 3.8. // ueC%(RN), then An is a C°° function.

Proof. Using the expression (2.1) of An in Theorem 2.1, we can
see that An is continuously diίferentiable and

Hence An is a C°° function by induction.

LEMMA 3.9. Let a > 0. //

(3.13) E\Xt\
a < oo

holds for some t > 0, ί/iew it holds for every t > 0 and

(3.14) ί Jx\a\Au(x)\dx < oo

/or every neC^. If

(3.15) tf|*t| < oo ,

then

(3.16) xtAu(x)dx = — (SX^) %(#)cZ#
J RN J B*

for every ueC%, where XjP is the i-th component of Xt.

Proof. Let φt(ξ) be the characteristic function of the distribution
of Xt:

φt(ξ) = Eexv[V-l Σ ξiXή for ξ = (ft, ,ft,) e RN .

Then, it is known that

φt{ξ) = exp Γί(- Σ c^ftft, + V ^ Σ &A
(3.17) L V " 2 *"'_

+ f (e'-1« - 1 - χBι(yW=l ξyMdy)) 1 ,
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where ξy = XJjLi&i/i. Hence E\Xt\° is finite if and only if

(3.18) f \y\av{dy) < 00
J \V\>1

by the result of [5]. Therefore, if (3.13) holds for some t > 0, then it

holds for every t and (3.14) holds by Lemma 3.4. If (3.15) holds, then

we get on the one hand

I xiAu(x)dx = — (bi + I Vtvidy)) u(x)dx

by elementary calculation from (2.1), and

EX? = -V^Ϊ-f^tfO = δ4 + f 2/M#)

from (3.17) on the other hand. Hence (3.16).

4. Transient case.

We assume that Xt is transient. Let U be a measure defined by

U(B) - f
Jo

This measure is finite for compact sets and concentrated on Σ. We need

the following analogue of the Blackwell-Feller-Orey renewal theorem.

PROPOSITION 4.1. (Port-Stone [2]) (i) Suppose that d ;> 2 or suppose

that d — 1 and E\Xt\ = 00. Then,

(4.1) lim U(B + x) = 0
a?e©,|a;|-oo

/or every bounded Borel set B. (ii) Suppose that d = 1 αn<# Ĵ l-X̂ l < 00.

Assume N — 1 /or simplicity of statement. If ±EXt > 0,

(4.2) lim Ϊ7(β + a?) = em(B) , lim C7(J5 + x) = 0

α yimίe positive constant c for every bounded Borel subset B of

© such that the boundary of B in the relative topology of © has zero

m-measure.

As a consequence, we have

(4.3) sup U(B + x) < co
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138 KEN-ITI SATO

for every bounded Borel set B, if only transient. Note that if d = 1,

E\Xt\ < oo and EXt = 0, then it is recurrent.

We will prove the following result.

THEOREM 4.1. If Xt is transient, then the set SPΐ of functions in

CK(RN) which have μ-integral null for every μeM is a core of the poten-

tial operator V.

LEMMA 4.1. If /eSW, then /eSXV) and

(4.4) Vf(x) = J/(3 + y)U(dy) .

Proof. Suppose that / has support in Ba. Let g(x) be the right-

hand side of (4.4). This is a uniformly continuous function. In fact,

for a given ε < 0, let δ be such that 0 < δ < 1 and \f(x) - f(x')\ < e if

\x — x'\ < δ. Then we have

\g(χ) - g{%')\ ^ eϋ(Ba+ι - x) ^ const ε

by (4.3). Suppose that

(4.5) \\mg{%) = 0
|α?|-oo

is proven. Since we have

\JJ(x)\ ^ ||/(a? + »)|t^(di/) ^ 11/11 f/(βα - α?) ,

which is bounded by (4.3), Jxf(x) tends to g(x) boundedly and point-

wise as λ —> 0; in other words JJ tends weakly to g, and hence / e S ( 7 )

and Vf=g by Theorem 2.4 of [4]. Let us prove (4.5). First, it follows

from Proposition 4.1 and /e9Jί that

(4.6) lim g{% + y) = 0

for each fixed # e i2^. Let Dα = @ + ^ α , the α-neighborhood of ©. We

can find a Borel set if such that every z e RN is uniquely represented as

z = x + y, xe®, yeH, and that H Π Da cz Bb for some 6 > 0. We

claim that the convergence in (4.6) is uniform in yeH. If y e Da, then

g(x + y) — 0 for # e ©. For a given ε > 0, we can find by the uniform con-

tinuity a δ > 0 such that |flr(s) - g(z')\ < ε if \z - z'\ < δ. Let y°eH f) Da.

lί xe® and \x\ is large enough, then
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CORES OF POTENTIAL OPERATORS 139

\g(χ + y)\ <\g(χ + y°)\ + e < 2ε

for all y such that \y — y°\ < δ. Since H Π Da is a bounded set, it fol-

lows that (4.6) holds uniformly in y eH. Given e > 0, let p > 0 be such

that if x e © and \x\> p, then \g(x + y)\ < ε for all y e H. If \z\ > p + &,

then 2; = x + y, xe®, y e H, where y & Da or \y\ < b. In either case we

have \g(z)\ < e. Hence (4.5) is proved.

Proof of Theorem 4.1. We have 2K c S)(7) by the above lemma.

Hence, by virtue of Corollary 2.1, it is enough to prove that for each

ueCz there are a sequence {fn} in 2K and a, g in Co such that / w —> An

and V/n —> ^ strongly as n —> 00. Let / = Aw and let / n be the one de-

fined by (3.10). Then, by Lemmas 3.7 and 4.1, we have fn e SJί, / „ - > / ,

and

(4.7) Vfn(x) = J/n(a; +

Let

(4.8) g(x) = J/(a?

The integral exists by (4.3) and Lemma 3.4. We claim

(4.9) lim Vfn(x) = g(x) uniformly in x e RN .

It follows from (3.10) and (4.7) that

\Vfn(x) - g(x)\ ^ ί \f(x + y)\U(dy) + sup \gn(z)\[hn(x + y)U(dy) .
J \x + y\>n z J

The first term of the right-hand side tends to zero as n —> oo uniformly

in x by (3.5) and (4.3), while the second term also tends to zero uniformly

in x by (3.11), since we have

sup \hn(x + y)U(dy) ^ sup U(x + B2n) = sup U(x + B2n)
(A 10") χeRNJ χ£RN χ£%i

^ cnd sup U(x + Bλ) ^ c V

by (4.3), where ®1 is the d-dimensional Euclidean subspace including ©,

and c and c/ are constants. Hence we get (4.9), which proves that g eC0

and || V/n — g\\ -> 0. The proof is complete.
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5. Refinement in transient case.

We assume transience and @ = RN in this section. We say that a

function φ(x) is a order homogeneous outside a compact set, if there is

a b > 0 such that

φ(λx) = λ*φ(x) for \x\ ^ 6, Λ ̂  1 .

For such a function φ we define the homogeneous modification

Note that 0(&) = #(α) for |a?| ^ 6.

THEOREM 5.1. Suppose E\Xt\
a < oo for a real number a > 0. Let

φi(x), I <Li <* I, be an arbitrary number of continuous functions on RN

such that φi is at order homogeneous outside a compact set, 0 < at ^ a,

and the set of the homogeneous modifications {φi(x): 1 ^ i ^ 1} is linearly

independent. Given real numbers ai9 1 ^ ί :g I, let Wl be the set of func-

tions f e Cκ(RN) such that

(5.1) ί f(x)dx = 0, f f(x)φi(x)dx = at for 1 ^ ί ^ I.

Then, Wl is a core of the potential operator V.

Proof. The set 9K is included in ©(V), since M consists only of

multiples of the Lebesgue measure of RN in the present case. Using a C°°

function h(ξ), let ftn(#) be the function given in Section 3. Let ueCg

and / = Au. By Lemma 3.8, / is a C°° function. Let ψQ(x) = 1 and let

ψi(x), 1 <; i ^ ϊ, be C°° functions on iϋ^, α̂  order homogeneous outside a

compact set for each ί. Let

(5.2) fn{x) = (/(a) + έ bJnψj(x))hn(x) .

Surely /„ is in Cj. We want to determine constants bjn so that / n e 3ft

and prove

(5.3) | |Λ - / | | -> 0 ,

(5.4) || y / n _ 0 U - O

for ^ defined by (4.8). Let α0 = aQ = 0. We have / n e 3ft if and only if
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(5.5) \f{x)φi{x)hn{x)dx + Σ b j Λ φ t i x t y j W h ά x i d x = a t , Q £ i ^ l ,

where φ0 = 1. We have

\φi(x)ψj(x)hn(x)dx — nN\φί(nx)ψj(nx)hι(x)dx

— nN\ φi(nx)ψj(nx)h1(x)dx

+ nN\ φiinx^jinx^ix) dx ,

hence

(5.6) n^-^

as n -> oo. It follows that

n-N«+i)-v d e t

(5.7)

> c = detf

where /3 = 2 { β l α<# Using Weierstrass' theorem, we choose the functions

Ψt in such a manner that max \φt(x) — ψi(x)\ (1 ^ ΐ ^ ϊ) are so small that
uι=&

c is positive. This is possible because we have

det ( φt^φ^ίφήdx) > 0(
W

since it is the Gramian of {φiix^ix)1'2} and the functions φi(x) restricted

to \x\ <2n are still linearly independent. Thus, for sufficiently large n,

{bjn: 0 <; j <; 1} which satisfies (5.5) uniquely exists. We have

(5.8) ϊf(x)hn(x)dx = o(l) and \f{x)φi{x)hn{x)dx = 0(1)

as n —> oo by Lemma 3.5 and by

(5.9) f|α?|β|/(a0|dίB< oo ,

which follows from the assumption E\Xt\
a < oo by Lemma 3.9. Hence we

can easily check that

(5.10) bJn = o(n~N-aή for 0 ̂  / ̂  I,
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solving the linear equations (5.5) and using (5.6) and (5.7). It follows
that

||Λ - f\\ ^ sup |/(a!) I + Σ |6ίn|(2»)«/ = sup |/(»)| + o(w"*) .
\x\>n j = 0 \x\>n

Further we have

\Vfn(x) - g(x)\ ̂  f \f(x + y)\U(dy)
J \x+y\>n

+ const Σ \bJn\na4hn(x + y)U(dy)

using (4.7) and (4.8), and see that the right-hand side tends to zero uni-
formly in x using (3.5) and (4.3) for the first term, and using (4.10) and
(5.10) for the second term. Hence we get (5.3) and (5.4), completing
the proof.

6 Recurrent case.

Let Xt be recurrent. In addition we assume that Xt is non-singular
in the sense that for some t the distribution of Xt has non-trivial abso-
lutely continuous part. We have necessarily © = RN and N = 1 or 2.
Port and Stone give the following result.

PROPOSITION 6.1. (Port-Stone [2], Section 17) // / is bounded, meas-
urable, vanishes outside a compact set, and has null integral, then
Λoo

e~λt Ef(x + Xt)dt is bounded uniformly in λ > 0 and tends to a func-
Jo

tion g(x) as λ—>0. The convergence is uniform on every compact set.
There are a continuous function a{x) and a finite measure μ2 such that
the following hold: (i) The function g is represented by

(6.1) g(x) = -j/G» + y)a(y)dy - j /(α + y)μ2(dy).

(ii) // N = 2 or if N = 1 and E\Xt\
2 = oo, then

(6.2) lim (a(x + y) - a(x)) = 0

uniformly in y on every compact set. (in) If N = 1 and E\Xxf — σ2 < oo,
then

(6.3) lim (a(x + y) - a(x)) = ±y/σ2
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uniformly in y on every compact set

The following is a direct consequence of the above result. Noting

that (6.1) is written as

(6.4) g(x) = ~^f(y)(a(y - x) - a{-x))dy - ^f(x + y)μ2{dy) ,

and recalling Theorem 2.4 of [4], we see that if feCκ(RN) and

(6.5) ϊf(x)dx = [f(x)Xidx = 0 forl^ί^N,

then geC0(RN), /eS(V) and Vf = g. Also, (6.2) as well as (6.3) imply

(6.6) sup \a{x + y) - a(x)\ ̂  const (\y\ + 1).
xeRX

THEOREM 6.1. If E\Xt\ < oo, then the set of functions / e C j satis-

fying (6.5) is a core of the potential operator V.

The proof is obtained by a simplification of the proof of the follow-

ing theorem with trivial changes.

THEOREM 6.2. Suppose that E\Xt\
a < oo for an a > 1. Let φi(x),

N + 1 <L i <:l be an arbitrary number of continuous functions such that

φi is cίi order homogeneous outside a compact set for some at satisfying

Kcci^oc and the set of the homogeneous modifications {φi: N + 1 ^ ί ^ 1}

is linearly independent. Given real numbers au N + 1 <̂  i <: I, let M be

the set of functions feCκ(RN) which satisfy (6.5) and

(6.7) {f(x)φi(x)dx = at forN+l^i^l.

Then, SJί is a core of V.

Proof. Let φo(x) = 1, tf0 = 0, Φi(χ) = %n at = 1 for l^i^N, and

at = 0 for 0 ^ i ^ N. Given u e C%, f= Au, define fn by (5.2). By the

same argument as in the proof of Theorem 5.1, we can determine for

large n the constants bjn in (5.2) in such a way that fn e ίΰl. We have

also (5.8). This time we need a stronger result:

[f(x)hn(x)dx ^ ί \f(x)\dx ^ n~a[ |
J J \x\>n J \x\>n

= o(n~a) .

Noting that Xt has mean 0 by the recurrence and E\Xt\ < oo and using

Lemma 3.9, we have similarly
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\f(x)xihn(x)dx =

Therefore we obtain

(6.8) bJn = oin-"-1-^) , for 0 ^ j ^

from (5.5) in the same way as we get (5.10). Thus (5.3) is obvious.

Define g{x) by (6.4). Existence of the first integral in (6.4) follows from

(5.9) and (6.6). Expressing Vfn in the form of (6.4), we have

I Vfn(x) - g(x)\ ̂  I f f(y)(a(y - x) - aί-x))dy

bjn\ Ψj(y)(β(y - x) - a(-x))dy
J W\<2n

+ Σ \\fn-f\\th(RN).

In the right side, the first term tends to zero uniformly in x by (5.9)

and (6.6), and so does the second term by (6.8) and by

j, Ψj(y)(a(y - x) - a(-x))dy = O(nN+1+aή ,
\y\<2n

which follows from (6.6). Hence we get (5.4), and the proof is complete.

Even if Xt is recurrent and non-singular, we do not know a core

which can be explicitly described of the potential operator in the case

E\Xt\ =. oo. In order to find such, it is desirable to get information on

the relation between behavior of \a(y + x) — a(x)\ for large \x\ and mass

distribution of the Levy measure v in neighborhoods of infinity. An ex-

ample is the Cauchy process on R1 with or without drift, for which we

have

\a(y + x) - a(x)\ £ const(|log|(l + y)/x\\+l)

and v{dy) = const y~2dy, and the set of functions in Cj with integral null

is a core of the potential operator (Example 5.4 of [4]).
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