
Appendix B

Asymptotic Analysis

Asymptotic analysis concerns the notion of the behaviour of functions, f(x),
as certain parameters go to their limiting values, usually zero or infinity. For
convenience and without loss of generality, we will consider functions as their
arguments go to infinity. Obviously the limit to any finite value x0 can be
obtained by taking y = 1

(x−x0) to infinity.
We define

f(x)∼ g(x) (B.1)

if and only if

lim
n→∞

f(n)

g(n)
→ 1. (B.2)

The binary relation of equivalence satisfies many obvious properties: for any
smooth function F (y), if f(x)∼ g(x) then

F (f(x))∼ F (g(x)). (B.3)

This specifically is useful when applied to powers, f ∼ g implies

fr ∼ gr (B.4)

for any real number r. If f(x)∼ g(x) and a(x)∼ b(x) then

a(x)f ∼ b(x)g(x). (B.5)

Asymptotic analysis is most useful in the application of asymptotic expansions
of functions. An asymptotic expansion of a function f(x) is a series representation
of a function that does not necessarily converge, and hence must be truncated
at the expense of adding a remainder term. A very famous example of an
asymptotic expansion is the Stirling approximation for the factorial, N !. The
Stirling approximation is given by

ln(Γ(z)) = z lnz− z− 1

2
lnz+ln2π+

N−1∑
n=1

B2n

2n(2n− 1)x2n−1
+RN (z), (B.6)
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where Bn are the Bernoulli numbers with

RN ≤
|B2N |

2N(2N − 1)|z|2N−1
(B.7)

for real z. The Bernoulli numbers behave as

B2N = (−1)N+1 2(2N)!

(2π)2N
ζ(2N). (B.8)

The zeta function being bounded, we see that the Stirling approximation
diverges.

A series expansion can be obtained for the factorial of a positive integer N by
expanding the Γ function. Typically, the series expansion gives a very accurate
approximation for the function that becomes maximally accurate after a certain
number of terms in the expansion. At any finite truncation of the series, the
remainder can be understood to be smaller than the subsequent term that has
been dropped. Thus if we have a function f(x) and its asymptotic series g1(x)+
g2(x)+ · · · then

f(x)− (g1(x)+ g2(x)+ · · ·+ gk−1(x))∼ gk(x) (B.9)

for each k up to a maximum kmax which depends on x. For larger values of x, kmax

increases. But after this term, the expansion starts to diverge, and it is not a good
approximation to the original function. Thus for the Stirling approximation, for a
given N , we should sum a finite number of terms to obtain a good approximation
to N !, that number fixed by the value of N . However, if we look at the subsequent
terms in the expansion, we find that they start to increase, and eventually they
increase so much that the series fails to converge. Truncating the series at a given
term kmax gives an approximation that is as small as the first term neglected,
which can be very good approximation even though the asymptotic series does
not converge.

We use the notation

f(x)− (g1(x)+ g2(x)+ · · ·+ gk−1(x)) = o(gk(x)), (B.10)

which generally in physics is translated as the difference

f(x)− (g1(x)+ g2(x)+ · · ·+ gk−1(x)) (B.11)

is of the order of gk(x). However, there is a precise mathematical sense to this
relation, it means that for every positive ε there exists a positive real number X
such that, for x≥X,

f(x)− (g1(x)+ g2(x)+ · · ·+ gk−1(x))≤ εgk(x). (B.12)

If f(x) = o(g(x)) and g(x) �= 0, then

lim
x→∞

f(x)

g(x)
= 0. (B.13)
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