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In [1, Theorem 3.3], E. Bishop proved that an operator S on a Hilbert space $? is
subnormal if and only if there is a net of normal operators {Na} that converges to S
strongly (that is, \\(Na - S)f\\ -» 0 for every / in $?). The proof that such a net exists if S is
subnormal is not so difficult; in fact, a sequence of normal operators converging strongly
to S can be found. Bishop's proof of the converse, however, is rather complicated and
involves, among other things, some complicated arguments using operator-valued meas-
ures. The purpose of this note is to provide an easier proof of this part of the theorem.
Our interest in finding such a proof was aroused by Paul Halmos.

In [2] and [4] it is shown that an operator S on $? is subnormal if and only if

t <S%Sif,)*0 (*)
i,;,=o

for every subset {fo,fu. . . , /„} of %t. It must be shown that if {Na} is a net of normal
operators that converges strongly to S, then S satisfies (*). If it were the case that
Nj, -» S' strongly for all / > 0 , then it would follow that S is subnormal since each Na

satisfies (*). However the strong convergence of {Na} to S does not imply the strong
convergence of powers of {Na}. Consider the following example due to Paul Halmos.

Fix an orthonormal basis {en: n > 1} for $?. Since 0 belongs to the weak closure of
{-fnen: n > 1} ([5, Solution 21]), there is a net of integers {na} such that {Vn^e,,} converges
to 0 weakly. If Na :$£-* "X is defined by Nj = yfnJ,f, enJeKa, then each Na is hermitian,
Na —» 0 strongly, but {N^} does not converge strongly to 0.

The following offers partial relief from these disagreeable affairs.

LEMMA 1. // {Aa} and {Ba} are nets of operators such that supa ||Aa||<<», Aa —* A
strongly (respectively, weakly), and Ba-^> B strongly, then AaBa —* AB strongly (respec-
tively, weakly).

The proof of this lemma is an easy exercise.

Note that as a consequence of Lemma 1 if Na -» S strongly and {Na} is uniformly
bounded, then Nj, -» S' strongly for every / 2 l . Thus (*) implies that the strong limit of a
bounded net of normal operators is subnormal. Our plan is to reduce the general case to
the uniformly bounded case. The principal tool is the following lemma.
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LEMMA 2. If {Na:aeA} is a net of normal operators with spectral decompositions
Na= Jc z dEa(z) and JVa —» S strongly, then for any open set G containing cr(S),
{Ea(G)} converges strongly to the identity operator.

Proof. For each a let Qa = Ea(C\G); it must be shown that Qa —* 0 strongly.
Equivalently, it must be shown that Qa -»0 weakly (that is, in the weak operator
topology). Since ||QJ| = 1, for all a, and the unit ball of 38($?) is weakly compact, {Qa} has
a weak cluster point T. Let {Qp : |3 £ B} be a subnet such that Qp^> T weakly.

Define up : G-» ®(%) by

«P(z)

for each z in G. Hence ||up(z)||<[dist(z,C\G)]"1 for all z in G. So {up} is a locally
bounded net of operator-valued analytic functions on G. By a version of Montel's
theorem for operator-valued analytic functions, there is a function u:G-»38(?i?) such
that for all / and g in 9if, z >-+(u(z)f, g) is analytic on G and there is a subnet {uy:ye T} of
{«„} such that «7(z) -» u{z) weakly for all z in G.

Fix z in G. Since (N^-z)—»(S-z) strongly, Lemma 1 shows that uy(z)(Ny-z)^>
u ( z ) ( S - z) w e a k l y . B u t uy(z)(Ny - z ) = Q y - > T w e a k l y . H e n c e u(z)(S - z ) = T for all z
in G. This implies that

f(z)=lu(z) (zsG),
z)-1 (zeCV(S))

is a well-defined function from C into 98(Sif). Therefore / is an entire function. But
f(z)= T ( S - z ) ~ 1 ^ 0 as z^oo. By Liouville's Theorem, / is constantly 0. Thus T = 0.

This argument shows that 0 is the only weak cluster point of the net {Qa}. Therefore
Qa —* 0 weakly. This completes the proof of Lemma 2.

The use of Liouville's Theorem in the proof of the preceding lemma is a feature of
Bishop's original proof.

BISHOP'S THEOREM. If Se S8(3i?), the following statements are equivalent:
(a) S is subnormal,
(b) S is the strong limit of a net of normal operators.

Proof. The proof that (a) implies (b) is standard. Because of its brevity, the proof is
included for completeness. It suffices to assume that §? is separable, so let {en: n ̂  1} be an
orthonormal basis for $?. If N is the minimal normal extension of S and N acts on X, then
3if is also separable. For each n > l , let Un be an isometry from % onto 3? that is the
identity on the closed linear span of {eu ..., en, Seu ..., Sen}. Then U~lNUn = Nn^> S
strongly.

Now assume that (b) holds and {Na} is a net of normal operators that converges to S
strongly. If Na=\czdEa(z) is the spectral decomposition of Na and G =
{zeC: |z|<||S||+l}, then Lemma 2 implies Ea(G)^> 1 strongly. If Ma = Ea(G)Na, then
each Ma is normal and, by Lemma 1, Ma -* S strongly. Moreover, Ma = | G zdEa(z), so
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that ||A4j|<||S|| +1 for all a. Therefore, for each j > 1, M'a-*S' strongly by Lemma 1. By
(*), S is subnormal. This completes the proof.

If we restrict ourselves to limits of sequences rather than nets, then we can find
analogues of Bishop's theorem for very general classes of operators. Recall that two
operators are approximately equivalent if each is a norm limit of operators that are
unitarily equivalent to the other. Suppose if<^${dl€) and if is closed under unitary
equivalence. We say that S is closed under direct sums provided the direct sum of any
sequence in if is unitarily equivalent to an operator in if.

THEOREM. Suppose Vt is separable, if<=, <%(%!), and if is closed under approximate
equivalence and direct sums. 1 /Se 38($f), then:

(i) S is a strong limit of a sequence in if if and only if S is unitarily equivalent to the
restriction of an operator in if to an invariant subspace,

(iv) S is a weak limit of a sequence in if if and only if S is unitarily equivalent to the
compression of an operator in if to some subspace,

(iii) S is the *-strong limit of a sequence in if if and only if S is unitarily equivalent to
the restriction of an operator in if to a reducing subspace.

Proof. The proof of the "if" parts of (i)-(iii) are similar to the proof of "(a) -» (b)" in
Bishop's theorem above. We prove the "only if" part of (i); the others follow in a similar
fashion. Suppose {Sn} is a sequence in if and Sn—*S strongly. Choose Tin if so that Tis
unitarily equivalent to the direct sum of the Sn's, and choose a sequence {Vn} of
isometries from H into H so that V*nTVn = Sn and (VnV*n)T = T(VnV*) for » = 1 ,2 , . . . .
It follows from [3, Theorem 3.3, Corollary 3.2] that there is an operator 7\ that is
approximately equivalent to T such that S is unitarily equivalent to the restriction of 7\ to
an invariant subspace. Since if is closed under approximate equivalence, we know that
Tx € if. This completes the proof.

REMARKS, (a). The preceding theorem no longer remains true when "sequence" is
replaced by "net". For example, if 9> = {TeB(H): T2 = 0}, then if is closed under
approximate equivalence and direct sums. However, it was shown by Paul Halmos [4,
Solution 91] that every operator in 38 ($f) is a strong limit of a net of operators in if.

(b) Normal operators are direct integrals of 1-dimensional operators. The preceding
theorem is false when "sequence" is replaced by net and if is the set of binormal
operators (that is, direct integrals of 1-dimensional and 2-dimensional operators), since
the class of binormal operators is known to contain the operators T with T2 = 0. If follows
that the analogue of Lemma 2 fails for binormal operators.
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